Portrait de Paul Smolensky

Paul Smolensky

Partner Researcher

À propos

Paul Smolensky is a partner researcher in the Deep Learning Group and part-year Krieger-Eisenhower Professor of Cognitive Science at Johns Hopkins University.

His work focuses on the integration of symbolic and neural network computation for modeling reasoning and, especially, grammar in the human mind/brain. This work created: Harmony Networks (a.k.a. Restricted Boltzmann Machines); Tensor Product Representations; Optimality Theory and Harmonic Grammar (grammar frameworks grounded in neural computation); and Gradient Symbolic Computation. The work up through the early 2000’s is presented in the 2-volume MIT Press book with G Legendre, The Harmonic Mind.

Before assuming his position at Johns Hopkins he was a professor in the Computer Science Department of the University of Colorado at Boulder. Prior to that, as a postdoc and Research Professor, with G Hinton, D Rumelhart & J McClelland he was one of the founding members of the Parallel Distributed Processing Research Group at UCSD, which produced the bible of the previous wave of neural network modeling, the two-volume ‘PDP books’. His BA and PhD are in (Mathematical) Physics from Harvard and Indiana University.

He received the 2005 David E. Rumelhart Prize for Outstanding Contributions to the Formal Analysis of Human Cognition.