
Multicasting in Groupware?

Sasa Junuzovic and Prasun Dewan
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599, USA

sasa@cs.unc.edu dewan@cs.unc.edu

Abstract— While multicast has been studied extensively in many
domains such as content streaming and file sharing, there is little
research applying it to synchronous collaborations involving
shared access to a distributed object. Based on several cases of
real-world collaborations involving instant messaging,
distributed lectures, and computationally-intensive collaborative
game playing, we show that compared to traditional centralized
and replicated collaboration architectures, a new bi-architecture
collaboration system model with multicasting support can
improve response, feedthrough, and task completion times. In
addition, we show that to optimize performance, the set of
traditionally considered factors, consisting of network delays and
transmission costs, must be expanded to include several new
factors, such as processing costs, scheduling policies, and think
times. In one or more of the real-world collaborations we
consider, we show that multicast (a) can increase feedthrough
times if processing costs and scheduling policies are not
considered and (b) may degrade or improve task completion
times depending on the cost of computing the multicast overlay.

Keywords- Multicast; Response, Feedthrough, and Task
Completion Times

I. INTRODUCTION

Multicasting has long been advocated as a more efficient
data distribution scheme than unicasting – and justifiably so. In
particular, it can better utilize network resources, such as
routers and physical links, by reducing the degree of packet
duplication. However, there has been little work done in
applying this idea to distributed collaboration, by which we
mean synchronous collaboration involving shared access to a
distributed object (as opposed to audio/video conferencing).
The T 120 protocol [4] advocated the use of a multicast tree to
reduce the amount of data (audio, video, bitmaps) transmitted
on the network. How such a tree was built or the improvement
in network usage in different kinds of collaboration scenarios
was not studied. RMX [2] and SRM [7] have studied the use of
multicast to improve the packet loss handling and fault
tolerance of shared whiteboards.

In this paper, we extend this research by focusing on
performance of the collaborative application rather than
reliability or network usage. Like T 120, RMX, and SRM, we
assume application-level multicast, that is, we assume that only
end-host machines can participate in the multicast; in
particular, network-level routers, firewalls, and all other non-
end-host devices are abstracted away. The idea of multicast
requires the construction, for each source of messages, a

multicast overlay that defines the paths a message takes to
reach the destinations. Intuitively, such multicast overlays can
degrade performance. They can increase feedthrough times (the
time it takes for users’ actions to be seen by others) as data
must pass through additional nodes to reach the collaborators.
In addition, the cost of dynamically building the multicast
overlay can increase task completion times.

However, we show that because of the cost of transmitting
messages to the network, it is possible to build a new multicast
collaboration architecture that can actually improve response
times, feedthrough times, and task completion times in several
real-world collaborations involving instant
messaging, distributed lectures, and computationally-intensive
collaborative game playing. We also show that in many
realistic cases, the multicast architecture can degrade one or
more performance metrics, and identify several factors (such as
processing costs and scheduling policies) that determine if
unicast or multicast architectures should be used. The multicast
architecture uses an existing algorithm to arrange the
collaborators’ computers into a multicast tree – it does not
assume the existence of other hosts for communicating. Like
other works on multicasting, we use simulations to compare the
two kinds of architectures. Our simulations are different from
previous multicast simulations in two fundamental ways
because they are focused on distributed collaboration. First,
they consider several new parameters such as processing costs,
scheduling policies, and think times. Second, all of the
parameter values are based on actual collaboration logs we
gathered.

The rest of this paper is organized as follows. In the next
section, we derive our multicast collaboration architecture by
extending existing unicast architectures. Next, we present our
experimental setup and results. Finally, we discuss the
implications of these results on future multicast schemes in the
collaboration domain and present brief conclusions and
directions for future work.

II. COLLABORATION ARCHITECTURES

As mentioned above, our work focuses on the collaboration
domain. In order to understand the role multicast can play in
improving the performance of collaborative applications, we
need to identify the distributed architectures of these
applications and the performance metrics influenced by
multicasting.

This research was funded in part by NSF grants ANI 0229998, EIA 03-
03590, IIS 0312328, and IIS 0712794.

A. Unicast Collaboration Architectures
In general, a collaborative application is logically broken up

into a program and a user-interface component. The program
component manages an object that is shared by all of the users.
The user-interface component allows interaction with the
shared object using state that is not shared with others. In other
words, how an application is broken into a program and user-
interface component depends on what is shared among the
applications. For example, in the NetMeeting
application/window sharing system, the set of windows created
by the shared window clients forms the shared state. Therefore,
the shared window clients form the program components, and
the window server forms the user-interface component. On the
other hand, in the NetMeeting whiteboard application, the
shape objects, such as circles and squares, form the shared
state. The module that defines these objects forms the program
component, and the one that supports the display and editing of
these objects forms the user-interface component. We will refer
to messages sent by the user-interface component to the
program component as input commands, and those sent by the
program component to the user-interface component as output
commands.

As the state of the user-interface component is not shared, it
executes on each user’s machine. The program component,
which is logically shared, may be physically replicated or
centralized on the users’ machines. In the centralized
architecture, the program component executes on a computer
belonging to one of the collaborators, receiving input from and
sending output to all the (user-interface components of the)
users. Because the computer running the program component
acts as a computation server for the other computers in the
session, the centralized architecture is sometimes called a
client-server architecture. We refer to the computer which is
(not) running the program component as master (slave)
computer, and the corresponding user a master (slave) user. In
the replicated architecture, a separate replica of the program
component executes on the computer of each user, receiving
input commands from all users and sending outputs to only the
local user. As each computer is a master, this architecture is
also known as a peer-to-peer architecture. The hybrid
architecture, as its name implies, shares aspects with both
centralized and replicated architectures. In this architecture,
more than one but not all computers are masters. As in the
replicated case, a master computer receives input commands
from all master users and sends outputs to its local user, and as
in the centralized case, it receives input commands from and
sends outputs to (possibly) one or more slave users. In this
paper, we do not directly evaluate the impact of multicasting on
hybrid architectures; instead, we infer it from the results for
centralized and replicated architectures.

