Monadic Theory of Order and Topology, II
- Yuri Gurevich
Israel Journal of Mathematics | , Vol 34: pp. 45-71
Assuming the Continuum Hypothesis, we interprete the theory of (the cardinal of) continuum with quantification over constructible (monadic, dyadic, etc.) predicates in the monadic (second-order) theory of real line, in the monadic theory of any other short non-modest chain, in the monadic topology of Cantor’s Discontinuum and some other monadic theories. We exhibit monadic sentences defining the real line up to isomorphism under some set-theoretic assumptions. There are some other results.