Deep Learning Theory and Causality
Poster Session: December 7
Location: Virtual
All times are in PST (UTC -8)
Poster Session: December 7
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck, Mark Sellke
Poster Session: December 9
An Exponential Lower Bound for Linearly Realizable MDP with Constant Suboptimality Gap
Yuanhao Wang, Ruosong Wang, Sham Kakade
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck, Mark Sellke
Aligning Pretraining for Detection via Object-Level Contrastive Learning
Fangyun Wei, Yue Gao, Zhirong Wu, Han Hu, Stephen Lin
Bandits with Knapsacks beyond the Worst Case
Karthik Abinav Sankararaman, Aleksandrs Slivkins (slivkins)
Bayesian decision-making under misspecified priors with applications to meta-learning
Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel Hsu, Thodoris Lykouris, Miro Dudík, Robert E. Schapire
BayesIMP: Uncertainty Quantification for Causal Data Fusion
Siu Lun Chau, Jean-Francois Ton, Javier González, Yee The, Dino Sejdinovic
Bootstrap Your Object Detector via Mixed Training
Mengde Xu, Zheng Zhang, Fangyun Wei, Yutong Lin, Yue Cao, Stephen Lin, Han Hu, Xiang Bai
Dueling Bandits with Adversarial Sleeping
Aadirupa Saha, Pierre Gaillard
Grounding Spatio-Temporal Language with Transformers
Tristan Karch, Laetitia Teodorescu, Katja Hofmann, Clément Moulin-Frier, Pierre-Yves Oudeyer
Memory Efficient Meta-Learning with Large Images
John Bronskill, Daniela Massiceti, Massimiliano Patacchiola, Katja Hofmann, Richard Turner
Near-Optimal Lower Bounds For Convex Optimization For All Orders of Smoothness
Ankit Garg, Robin Kothari, Praneeth Netrapalli, , Suhail Sherif
Neural Pseudo-Label Optimism for the Bank Loan Problem
Aldo Pacchiano, Shaun Singh, Alex Berg, Jakob Foerster
Optimality of Zeroth Order Gradient Ascent for Nonlinear Bandit Optimization
Baihe Huang, Kaixuan Huang, Sham Kakade, Jason Lee, Qi Lei, Runzhe Wang, Jiaqi Yang
Piper: Multidimensional Planner for DNN Parallelization
Jakub Tarnawski, Deepak Narayanan, Amar Phanishayee
Probing Inter-modality: Visual Parsing with Self-Attention for Vision-and-Language Pre-training
Hongwei Xue, Yupan Huang, Bei Liu, Houwen Peng, Jianlong Fu, Houqiang Li, Jiebo Luo
R-Drop: Regularized Dropout for Neural Networks
xiaobo liang, Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min Zhang, Tie-Yan Liu
Recovering Latent Causal Factor for Generalization to Distributional Shifts
Xinwei Sun, Botong Wu, Xiangyu Zheng, Chang Liu, Wei Chen, Tao Qin, Tie-Yan Liu
Reinforcement Learning in Reward-Mixing MDPs
Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, Shie Mannor
Searching the Search Space of Vision Transformer
Minghao Chen, Kan Wu, Bolin Ni, Houwen Peng, Bei Liu, Jianlong Fu, Hongyang Chao, Haibin Ling
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning
Hanzhe Hu, Fangyun Wei, Han Hu, Qiwei Ye, Jinshi Cui, Liwei Wang
Speaker: Mary Gray
Do Transformers Really Perform Badly for Graph Representation?
Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu
Few-Shot Data-Driven Algorithms for Low Rank Approximation
Piotr Indyk, Tal Wagner, David Woodruff
Improving Visual Quality of Image Synthesis by A Token-based Generator with Transformers
Yanhong Zeng, Huan Yang, Hongyang Chao, Jianbo Wang, Jianlong Fu
Learning and Generalization in RNNs
Abhishek Panigrahi, Navin Goyal
List-Decodable Mean Estimation in Nearly-PCA Time
Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard, Jerry Li, Kevin Tian
Robust Regression Revisited: Acceleration and Improved Estimation Rates
Arun Jambulapati, Jerry Li, Kevin Tian
The Elastic Lottery Ticket Hypothesis
Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Jingjing Liu, Zhangyang Wang
The Emergence of Objectness: Learning Zero-shot Segmentation from Videos
Runtao Liu, Zhirong Wu, Stella Yu, Stephen Lin
Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer
Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, David Farhi, Jakub Pachocki, Xiaodong Liu, Weizhu Chen, Jianfeng Gao
Unadversarial Examples: Designing Objects for Robust Vision
Hadi Salman*, Andrew Ilyas*, Logan Engstrom*, Sai Vemprala, Aleksander Madry, Ashish Kapoor
Adversarial Examples in Multi-Layer Random ReLU Networks
Peter Bartlett, Sébastien Bubeck, Yeshwanth Cherapanamjeri
A single gradient step finds adversarial examples on random two-layers neural networks
Sébastien Bubeck, Yeshwanth Cherapanamjeri, Gauthier Gidel, Remi Tachet des Combes
COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining
Yu Meng, Chenyan Xiong, Payal Bajaj, Saurabh Tiwary, Paul Bennett, Jiawei Han, Xia Song
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
Lorenzo Noci, Kevin Roth, Gregor Bachmann, Sebastian Nowozin, Thomas Hofmann
Do Input Gradients Highlight Discriminative Features?
Harshay Shah, Prateek Jain, Praneeth Netrapalli
FastCorrect: Fast Error Correction with Edit Alignment for Automatic Speech Recognition
Yichong Leng, Xu Tan, Linchen Zhu, Jin Xu, Renqian Luo, Linquan Liu, Tao Qin, Xiangyang Li, Edward Lin, Tie-Yan Liu
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura
GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph
Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh, Guangzhong Sun, Xing Xie
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desislava Ivanova, Adam Foster, Steven Kleinegesse, Michael Gutmann, Thomas Rainforth
Learning from Inside: Self-driven Siamese Sampling and Reasoning for Video Question Answering
Weijiang Yu, Haoteng Zheng, Mengfei Li, Lei Ji, Lijun Wu, Nong Xiao, Nan Duan
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang Liu, Xinwei Sun, Jindong Wang, Haoyue Tang, Tao Li, Tao Qin, Wei Chen, Tie-Yan Liu
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal, Levi Melnick, Xuezhou Zhang, Ben Lengerich, Rich Caruana, Geoffrey Hinton
Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning
Jongjin Park, Younggyo Seo, Chang Liu, Li Zhao, Tao Qin, Jinwoo Shin, Tie-Yan Liu
Only Train Once: A One-Shot Neural Network Training And Pruning Framework
Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin Shi, Sheng Yi, , Xiao Tu
Recognizing Vector Graphics without Rasterization
Xinyang Jiang, Lu Liu, Caihua Shan, Yifei Shen, Xuanyi Dong, Dongsheng Li
Searching Parameterized AP Loss for Object Detection
Tao Chenxin, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai
SPANN: Highly-efficient Billion-scale Approximate Nearest Neighbor Search
Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li, Mao Yang, Jingdong Wang, Mao Yang, Jingdong Wang
Stable, Fast and Accurate: Kernelized Attention with Relative Positional Encoding
Shengjie Luo, Shanda Li, Tianle Cai, Di He, Dinglan Peng, Shuxin Zheng, Guolin Ke, Liwei Wang, Tie-Yan Liu
The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle
Fang Kong, Yueran Yang, Wei Chen, Shuai Li
Poster Session: December 7
Poster Session: December 10
Bellman-consistent Pessimism for Offline Reinforcement Learning
Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, Alekh Agarwal
Chasing Sparsity in Vision Transformers: An End-to-End Exploration
Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang
Data-Efficient GAN Training Beyond (Just) Augmentations: A Lottery Ticket Perspective
Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, Zhangyang Wang
Focal Attention for Long-Range Interactions in Vision Transformers
Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, Jianfeng Gao
Gone Fishing: Neural Active Learning with Fisher Embeddings
Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, Sham Kakade
HRFormer: High-Resolution Vision Transformer for Dense Predict
Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao Zhang, Xilin Chen, Jingdong Wang
Pretraining Representations for Data-Efficient Reinforcement Learning
Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, Devon Hjelm, Philip Bachman, Aaron Courville
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection
Matteo Papini, Andrea Tirinzoni, Aldo Pacchiano, Marcello Restelli, Alessandro Lazaric, Matteo Pirotta
Organizer: Amit Sharma, Indrajit Bhattacharya, Mitesh Khapra, Praneeth Netrapalli, Raj Sharma, Sandeep Juneja, Shourya Roy, Srujana Merugu, Sunita Sarawagi, Upinder Bhalla
Co-evolution Transformer for Protein Contact Prediction
He Zhang, Fusong Ju, Jianwei Zhu, Liang He, Bin Shao, Nanning Zheng, Tie-Yan Liu
Combinatorial Pure Exploration with Bottleneck Reward Function
Yihan Du, Yuko Kuroki, Wei Chen
Distributional Reinforcement Learning for Multi-Dimensional Reward Functions
Pushi Zhang, Xiaoyu Chen, Li Zhao, Wei Xiong, Tao Qin, Tie-Yan Liu
Going Beyond Linear RL: Sample Efficient Neural Function Approximation
Baihe Huang, Kaixuan Huang, Sham Kakade, Jason D. Lee, Qi Lei, Runzhe Wang, Jiaqi Yang
Latent Matters: Learning Deep State-Space Models
Alexej Klushyn, Richard Kurle, Maximilian Soelch, Botond Cseke, Patrick van der Smagt
Information Directed Reward Learning for Reinforcement Learning
David Lindner, Matteo Turchetta, Sebastian Tschiatschek, Kamil Ciosek, Andreas Krause
LLC: Accurate, Multi-purpose Learnt Low-dimensional Binary Codes.
Aditya Kusupati, Matthew Wallingford, Vivek Ramanujan, Raghav Somani, Jae Sung Park, Krishna Pillutla, Prateek Jain, Sham Kakade, Ali Farhadi
Neural Rule-Execution Tracking Machine For Transformer-Based Text Generation
Yufei Wang, Can Xu, Huang Hu, Chongyang Tao, Stephen Wan, Mark Dras, Mark Johnson, Daxin Jiang (姜大昕)
Optimizing Information-theoretical Generalization Bound via Anisotropic Noise of SGLD
Bohan Wang, Huishuai Zhang, Jieyu Zhang, Qi Meng, Wei Chen, Tie-Yan Liu
PlayVirtual: Augmenting Cycle-Consistent Virtual Trajectories for Reinforcement Learning
Tao Yu, Cuiling Lan, Wenjun Zeng, Mingxiao Feng, Zhizheng Zhang, Zhibo Chen
Precise characterization of the prior predictive distribution of deep ReLU networks
Lorenzo Noci, Gregor Bachmann, Kevin Roth, Sebastian Nowozin, Thomas Hofmann
Stylized Dialogue Generation with Multi-Pass Dual Learning
Jinpeng Li, Yingce Xia, Rui Yan, Hongda Sun, Dongyan Zhao, Tie-Yan Liu
Tactical Optimism and Pessimism for Deep Reinforcement Learning
Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, Michael Jordan
ToAlign: Task-Oriented Alignment for Unsupervised Domain Adaptation
Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, Zhibo Chen
Asymptotics of the Bootstrap via Stability with Applications to Inference with Model Selection
Morgane Austern, Vasilis Syrgkanis
Curriculum Offline Imitating Learning
Minghuan Liu, Hanye Zhao, Zhengyu Yang, Jian Shen, Weinan Zhang, Li Zhao, Tie-Yan Liu
Detecting Individual Decision-Making Style: Exploring Behavioral Stylometry in Chess
Reid McIlroy-Young, Russell Wang, Jon Kleinberg, Siddhartha Sen, Ashton Anderson
Double/Debiased Machine Learning for Dynamic Treatment Effects via g-Estimation
Greg Lewis, Vasilis Syrgkanis
Dr Jekyll & Mr Hyde: the strange case of off-policy policy updates