B. Bi-Architecture Collaboration Model
As shown above, centralized and replicated architectures

couple the input command processing and data distribution
tasks. In other words, computers that process input commands
must also perform all data distribution. For example, in the
centralized architecture, the master computer must unicast
output commands to all slave computers, while in the replicated
architecture, a master computer must unicast all input

commands it receives from its local user to all other master
computers. It is not possible for more than one computer to be
involved in distributing data, which is inconsistent with the
notion of multicast.

To support multicast, we define a new bi-architecture
collaborative systems model that decouples the processing and
distribution tasks. The processing architecture governs the
master-slave relationships and the communication architecture
dictates how input (output) commands are distributed from one
master computer to other master (slave) computers. By
definition, when a unicast communication architecture is used,
the bi-architecture model degenerates to that of traditional
collaboration architectures. The main question of this work was
whether a unicast or a multicast communication architecture
should be used to optimize the performance of a given
processing architecture. In particular, we consider multicasting
of the input and output commands from the inputting master
computer.

To answer the question, we must first define all
implementation aspects of the bi-architecture model. There are
three important implementation-dependent aspects of unicast
collaboration architectures that have carried over into the bi-
architecture model. The first is whether or not a user-interface
component can directly interact with files that represent some
or all of the shared state. We do not place any restrictions on
such accesses. For example, we allow a user interface on a
master computer to directly interact with shared files on the
local file system. The idea of different user-interface
components implementing different algorithms is not new; for
instance, it has been advocated to create different users of
mobile and desktop computers [3]. A related question is
whether each replicated program component in a replicated
architecture has access to files needed to support the
collaboration before the collaborative session begins. We do
not make this assumption in order to accommodate realistic
situations, such as a PowerPoint presentation that is
continuously updated until the start of the lecture. Instead, we
assume that the necessary files are sent from the master
computer of the first inputting user to all other master
computers as part of the first input command.

The second important implementation-depended aspect of
the bi-architecture model is the order in which a master
computer carries out processing and transmission tasks. One
issue is whether these tasks are carried out in a single thread or
in separate threads. We assume that both processing and data
distribution tasks are carried out by a single thread mainly
because it is difficult to model multiple threads, especially
without making some platform-specific assumptions about the
scheduling of the threads. Multi-threaded implementations of
program components, of course, have the potential of
improving performance, especially on a multicore or a
multiprocessor computer. We leave the nature and impact on
performance of such implementations as future work.

When all operations are carried out by a single thread, one
must determine the order in which they are carried out. Two
scheduling policies are 1) process-first, which favors response
times by postponing the transmission task until the processing
task completes and the output is displayed to the local user, and

2) transmit-first, which favors feedthrough times by first
transmitting and then processing. In the unicast architectures,
the scheduling policies are relevant only to master computers.
The reason is that the slave computers do not participate in the
data distribution task. When multicast is used, this is no longer
true; in particular, a slave computer may be responsible for
forwarding output commands that it receives to other
computers. Therefore, the scheduling policies must distinguish
between masters and slaves. Figure 1 shows multicast versions
of these policies. The key difference between the unicast
architecture and the bi-architecture model scheduling policies
is as follows. In the unicast case, a master computer transmits
an input (output) command to all other computers in the
replicated (centralized) architecture, respectively. In the
multicast case, on the other hand, the set of destinations to
which the inputting user’s master computer transmits a
command is determined by the multicast overlay. There must
be at least one destination in the set; otherwise the system
cannot be collaborative. Moreover, the multicast overlay
determines the set of destinations to which a non-inputting
user’s computer forwards received commands. Depending on
the multicast overlay, the destination set is empty for some
computers and non-empty for others. Hence, the scheduling
policies allow a computer to forward to zero or more
destinations.

Another issue is handling of conflicting user actions. In
general, to resolve conflicting operations, extra processing,
extra communication, or both may be required. For each
consistency management algorithm, it may be necessary to
define a new scheduling policy. We leave this as important
future work. Our model is consistent with operation
transformations as they only add to the processing time of
commands; in particular, no extra communication between
computers is required. Therefore, by grouping the
transformation task for a command together with the
processing of the command, process-first and transmit-first
scheduling policies explained above support operation
transformations. However, in our applications and experiments,
no consistency management was implemented, and social
control was used to prevent inconsistency.

C. Choice of Multicast Algorithm
In this first-cut effort at investigating the bi-architecture

model, we did not want to develop a new algorithm for creating
a multicast tree. Instead, we wanted to analyze the performance
of an existing algorithm. There are two classes of such
algorithms, namely, IP layer multicast and application layer
multicast. IP layer multicast assumes that network level routers
support multicast and can be organized into multicasting

overlays. Hence, the source host sends only a single copy of a
message and the routers make sure that the message reaches the
desired destinations. In other words, the routers perform the
actual packet duplication and forwarding of messages. In
contrast, application layer multicast assumes no multicast
support at the network layer and instead organizes the end-user
hosts into multicast overlays. In such overlays, the hosts are
connected by logical links, which map to physical paths in the
underlying network. Unfortunately, even though multicasting is
a mature field, because of a lack of a practical approach to
upgrading legacy backbone routers to include multicast
functionality, a lack of a scalable inter-domain routing
protocol, and other deployment issues [6], IP layer multicast is
not widely available. For this reason, we analyze an existing
application layer multicast scheme.

In general, there are many approaches to create application
layer multicast overlays. Most of these approaches model the
network as a graph in which the hosts are the vertices and the
logical links between these hosts are the edges. Each host is
assigned a set of constraints, which acts as knobs for
controlling resource usage. For example, the degree constraints
can specify the available bandwidth of each host. Each link is
assigned a cost, which is incurred each time the link is
traversed. For instance, these costs can specify the latency of a
link. Using this network model, traditional multicast schemes
focus on minimizing the diameter of the multicast overlay
while satisfying the host constraints. The implicit assumption
in this approach is that the diameter of the overlay determines
the largest end-to-end delay.

