Interactions with Big Data Analytics
- Danyel Fisher ,
- Robert DeLIne ,
- Mary Czerwinski ,
- Steven Drucker
ACM Interactions |
This is a pre-publication draft; do not distribute or reproduce. The official version may be found at http://dl.acm.org/citation.cfm?doid=2168931.2168943
Increasingly in the 21st century, our daily lives leave behind a detailed digital record: our shifting thoughts and opinions shared on Twitter, our social relationships, our purchasing habits, our information seeking, our photos and videos—even the movements of our bodies and cars. Naturally, for those interested in human behavior, this bounty of personal data is irresistible. Decision makers of all kinds, from company executives to government agencies to researchers and scientists, would like to base their decisions and actions on this data. In response, a new discipline of big data analytics is forming. Fundamentally, big data analytics is a workflow that distills terabytes of low-value data (e.g., every tweet) down to, in some cases, a single bit of high-value data (Should Company X acquire Company Y? Can we reject the null hypothesis?).
ACM COPYRIGHT NOTICE. Copyright © 2012 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.