@inproceedings{joshi2010image, author = {Joshi, Neel and Kang, Sing Bing and Zitnick, Larry and Szeliski, Rick}, title = {Image Deblurring using Inertial Measurement Sensors}, booktitle = {ACM SIGGRAPH}, year = {2010}, month = {July}, abstract = {We present a deblurring algorithm that uses a hardware attachment coupled with a natural image prior to deblur images from consumer cameras. Our approach uses a combination of inexpensive gyroscopes and accelerometers in an energy optimization framework to estimate a blur function from the camera’s acceleration and angular velocity during an exposure. We solve for the camera motion at a high sampling rate during an exposure and infer the latent image using a joint optimization. Our method is completely automatic, handles per-pixel, spatially-varying blur, and out-performs the current leading image-based methods. Our experiments show that it handles large kernels – up to at least 100 pixels, with a typical size of 30 pixels. We also present a method to perform “ground-truth” measurements of camera motion blur. We use this method to validate our hardware and deconvolution approach. To the best of our knowledge, this is the first work that uses 6 DOF inertial sensors for dense, per-pixel spatially-varying image deblurring and the first work to gather dense ground-truth measurements for camera-shake blur.}, publisher = {ACM}, url = {http://approjects.co.za/?big=en-us/research/publication/image-deblurring-using-inertial-measurement-sensors/}, }