Recently, Brosh and Shavitt [1] argued that this assumption
is valid for network-layer but not application-layer overlays
because the cost of the transmitting data to multiple
destinations can be significant at the application layer. In other
words, the approach of optimizing diameters of application-
layer overlays assumes network-layer data distribution
capabilities at the application layer, even though the data
distribution capabilities at the two layers are fundamentally
different. As a result, Brosh and Shavitt define a new algorithm
for creating application-layer multicast trees, which explicitly
considers application-layer transmission times (What we call
transmission times, they called processing times. We use a
more specific term as there are other kinds of processing tasks
in our domain, as we see below). As they showed that the
optimal multicast problem is NP-Complete for their network
model, Brosh and Shavitt developed a heuristic multicast
algorithm, called HMDM. They compared its end-to-end
delays with the end-to-end delays produced by Dijkstra’s
Shortest Path Tree algorithm, which does not consider
transmission times. Their simulations of these two algorithms

Centralized Processing Architecture Replicated Processing Architecture
Process First Transmit First Process First Transmit First

If (master computer)
 Wait for next input cmd
 Process input cmd
Else
 Wait for next output cmd
Process output cmd
Unicast output cmd to (zero
 or more) slave users
Repeat

If (master computer)
 Wait for next input cmd
 Process input command
Else
 Wait for next output cmd
Unicast output cmd to (zero
 or more) slave users
Process output cmd
Repeat

Wait for next input cmd
Process input cmd
Process output cmd
Unicast input cmd to (one
 or more) master users
Repeat

Wait for next input cmd
Unicast input cmd to (zero
 or more) master users
Process input cmd
Process output cmd
Repeat

Figure 1. The order in which a computer carries out operations when process first or transmit first scheduling policies are used for the centralized and
replicated processing architectures

show that the HMDM scheme provides better end-to-end
delays than Dijsktra’s scheme.

In summary, HMDM is the only approach that considers
the time end-hosts require for duplicating and transmitting
messages on the network in the building of such a tree. As our
motivation for applying multicast to collaboration was based on
the assumption that transmission costs are significant, we
decided to use HMDM as the basis for our multicast
architecture.

III. EVALUATION

Three important performance metrics for collaborative
applications are response, feedthrough, and task-completion
times. The response time for an input command entered by
useri is defined as the time that elapses from the moment the
command is entered by useri to the moment useri sees the
output. The feedthrough time to userj of an input command
entered by useri is defined as the time that elapses from the
moment the command is entered by useri to the moment userj
sees the output. It is similar to the end-to-end delay metric
mentioned earlier. Both include network latencies along the
path from a source computer to a destination computer. They
are not exactly the same because the feedthrough time also
contains the time the destination computer requires to process
the input and/or output command once it arrives. Finally, the
task-completion time for useri is the time that elapses from the
moment the collaboration starts to the moment useri sees the
output for the last input command in the session. It is a function
of both response and feedthrough times.

A. Why Multicast is an Issue
As mentioned above, multicast can degrade performance. In

particular, it can increase feedthrough time as data must pass
through intermediate nodes to reach the collaborators. In
addition, the cost of dynamically building a multicast tree can
increase task completion times. So why consider multicast?
The main reason is that the transmission costs incurred by
master computers to deliver messages to the network can be
substantial if the computer is slow and/or the number of
messages is large. To illustrate, consider a scenario in which a
company team of four people is at an airport waiting for their
flight home. When they return, they will be giving a company-
wide PowerPoint presentation on whether or not to buy out a
small firm they just visited. While they are waiting at the
airport, the presenter is practicing the talk and the remaining
users are providing feedback. To make sure all the team-

members can follow the presentation, the presenter starts
talking only once they can all see the first slide on their screens.

The speaker, user1, and one of the team-members, user2,
have PDAs while the remaining two team-members, user3 and
user4, have powerful P4 laptops. They have created an ad-hoc
network with their devices using a replicated processing
architecture. As the devices are collocated, the network
latencies between them are low (i.e. 0ms) and do not affect
performance. Suppose that the users can choose either a unicast
(Figure 2 left) or a multicast (Figure 2 right) communication
architecture. In the unicast case, user1 sends commands to each
of the three users, while in the multicast case, user1’s PDA
sends commands only to user3’s laptop, and user3’s laptop
forwards these commands to the remaining users’ devices.
Suppose that in the unicast case, user1 sends commands to user4
last. Also, suppose that in the multicast case, user3 forwards to
user4 last. Suppose that the transmit-first scheduling policy is
used. At last, recall our assumption that, in the replicated
processing architecture, the necessary files are sent from the
master computer of the first inputting user to all master
computers as part of the first input command.

In the unicast case (Figure 2 left), when the presenter, user1,
enters an input command to start the presentation, the PDA
transmits the entire presentation file to user2’s, then user3’s, and
finally user4’s device. User4’s laptop then processes first the
input command, which includes saving the presentation file
locally, and then the corresponding output command, which
includes displaying the first slide to user4. Suppose that the
time the PDA requires to transmit a single copy of the file is
3T, the time the laptop requires to process the input command
containing the presentation file is 2T, and the time the laptop
requires to process the output command is T. Therefore, the
amount of time that elapses from the moment user1 starts the
presentation to the moment user4 sees the first slide is
9T+2T+T=12T.

