A Homogeneous Formulation for Lines in 2 Space
- Jim Blinn
Siggraph 1977 |
Published by Association for Computing Machinery, Inc.
Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation for various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogeneous formulation for lines in 3 dimensions as an anti-symmetric 4×4 matrix which transforms as a tensor. This tensor actually exists in both covariant and contravariant forms, both of which are useful in different situations. The derivation of these forms and their use in solving various geometric problems is described.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.