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Par Lab’s original research “bets”

Software platform: data center + mobile client

Let compelling applications drive research agenda

Identify common programming patterns

Productivity versus efficiency programmers

Autotuning and software synthesis

Build correctness + power/performance diagnostics into stack

OS/Architecture support applications, provide primitives not 
pre-packaged solutions

FPGA simulation of new parallel architectures: RAMP

Above all, no preconceived big idea –
see what works driven by application needs

3



Par Lab Research Overview
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Dominant Application Platforms

Data Center or Cloud (“Server”)

Laptop/Handheld (“Mobile Client”)

Both together (“Server+Client”)
New ParLab-RADLab collaborations

Par Lab focuses on mobile clients
But many technologies apply to data center
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Music and Hearing Application
(David Wessel)
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Musicians have an insatiable appetite for 
computation + real-time demands

More channels, instruments, more processing, 
more interaction!
Latency must be low (5 ms)  
Must be reliable (No clicks!) 

1.Music Enhancer
Enhanced sound delivery systems for home sound 
systems using large microphone and speaker arrays
Laptop/Handheld recreate 3D sound over ear buds

2.Hearing Augmenter
Handheld as accelerator for hearing aid

3.Novel Instrument User Interface
New composition and performance systems 
beyond keyboards
Input device for Laptop/Handheld
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Berkeley Center for New Music and 
Audio Technology (CNMAT) created a 
compact loudspeaker array: 10-inch-
diameter icosahedron incorporating 
120 tweeters.



Health Application: Stroke Treatment
(Tony Keaveny)
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 Stroke treatment time-critical, need supercomputer 
performance in hospital

 Goal: First true 3D Fluid-Solid Interaction analysis 
of Circle of Willis

 Based on existing codes for distributed clusters



Content-Based Image Retrieval
(Kurt Keutzer)
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Built around Key Characteristics of personal databases
Very large number of pictures (>5K)
Non-labeled images
Many pictures of few people
Complex pictures including people, events, places, and objects
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Robust Speech Recognition
(Nelson Morgan)
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Meeting Diarist 
Laptops/ Handhelds at meeting coordinate 
to create speaker identified, partially 
transcribed text diary of meeting
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Use cortically-inspired manystream 
spatio-temporal features to tolerate 
noise



Parallel Browser 
(Ras Bodik)
Goal: Desktop quality browsing on handhelds

Enabled by 4G networks, better output devices

Bottlenecks to parallelize
Parsing, Rendering, Scripting
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Compelling Apps in a Few Years

• Name Whisperer
• Built from Content Based Image Retrieval

• Like Presidential Aid

• Handheld scans face of approaching 
person 

• Matches image database

• Whispers name in ear, along with how 
you know him



Architecting Parallel Software with Patterns (Kurt 
Keutzer/Tim Mattson)
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Our initial survey of many applications brought out common 
recurring patterns:

“Dwarfs” -> Motifs

Computational patterns

Structural patterns

Insight: Successful codes have a comprehensible software 
architecture:

Patterns give human language in which to describe 
architecture



Motif (nee “Dwarf”) Popularity 
(Red HotBlue Cool)
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• How do compelling apps relate to 12 motifs?



Architecting Parallel Software
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•Pipe-and-Filter

•Agent-and-Repository

•Event-based

•Bulk Synchronous

•MapReduce

•Layered Systems

•Arbitrary Task Graphs

Decompose Tasks/Data

Order tasks Identify Data Sharing and Access

• Graph Algorithms

• Dynamic programming

• Dense/Spare Linear Algebra 

• (Un)Structured Grids

• Graphical Models

• Finite State Machines

• Backtrack Branch-and-Bound

• N-Body Methods

• Circuits

• Spectral Methods

Identify the Software 
Structure

Identify the Key Computations



People, Patterns, and Frameworks

Design Patterns Frameworks

Application Developer Uses application 
design patterns 

(e.g. feature 
extraction)

to architect the  
application

Uses application 
frameworks
(e.g. CBIR)

to implement the 
application

Application-Framework 
Developer

Uses programming 
design patterns 

(e.g. Map/Reduce)
to architect the 

application framework 

Uses programming 
frameworks

(e.g MapReduce)
to implement the 

application framework



Productivity/Efficiency and Patterns
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Domain-literate programming gurus 
(1% of the population)

Application 
frameworks

Parallel patterns and 
programming 
frameworks

+

Parallel programming gurus (1-10% of  programmers)
Parallel 

programming 
frameworks

3

2

Domain Experts
End-user, 

application 
programs

Application 
patterns and 
frameworks

+
1

The hope is for Domain Experts to create parallel code with little or no understanding 
of parallel programming