In the multicast case (Figure 2 right), when user1 enters an
input command to start the presentation, the PDA transmits a
single copy of the file to user3’s laptop, which then forwards
the command to the remaining users, first to user2 and then to
user4. User4’s device then processes the input command and the
corresponding output command. Suppose that the time the
laptop requires to transmit the start presentation input
command to a single destination is T. In this case, the amount
of time that elapses from the moment user1 enters the start
presentation command to the moment user4 sees the first slide
is 3T+T+2T+T=7T. Hence, the multicast communication

Figure 2. Illustrating the response and feedthrough time improvements of multicast (right) compared to unicast (left)

architecture reduces the feedthrough time of the start
presentation input command to user4 from 12T to 7T. For the
same reason, the task completion time is reduced; in particular,
because user4 sees the first slide earlier in the multicast case
than in the unicast case, the presenter could start the
presentation earlier in the multicast case. Finally, regardless of
whether unicast or multicast is used, once the presenter’s PDA
completes transmitting the start presentation input command,
the PDA processes the input command and the corresponding
output command locally. Because the PDA’s total transmission
time of the command is 9T in the unicast case and 3T in the
multicast case, the response time of the command is also
improved by multicast.

To summarize, based on the qualitative analysis, there exist
scenarios, at least in theory, in which the multicast based
communication architecture provides better response,
feedthrough, and task completion times than the unicast
communication architecture. Of course, experiments are
needed to determine if, in realistic situations, offloading the
communication task to another node offsets the cost of
transmitting the message through another link. In particular, the
HMDM-scheme we use in our bi-architecture model was
evaluated using random values for its parameters. More
importantly, the evaluation was not targeted at collaboration.
Therefore, it is important to evaluate the use of our HMDM-
based multicast architecture in different collaboration
scenarios.

B. Experimental Results
In general, to evaluate the performance of a system, one

must first identify the parameters relevant to performance.
Thus, to compare unicast and HMDM-based multicast, we
must determine the factors that influence the comparison. We
refer to these as performance parameters. We must also
consider a second set of parameters. These are the parameters
needed by HMDM to construct the multicast overlay. We refer
to these as overlay parameters. The overlay parameters must
first be assigned values to construct the multicast tree, and then
the performance parameters must be assigned values to
evaluate the overlay under various conditions. Ideally, the
parameters must be assigned values that reflect reality. Next,
we explain how we followed this procedure to evaluate the
impact of our HMDM-based bi-architecture model on
feedthrough, response, and task-completion times, respectively.

1) Performance and Overlay Parameters
From the qualitative arguments in the above example, we

can extract the parameters relevant to the performance of the
bi-architecture model. The parameters are the number of
collaborators, the network latencies between the collaborators’
computers, the processing and transmission times for a
command of each user’s computer, and scheduling policy. Two
of these factors, namely, the number of collaborators and
network latencies are self-defining. Moreover, scheduling
policies have already been defined earlier. Finally, the
processing and transmission times of a command for a
computer are defined as the amount of time the computer
required to process the command and transmit it to a single
destination, respectively.

It turns out that Brosh and Shavitt use number of
collaborators, network latencies, and the transmission times as
parameters for constructing the overlay. Therefore, all of the
HMDM-scheme overlay parameters are covered by the
performance parameters.

2) Gathering Values of HMDM Parameters
There are a number of ways of assigning values to these

parameters. One approach is to generate values using some
mathematical distribution, which is the approach Brosh and
Shavitt took. The danger with random assignment of parameter
values is that they may not necessarily reflect reality.
Therefore, we tried to be more realistic in choosing parameter
values.

Based on pings done to remote computers, we use 0ms and
72ms to simulate half the round-trip time from a U.S. East
Coast LAN-connected computer to another computer
connected on this LAN and a German LAN, respectively.
These two values defined the minimum and maximum network
latencies in our evaluation.

Determining realistic values of transmission times was
more complicated. Recall that the transmission time of a
command for a computer is defined as the amount of time the
computer requires to transmit the command to a single
destination. Therefore, to obtain realistic transmission times,
we need realistic computers and commands. Ideally, we should
be able to use publicly available sequences of input commands
representative of one or more collaborative applications
involving shared access to a distributed object, but our search
revealed no such data. An alternative approach, which is the
one we used, is to extract parameter values from actual
collaboration logs. We recorded logs of actual collaborations
and then extracted the values of all performance factors from
these logs. One issue with this approach is that the parameter
values obtained from the recorded collaborations may not be
representative of the values of these parameters in other
collaborations. In general, applications used in synchronous
collaborations involving shared access to a distributed object
can be divided into four categories: 1) logic-centric, which
process computationally expensive input commands; 2) data-
centric, which distribute large amounts of data; 3) logic-and-
data-centric, which both process computationally expensive
input commands and distribute large amounts of data; and 4)
stateless, which do neither.

We reduce the problem of log generality by analyzing
collaborations involving applications belonging to three of
these categories: a Checkers game, which is logic-centric;
PowerPoint, which is data-centric; and a chat application,
which is stateless. The checkers game fostered collaboration
rather the competition: multiple users formed a team that
played against the application, which used a computationally
expensive algorithm to calculate its next move. The algorithm
optimized the computer’s move by analyzing scenarios five
moves ahead. The users used an audio channel and a
telepointer to determine their next move. Any of the users
could then make the actual move. This application was created
by extending an existing single-user checkers program.

We analyzed recordings of two PowerPoint presentations
that were given by one presenter to thirty and sixty audience

members, respectively. In addition, we recorded two chat-room
sessions consisting of eighty participants of which as many as
eight posted messages. Finally, we recorded a collaborative
checkers game in which the team consisted of two users. Thus,
in these applications, not only did the nature of the application
engine vary (logic-centric, data-centric, stateless) but also the
number of actors and observers. None of the applications had
concurrency control – the PowerPoint and chat applications did
not require such control and users of the checker’s program
used social protocol to decide who made a move.