Romain Laroche, Remi Tachet des Combes
Estimating the Long-Term Effects of Novel Treatments
Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Miruna Oprescu, Vasilis Syrgkanis
Fast and Memory Efficient Differentially Private-SGD via JL Projections
Zhiqi Bu, Sivakanth Gopi, Janardhan (Jana) Kulkarni, Yin Tat Lee, Judy Hanwen Shen, Uthaipon Tantipongpipat
Multiclass Boosting and the Cost of Weak Learning
Nataly Brukhim, Elad Hazan, Shay Moran, Robert E. Schapire
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition
Mark Boss, Varun Jampani, Raphael Braun, Ce Liu, Jonathan Barron, Hendrik PA Lensch
NxMTransformer: Semi-Structured Sparsification for Natural Language Understanding via ADMM
Connor Holmes, Minjia Zhang, Yuxiong He, Bo Wu
On the Theory of Reinforcement Learning with Once-per-Episode Feedback
Niladri Chatterji, Aldo Pacchiano, Peter Bartlett, Michael Jordan
Parameter Inference with Bifurcation Diagrams
Gregory Szep, Neil Dalchau, Attila Csikász-Nagy
Reinforcement Learning Enhanced Explainer for Graph Neural Networks
Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, Dongsheng Li
Representation Learning for Event-based Visuomotor Policies
Sai Vemprala, Sami Mian, Ashish Kapoor
RL for Latent MDPs: Regret Guarantees and a Lower Bound
Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, Shie Mannor
Speech-T: Transducer for Text to Speech and Beyond
Jiawei Chen, Xu Tan, Yichong Leng, Jin Xu, Guihua Wen, Tao Qin, Tie-Yan Liu
Towards optimally abstaining from prediction with OOD test examples
Adam Tauman Kalai, Varun Kanade
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction
Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic, Forrester Cole, Ce Liu, Deva Ramanan
An Exponential Lower Bound for Linearly Realizable MDP with Constant Suboptimality Gap
Yuanhao Wang, Ruosong Wang, Sham Kakade
Adaptive Diffusion in Graph Neural Networks
Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, Jie Tang
Fairness via Representation Neutralization
Mengnan Du, Subhabrata (Subho) Mukherjee, Guanchu Wang, Ruixiang Tang, Ahmed Awadallah, Xia Hu
Heuristic-Guided Reinforcement Learning
Ching-An Cheng, Andrey Kolobov, Adith Swaminathan
On the Generative Utility of Cyclic Conditionals
Chang Liu, Haoyue Tang, Tao Qin, Jintao Wang, Tie-Yan Liu
Robust and Differentially Private Mean Estimation
Xiyang Liu, Weihao Kong, Sham Kakade, Sewoong Oh
Heyang Qin, Samyam Rajbhandari, Olatunji Ruwase, Feng Yan, Lei Yang, Yuxiong He
Stronger NAS with Weaker Predictors
Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen, Mengchen Liu, Ye Yu, Zhangyang Wang, Zicheng Liu, Mei Chen, Lu Yuan
The Benefits of Implicit Regularization from SGD in Least Squares Problems
Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean P. Foster, Sham Kakade
An Information-theoretic Approach to Distribution Shifts
Marco Federici, Ryota Tomioka, Patrick Forré
Bellman-consistent Pessimism for Offline Reinforcement Learning
Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, Alekh Agarwal
Contrastive Learning of Global-Local Video Representations
Shuang Ma, Zhaoyang Zeng, Daniel McDuff, Yale Song
Minimax Regret for Stochastic Shortest Path
Alon Cohen, Yonathan Efroni, Yishay Mansour, Aviv Rosenberg
Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety Constraints in Finite MDPs
Harsh Satija, Philip S. Thomas, Joelle Pineau, Romain Laroche
Near Optimal Policy Optimization via REPS
Aldo Pacchiano, Jonathan N. Lee, Peter L. Bartlett, Ofir Nachum
On Contrastive Representations of Stochastic Processes
Emile Mathieu, Adam Foster, Yee Whye Teh
Self-Supervised Bug Detection and Repair
Miltos Allamanis, Henry Jackson-Flux, Marc Brockschmidt
Sparse Uncertainty Representation in Deep Learning with Inducing Weights
Hippolyt Ritter, Martin Kukla, Cheng Zhang, Yingzhen Li
Structured Denoising Diffusion Models in Discrete State-Spaces
Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, Rianne van den Berg