Leave hardcore “bare metal” efficiency-layer programming to the parallel 
programming experts



Par Lab Research Overview
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Par Lab is Multi-Lingual

Applications require ability to compose parallel code written in many 
languages and several different parallel programming models

Let application writer choose language/model best suited to task

High-level productivity code and low-level efficiency code

Old legacy code plus shiny new code

Correctness through all means possible
Static verification, annotations, directed testing, dynamic checking

Framework-specific constraints on non-determinism

Programmer-specified semantic determinism

Require common spec between languages for static checker

Common linking format at low level (Lithe) not intermediate 
compiler form

Support hand-tuned code and future languages & parallel models
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Why Consider New Languages?

Most of work is in runtime and libraries

Do we need a language?  And a compiler?
If higher level syntax is needed for productivity

We need a language

If static analysis is needed to help with correctness
We need a compiler (front-end)

If static optimizations are needed to get performance
We need a compiler (back-end)

Will prototype frameworks in conventional languages, but 
investigate how new languages or pattern-specific 
compilers can improve productivity, efficiency, 
and/or correctness
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Selective Embedded Just-In-Time Specialization 
(SEJITS) for Productivity

Modern scripting languages (e.g., Python and Ruby) have powerful 
language features and are easy to use

Idea: Dynamically generate source code in C within  the context of a 
Python or Ruby  interpreter, allowing app to be written using Python 
or Ruby abstractions but automatically generating, compiling C 
at runtime

Like a JIT but
Selective: Targets a particular method and a particular language/platform 
(C+OpenMP on multicore or CUDA on GPU)

Embedded:  Make specialization machinery productive by implementing in 
Python or Ruby itself by exploiting key features: introspection, runtime 
dynamic linking, and foreign function interfaces with language-neutral 
data representation

20



Selective Embedded Just-In-Time Specialization 
for Productivity

Case Study: Stencil Kernels on AMD Barcelona, 8 threads

Hand-coded in C/OpenMP: 2-4 days

SEJITS in Ruby: 1-2 hours

Time to run 3 stencil codes:
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Hand-coded

(seconds)

SEJITS 

from cache

(seconds)

Extra JIT-time 

1st time executed

(seconds)

0.74 0.74 0.25

0.72 0.70 0.27

1.26 1.26 0.27



Autotuningfor Code Generation
(Demmel, Yelick)
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Search space for 

block sizes 

(dense matrix):

• Axes are block                                 

dimensions

• Temperature is                    

speed

• Problem: generating optimal code

like searching for needle in haystack

• Manycore even more diverse

• New approach: “Auto-tuners” 

• 1st generate program variations of 

combinations of optimizations (blocking, 

prefetching, …) and data structures

• Then compile and run to heuristically search 

for best code for that computer

• Examples: PHiPAC (BLAS), Atlas (BLAS), Spiral 

(DSP), FFT-W (FFT)



Anatomy of a Par Lab Application
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From OS to User-Level Scheduling

Tessellation OS allocates hardware resources (e.g., 
cores) at coarse-grain, and user software shares 
hardware threads co-operatively using Lithe ABI

Lithe provides performance composability for 
multiple concurrent and nested parallel libraries

Already supports linking of parallel OpenMP code with 
parallel TBB code, without changing legacy OpenMP/TBB 
code and without measurable overhead
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Tessellation: Space-Time Partitioning for 
ManycoreClient OS
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Tessellation Kernel Structure
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Par Lab Architecture
Architect a long-lived horizontal software platform for independent software 
vendors (ISVs)

ISVs won’t rewrite code for each chip or system

Customer buys application from ISV 8 years from now, wants to run on machine bought 13 
years from now (and see improvements)
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RAMP Gold

Rapid accurate simulation of manycore
architectural ideas using FPGAs

Initial version models 64 cores of SPARC 
v8 with shared memory system on 
$750 board
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Par Lab’s original research “bets”

Software platform: data center + mobile client

Let compelling applications drive research agenda

Identify common programming patterns

Productivity versus efficiency programmers

Autotuning and software synthesis

Build correctness + power/perf. diagnostics into stack

OS/Architecture support applications, provide primitives not 
pre-packaged solutions

FPGA simulation of new parallel architectures: RAMP

Above all, no preconceived big idea –
see what works driven by application needs

To learn more: http://parlab.eecs.berekeley.edu
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Par Lab Research Overview
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