These recordings contain actual data and users’ actions –
PowerPoint commands and slides, checkers moves, and chat
messages. The checkers engine used in the actual tasks was
transformed into a collaborative program using an
infrastructure that has facilities for logging and replaying
commands. Therefore, extracting input and output commands
from the generated checker logs was relatively simple. The chat
programs we logged were the ones implemented by the chat
rooms we observed. We ran them under Microsoft Live
Meeting 2005 and used its screen-recording capabilities. As a
result, we had to use a tedious manual process to extract the
input command messages in the sessions – analyzing one ten-
minute recording required two hours of work! In addition to
being three qualitatively different applications, IM, Checkers,
and PowerPoint turned out to be a good choice of applications
for which to analyze actual logs for two reasons: 1) the
parameters values we measured in these logs were fairly wide
spread, and 2) they represent the kind of tasks users do on a
daily basis.

To obtain the transmission time parameter values, we
replayed these logs using a Java-based infrastructure that has
facilities for logging and replaying commands. The checkers
program used in the actual tasks was already transformed into a
collaborative program using this infrastructure. Hence, the
checker logs were replayed directly to the program used in the
actual task. To replay the chat commands, we used the replay-
supporting infrastructure to create our own version of the chat
application. To replay the PowerPoint commands, we had to
bridge the gap between our Java-based replay-supporting
infrastructure and the PowerPoint application. We used the J-
Integra library to create this bridge and relay the replayed
commands to the PowerPoint application. This library required
us to assume that slave computers could directly access file
systems because the information about a slide contained in an
output command from the master had to be saved in a file
before it could be displayed by the slave.

We measured the transmission times for a P2 266MHz
laptop, a P3 866MHz desktop, and a P4 2.4 GHz desktop. All
the computers were running Windows XP except the laptop,
which was running Windows 98. The P2 laptop and the P3
desktop are used to simulate next generation cell-phones and
PDAs, respectively. We recorded the average amortized input
and output command transmission times of each machine for
checkers, PowerPoint, and chat applications. We removed any
“outlier” entries from the average calculation, caused for
instance, by operating system process scheduling issues. To
reduce these issues, we removed as many active processes on
each system as possible. Ideally, while we replay the
recordings, we should run a set of applications users typically

execute on their systems. However, the typical working set of
applications is not publicly available so we would have to
guess which applications to run. For fear of incorrectly
affecting transmission times by running random applications,
we used a working set of size zero, a common assumption in
experiments comparing alternatives. In order to control
network-related variability, we ran our experiments on our
local 100Mbit LAN. In addition, we assumed that the data and
users’ actions in the logs are independent of the number of
collaborators, the processing powers of the collaborators’
computers, and network latencies.

While the process of obtaining transmission times was
fairly complicated, it did have a nice side effect that it provided
the values of the processing parameters. In particular, during
the experiments, we measured not only the transmission times
of the input and output commands for each computer, but also
the processing times of these commands. As for transmission
times, we recorded the average amortized input and output
command processing times of each computer for checkers,
PowerPoint, and chat applications.

Finally, we had to assign the values of the number of
collaborators and the processing powers of their machines. As
mentioned above, in the collaboration recordings that we
analyzed, the number of users ranged from as few as two in
Checkers, between thirty and sixty in PowerPoint, and as many
as eighty in the chat application. Unfortunately, this is not a
wide enough range of values; in particular, the maximum value
of the parameter needs to be much bigger to be representative
of large collaborations, such as a company-wide PowerPoint
presentation. We used the following as the number of
collaborators in a session: 5, 10, 15, 20, 25, 30, 40, 50, 100,
250, 500, 750, 1000, 1500, and 2000. The maximum value of
2000 is much larger than the maximum value we observed in
any of the recordings. To cover the values we did observe, we
use many values less than 100. We are not unaware of any
public data about and our logs did not record the distribution of
processing powers of the collaborators’ computers during a
collaborative session. Therefore, we randomly assigned the
type of computer of each user to be a P2 laptop, P3 desktop, or
a P4 desktop.

3) Simulating the Performance
Using these values of the transmission time, network

latency, and number of users parameters, we can use the
HMDM algorithm to build a multicast overlay for any
collaboration session in which the users are using P2 laptops,
P3 desktops, and P4 desktops like the ones for which we
measured transmission times. In our simulations, we consider
only scenarios in which all computers can (logically)
communicate directly. Recall from above that by using
application layer overlays, we abstracted away firewalls
between the computers. We include any firewall-related delays
a message suffers as it travels between two users in the network
latency assigned to the logical link between the two users.
Once the overlay is created for a particular scenario, there are
two ways to compare the performances of unicast and multicast
communication architectures: experiments and simulation.

Using the experimental approach, we could replay the same
collaboration log for both the unicast and multicast

communication architectures. During each experiment, we
could measure the response, feedthrough, and task completion
times. One issue with such experiments is that the performance
of a distributed system is affected by extraneous factors such as
operating system process scheduling. As these noise factors are
not accounted for in either collaboration systems or the HMDM
scheme, they can skew the measurements.

The alternative to performing experiments is running
simulations. In the networking field, NS has made this a
popular choice mainly because it allows an experimenter to
control all the extraneous factors. The simulation is done purely
by mathematical analysis, so noise factors can be assigned a
zero value. In our case, the benefit of this approach comes at a
cost – we must now assign suitable values to all parameters
affecting performance, in particular, processing costs.

Each simulation was defined by the set of computers used
in the collaboration, application (which sets the processing and
transmission times of these computers), network latencies
between these computers, processing and communication
architectures, scheduling policy, and source computer type.
Given this information, as the analysis of Figure 2 showed, we
can mathematically calculate the response and feedthrough
times, and therefore the task completion time difference, for the
unicast and multicast communication architecture cases.

The above discussion identifies the steps we need to take to
compare the traditional centralized/replicated architectures with
the bi-architecture model. For each scenario, we ran 40
simulations, for which we report the average results along with
a 95% confidence interval. In most cases, it is difficult to see
the interval in the graph because the interval is two or three
orders of magnitudes less than the average, in which case we
did not graph the interval.

C. Feedthrough Time Results
As mentioned above, from a performance perspective,

multicast has been used to reduce end-to-end delays. Also as
mentioned above, in collaboration systems, end-to-end delays
are related to feedthrough times; therefore, we expect that in at
least some scenarios, the feedthrough times are lower for the
multicast communication architecture case than for the unicast
case. To see how much multicast can improve feedthrough
times compared to unicast, we simulated the feedthrough times
in realistic collaboration scenarios involving all three
applications whose recordings we analyzed. For each
application, we compare the feedthrough times when unicast
and multicast communication architectures are used alongside
the centralized and replicated processing architectures.

Figure 3 contains the results for the transmit-first policy. It
shows only three of the eighteen simulations because of limited
space and the fact that the remaining results are similar. Figure
3 (top-left) shows the replicated architecture IM results
assuming LAN (i.e. 0ms) network latencies and the P2 laptop
as the inputting computer. Figure 3 (top-right) shows the
centralized architecture results for the Next Slide PowerPoint
command assuming random network latencies between 0ms
and 72ms and a P4 desktop as the inputting computer. Finally,
Figure 3 (bottom) shows the replicated architecture results for
the Next Slide PowerPoint command assuming uniform

network latencies of 72ms and a P3 desktop as the inputting
computer. The figure shows that when the transmit-first
scheduling policy is used, maximum feedthrough times can
indeed be lower with multicast than with unicast for both
centralized and replicated processing architectures. In fact, as
shown by Figure 3 (top-right), when there are 100 users in a
centralized PPT scenario, the improvement can be as high as
650ms for the Next Slide commands, and when there are 1000
users, it can be as high as 6.8 seconds. In the replicated PPT
scenario, the improvement is much smaller: with 1000 users in
the session, the feedthrough is only 180ms better with multicast
than with unicast.

The reason the feedthrough improvement is much greater
for the centralized case compared to the replicated case is
because the PowerPoint transmission times of the P4 desktop in
the centralized architecture for the Next Slide command are
higher than those of the P3 desktop in the replicated
architecture. As mentioned above, we assume that in the
replicated case, the presenter’s computer sends the entire
PowerPoint file (7.6Mb in our scenario) to all other users when
the presenter enters the Start Presentation command, while in
the centralized case, we assume that the presenter’s computer
sends only the first slide to all other computers. Therefore,
when the presenter enters a Next Slide command, the input
command transmitted to other users in the replicated case
contains only the number of the next slide to show, while in the
centralized case, the output to the input command is sent and
contains the actual binary representation of the next slide,
which the slave computer must load and display.

Interesting, these results did not generalize to the process-
first scheduling policy case. Figure 4 contains the results of
repeating the above experiments using the process-first
scheduling policy instead of the transmit-first scheduling
policy. In particular, the feedthrough times provided by the
unicast communication architecture can be as much as 2
seconds better (Figure 4 top-right). The reason is that with the
process-first scheduling policy, every additional end-host on

Figure 3. unicast and multicast feedthrough times assuming transmit-first
scheduling: (top-left) replicated IM results with LAN (i.e. 0ms) network

latencies and the P2 laptop as the source; (top-right) centralized Next Slide
PowerPoint command results with random latencies between 0ms and 72ms
and a P4 desktop as the source; (bottom) replicated Next Slide PowerPoint

command results with 72ms network latencies and a P3 desktop as the source.

the path from the source to a destination contributes its
processing cost to the feedthrough time to the destination.
Since the length of the path from the source to any destination
in the traditional collaboration architectures is one, this cost is
incurred only once. With multicasting, the paths can be longer
than length one, in which case this cost is incurred multiple
times. Nevertheless, as the number of users increases,
eventually it pays to use the multicast scheme as the increasing
transmission time of the source begins to dominate the constant
processing costs. In some cases, the number of users has to be
quite high (1000 in Figure 4 bottom).

In traditional collaboration architectures, the process-first
policy degrades feedthrough times (in comparison to the
transmit-first policy) as remote users must wait for the master
to process the input. As shown by the above results, in the bi-
architecture model, this policy can further degrade feedthrough
times because a destination must wait for each computer on the
path to it from the source to finish processing input.

D. Response Time Results
Intuitively, multicast can improve feedthrough times

because it distributes the data transmission task among multiple
computers. In other words, it relieves the source computer from
the task of sending data to all destinations. Because of this,
multicast also improves response times for both transmit-first
and process-first scheduling policies.

Consider first the transmit-first scheduling policy. Recall
that when this is the case, an end-host must first complete the
transmit task before starting the process task. Therefore, the
quicker the end-host can complete the transmit task, the quicker
it will be able to show the output to its local user, thereby
improving the response time. To verify this prediction, we
measured the total transmission times of the source computer in
the above feedthrough time simulations of the transmit-first
scheduling policy scenarios. Figure 5 (left), which shows how
much multicast reduces the total transmission times of the
source computer compared to unicast, confirms our prediction.

Consider now the case in which the process-first scheduling
policy is used. Somewhat counter intuitively, it can also
improve response times, only not for the first input command
after the system reaches a quiescent state (i.e. state in which all
computers are up-to-date and no user has entered another input
command), but the one after. When the first command out of
the quiescent state is entered, it is first processed by the
inputting user’s computer and then transmitted to other
machines. Thus, the transmission time does not affect the
response time of this command. However, if the user’s think
time before the next input command is small, that is, less than
the source computer’s total transmission time, then when the
user enters the next input command, the user’s computer will
still be busy transmitting the previous input command (or its
corresponding output command).

In this case, the processing of the previous command delays
the time at which the computer begins to process the next input
command, which in turn, increases the response time of the
command. Thus, by reducing the source computer’s
transmission time, multicasting increases the chances that when
the user at the source computer enters consecutive input
commands, the user’s computer can begin processing each one
as soon as it is entered. Figure 5 (right) shows that the response
time of the second input command out of a quiescent state can
be improved by as much as 6.8 seconds.

The reason the two graphs in Figure 5 look very similar is
because other than the scheduling policy setting, the parameters
used in their simulations were identical. As HMDM does not
take into account scheduling policies, the results of the two
simulations must be similar.

We also have results that show that by reducing the source
computer’s total transmission time, multicast also improves
response and feedthrough time degradation. In particular, when
think times are low (i.e. zero), such as when a user is
telepointing, multicast reduces the increase in response and
feedthrough times of each consecutive telepointer command.
Due to lack of space, we do not present these results here.

E. Task Completion Time Results
The discussion so far has outlined two benefits of using

multicast, namely, improved response and feedthrough times.
However, these benefits do not come for free; in particular,
processing time must be spent building the multicast tree (we
assume that cost of arranging end-hosts into the tree is low).
Table 1 gives the cost of building the multicast tree for
different number of collaborators. It shows that when the
number of collaborators is less than fifty, this cost is negligible.
On the other hand, for collaborations with more than 1000

Figure 5. Response time improvements with multicast for transmit-first (left)

and process-first scheduling policy (right).

Figure 4. unicast and multicast feedthrough times assuming process-first
scheduling: (top-left) replicated IM results with LAN (i.e. 0ms) network

latencies and the P2 laptop as the source; (top-right) centralized Next Slide
PowerPoint command results with random latencies between 0ms and 72ms
and a P4 desktop as the source; (bottom) replicated Next Slide PowerPoint

command results with 72ms network latencies and a P3 desktop as the source.

participants such as presentations to a company division, the
cost can be very high. Can it make sense to use multicasting
when the cost of creating a multicast tree is high? To answer
this question, consider a PPT scenario in which the source
computer is a P4 desktop and the network latencies are set to
0ms between all computers. Assume that all computers are
running the transmit-first scheduling policy and the lecturer
does not begin talking about a slide until all observers can see
the slide. In order to reduce the feedthrough times of
PowerPoint input commands, the lecturer chooses to wait for
the multicast tree to complete before starting the lecture.

One issue is selecting for which PowerPoint command to
create the multicast overlay, Start Presentation or Next Slide.
Whichever command the tree is not created for may not
experience as good of performance as when a tree specifically
built for it is used. Suppose that because the transmission cost
of the Start Presentation command dominates that of the Next
Slide command in the replicated case, while they are similar in
the centralized case, the tree for the Start Presentation
command is used. Figure 6 shows the maximum feedthrough
time improvement when multicast is used instead of unicast for
Start Presentation (top-left) and Next Slide (top-right)
commands. Table 1 contains the multicast overlay build times
for select numbers of users. Given these results, we can
calculate the least number of slides the lecturer must present in

order for the task completion time to be improved by using the
multicast communication architecture.

Regardless of whether or not multicast is used, the task
completion time is at least the amount of “talk time” the
lecturer has. Because it is the same in all cases, we ignore it
from now on. Instead, we focus on the component of the task
completion time caused by the lecturer waiting for all the
observers to see outputs for the lecturer’s input commands.
Consider the unicast case first. The task completion time equals
the Start Presentation feedthrough time, start (unicast), plus the
Next Slide feedthrough time, slide(unicast), multiplied by the
number of slides, Z(unicast). Therefore, the unicast task
completion time is

taskCompTime(unicast) = start(unicast) +
Z(unicast)*slide(unicast)

Now consider multicast case. The task completion time
consists of the time required to build the multicast overlay,
build(multicast), plus the Start Presentation feedthrough time,
start(multicast), plus the Next Slide feedthrough time,
slide(multicast) multiplied by the number of slides,
Z(multicast). Therefore, the multicast task completion time is

taskCompTime(multicast) = build(multicast) +
start(multicast) + Z(multicast)*slide(multicast)

To find the number of slides at which it pays to wait for the
multicast tree to build, we set Z(unicast) = Z(multicast) = Z.
Then, solving the equations, we get

Z = (build(multicast) + start(multicast) –
start(unicast))/(slide(unicast) -

slide(multicast))

Using data from Table 2, we can calculate the number of
slides the lecturer needs to present in order for the task
completion time to be reduced by using multicast (Table 3).
Figure 6 (bottom) illustrates the task completion times for the
centralized processing architecture when there are 2000
collaborators. As Figure 6 (bottom) shows, the initial wait of
573.1 seconds to build the multicast overlay reduces the task
completion time for presentations with 42 or more slides.

Interestingly, we have found that in the replicated
processing architecture case, it pays off to wait for the
multicast tree to be created and deployed even when there are
2000 collaborators. Using the same mathematical setup used to
show the centralized processing architecture results, it turns out
that unless the presentation has more than 10514 slides, it pays
wait for the multicast tree to be built. The reason is that when a
user enters the Start Presentation command and the source
computer must transmit copies of the PowerPoint file (7.6Mb)
to the 1999 observers. In this case, we can calculate using data
in Table 1 and Table 2 that the feedthrough time is over 17
minutes longer than the total time required to build the
multicast overlay and transmit the Start Presentation command
using it. Nevertheless, the maximum feedthrough time function
is linear with respect to the number of users while the HMDM
runtime is cubic. Thus, as the number of users increases,
eventually, it is better to use the unicast for the Start
Presentation command, even though the feedthrough times of
the Next Slide may not be optimized. The question of whether
the users will prefer to wait to start the presentation to obtain
feedthrough benefits is a user study issue.

Table 1. HMDM build time in seconds

Users 50 100 500 1000 1500 2000
Build Time (s) 0 0.03 3.32 30.61 178.9 573.1

Figure 6. (top-left) “Start Presentation,” (top-right) “Next Slide”

feedthrough improvement for multicast compared to unicast communication
architectures, and (bottom) task completion times for the centralized

processing architecture as the number of PPT slides increases.

Table 2. Selected absolute values from Figure 6 (seconds)
Users 50 100 500 1000 1500 2000

Cent “Start” 0.14 0.29 1.59 3.22 4.85 6.48
Rep “Start” 35.2 75.6 403.3 814.5 1226 1638
Cent “Slide” 0.28 0.61 3.35 6.78 10.2 13.63
Rep “Slide” 0 0 0.02 0.05 0.07 0.1

Table 3. The number of PPT slides that must be presented in order to gain
an advantage in the task completion time

Users 50 100 500 1000 1500 2000
Slides 0 0 1 5 18 42

IV. DISCUSSION AND CONCLUSIONS

The contributions of our work can be described at various
levels of detail. The most abstract message is that multicast
must be considered as an alternative to unicast in distributed
synchronous collaborations as it can significantly improve the
performance of such collaborations. This is important because
lack of tolerable performance in a given scenario may result in
users turning to the more expensive alternative of face-to-face
collaboration. Even worse, it may result in first-time users
never trying collaboration technology again. We show that
multicast can improve feedthrough and response times by
multiple seconds and task completion times by multiple
minutes. Results by Shneiderman [9] show that users can
notice 50ms response times, which seems to imply that they
can also notice 50ms increments (or conversely, decrements) in
response and feedthrough times. Hence the improvement of
response and feedthrough times is important. Though less
crucial, task completion times are also important, especially in
tightly-scheduled meetings. One of the PowerPoint
presentations whose log we recorded was allocated a five
minute time-slot. Therefore, a one-minute delay in the task
completion time in this scenario forces the presenter to skip
over a significant portion of the talk.

Our next-level message is that the traditional set of
multicast performance factors, consisting of network latencies
and transmission times, is insufficient for providing optimal
multicast overlays in our domain. In particular, the set of
parameters must be expanded to include processing times,
scheduling policies, and think times. Finally, we introduce the
bi-architecture collaboration systems model which augments
traditional collaboration architectures by adding to them
support for multicast.

Our work also presents two implementation guidelines for
future collaboration systems. The first guideline stems from the
result that the time required to build a multicast tree, regardless
of whether or not it degrades task completion times, delays the
start of the collaboration session. It would be useful to support
dynamic creation and deployment of the multicast overlay. In
particular, collaborations can begin with a unicast
communication architecture when multicast overlay build times
are large. Then, once the overlay is created, it can be deployed
dynamically to improve the feedthrough times of commands
from that point on. In this case, however, the feedthrough times
of the commands entered before the overlay is deployed can be
(significantly) higher than if they were entered after the overlay
is deployed.

The second guideline is regarding scheduling policies. We
have seen above that multicast overlays created by HMDM can
improve feedthrough times when a transmit-first scheduling
policy is used and can degrade them when the process-first
scheduling policy is used. Therefore, transmit-first should be
used with the current implementation of the HMDM algorithm.
On the other hand, process-first scheduling policies favor
response times. There may be occasions where it is necessary
to optimize response times. In this case, a mix of the process-
first and transmit-first scheduling policies can be used. The

source computer can use the process-first policy, which
optimizes response times, and others can use the transmit-first
policy, which enables HMDM to create multicast overlays that
significantly improve feedthrough times.

The logs we used had limited interactivity. The PowerPoint
log had unidirectional data flow, and the checkers and chat logs
had very low bandwidth requirements. It would be useful to
determine if these results apply to collaboration such as multi-
player online games [8] that have more interactivity and
symmetric participation. The response and feedthrough time
benefits of multicast should be particularly relevant to
architectures used by these games. For instance, in some such
centralized architectures, the server must both process the input
commands of all users and distribute the shared state it
computes. In this case, server performance is critical to the
interactivity of the game. A multicast overlay built using the
server and the players’ computers can reduce the server’s
transmission burden, and hence, allow more processor time to
be scheduled for the computation of shared state. Experiments
are needed to evaluate if the feedthrough times will be
improved, as extra computers on the path from the server to a
destination can degrade them, as shown above. An issue that
must be addressed is overlay maintenance, as players
dynamically join and leave. Another issue is our assumption
about single-threading, as implementations of these games use
different threads for processing and transmitting.

As mentioned above, we did not directly evaluate the
hybrid version of the bi-architecture model. However, the
results for replicated and centralized architectures can be
applied to the replicated and centralized aspects of hybrid
architectures. For example, the centralized architecture results
apply when a master computer and its slaves are organized into
a multicast tree in which output commands from the master
computer are transmitted. Similarly, the replicated architecture
results apply when master computers are organized in a
multicast tree along which input commands are transmitted.

REFERENCES
[1] Brosh, E. and Shavitt, Y., “Approximation and heuristic algorithms for

minimum delay application-layer multicast trees,” INFOCOM 2004.
[2] Chawathe, Y., McCanne, S., and Brewer, E. A., “RMX: reliable

multicast for heterogeneous networks,” INFOCOM 2000.
[3] Correa, C. D. and Marsic, I., “Software framework for managing

heterogeneity in mobile collaborative systems,” CSCW, 14, 5-6 (2004).
[4] DataBeam, www.imtc.org/t120body.htm.
[5] Dewan, P.. “Architectures for collaborative applications. Trends in

software,” special issue on Collaborative Systems.

[6] Diot, C., Levine, B., Lyles, J., Kassem, H., and Balensiefen, D.,
“Deployment issues for the IP multicast service and architecture,” IEEE
Network, 14(1), Jan-Feb 2000.

[7] Floyd, S., Jacobson, V., Liu, C.G., McCanne, S., and Zhang, L., “A
reliable multicast framework for light-weight sessions and application
level framing,” IEEE Trans on Networking, 5(6), Dec 97.

[8] Graham, T.C.N., Phillips, W.G., and Wolfe, C., “Quality analysis of
distribution architectures for synchronous groupware,” CollaborateCom
2006.

[9] Shneiderman, B., “Response Time and Display Rate. Designing the User
Interface: Strategies for Effective Human-Computer Interaction,” 4th
edition,. Addison-Wesley Longman

