

UC Berkeley Par Lab Overview

2

David Patterson

Par Lab’s original research “bets”

Software platform: data center + mobile client

Let compelling applications drive research agenda

Identify common programming patterns

Productivity versus efficiency programmers

Autotuning and software synthesis

Build correctness + power/performance diagnostics into stack

OS/Architecture support applications, provide primitives not
pre-packaged solutions

FPGA simulation of new parallel architectures: RAMP

Above all, no preconceived big idea –
see what works driven by application needs

3

Par Lab Research Overview

4
4

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication and

Synch. Primitives

Efficiency Language Compilers

Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
o

rr
e

c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency

Languages

Type

Systems

D
ia

g
n

o
s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

Dominant Application Platforms

Data Center or Cloud (“Server”)

Laptop/Handheld (“Mobile Client”)

Both together (“Server+Client”)
New ParLab-RADLab collaborations

Par Lab focuses on mobile clients
But many technologies apply to data center

5
5

Music and Hearing Application
(David Wessel)

6

Musicians have an insatiable appetite for
computation + real-time demands

More channels, instruments, more processing,
more interaction!
Latency must be low (5 ms)
Must be reliable (No clicks!)

1.Music Enhancer
Enhanced sound delivery systems for home sound
systems using large microphone and speaker arrays
Laptop/Handheld recreate 3D sound over ear buds

2.Hearing Augmenter
Handheld as accelerator for hearing aid

3.Novel Instrument User Interface
New composition and performance systems
beyond keyboards
Input device for Laptop/Handheld

6

Berkeley Center for New Music and
Audio Technology (CNMAT) created a
compact loudspeaker array: 10-inch-
diameter icosahedron incorporating
120 tweeters.

Health Application: Stroke Treatment
(Tony Keaveny)

7

 Stroke treatment time-critical, need supercomputer
performance in hospital

 Goal: First true 3D Fluid-Solid Interaction analysis
of Circle of Willis

 Based on existing codes for distributed clusters

Content-Based Image Retrieval
(Kurt Keutzer)

8

Built around Key Characteristics of personal databases
Very large number of pictures (>5K)
Non-labeled images
Many pictures of few people
Complex pictures including people, events, places, and objects

8

Relevance

Feedback

Image

Database

Query by example

Similarity

Metric

Candidate

Results Final Result

1000’s of

images

Robust Speech Recognition
(Nelson Morgan)

9

Meeting Diarist
Laptops/ Handhelds at meeting coordinate
to create speaker identified, partially
transcribed text diary of meeting

9

Use cortically-inspired manystream
spatio-temporal features to tolerate
noise

Parallel Browser
(Ras Bodik)
Goal: Desktop quality browsing on handhelds

Enabled by 4G networks, better output devices

Bottlenecks to parallelize
Parsing, Rendering, Scripting

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Hardware Contexts

Slashdot (CSS Selectors)

84ms

2ms

11
11

Compelling Apps in a Few Years

• Name Whisperer
• Built from Content Based Image Retrieval

• Like Presidential Aid

• Handheld scans face of approaching
person

• Matches image database

• Whispers name in ear, along with how
you know him

Architecting Parallel Software with Patterns (Kurt
Keutzer/Tim Mattson)

12

Our initial survey of many applications brought out common
recurring patterns:

“Dwarfs” -> Motifs

Computational patterns

Structural patterns

Insight: Successful codes have a comprehensible software
architecture:

Patterns give human language in which to describe
architecture

Motif (nee “Dwarf”) Popularity
(Red HotBlue Cool)

13
13

• How do compelling apps relate to 12 motifs?

Architecting Parallel Software

14

•Pipe-and-Filter

•Agent-and-Repository

•Event-based

•Bulk Synchronous

•MapReduce

•Layered Systems

•Arbitrary Task Graphs

Decompose Tasks/Data

Order tasks Identify Data Sharing and Access

• Graph Algorithms

• Dynamic programming

• Dense/Spare Linear Algebra

• (Un)Structured Grids

• Graphical Models

• Finite State Machines

• Backtrack Branch-and-Bound

• N-Body Methods

• Circuits

• Spectral Methods

Identify the Software
Structure

Identify the Key Computations

People, Patterns, and Frameworks

Design Patterns Frameworks

Application Developer Uses application
design patterns

(e.g. feature
extraction)

to architect the
application

Uses application
frameworks
(e.g. CBIR)

to implement the
application

Application-Framework
Developer

Uses programming
design patterns

(e.g. Map/Reduce)
to architect the

application framework

Uses programming
frameworks

(e.g MapReduce)
to implement the

application framework

Productivity/Efficiency and Patterns

16

Domain-literate programming gurus
(1% of the population)

Application
frameworks

Parallel patterns and
programming
frameworks

+

Parallel programming gurus (1-10% of programmers)
Parallel

programming
frameworks

3

2

Domain Experts
End-user,

application
programs

Application
patterns and
frameworks

+
1

The hope is for Domain Experts to create parallel code with little or no understanding
of parallel programming

Leave hardcore “bare metal” efficiency-layer programming to the parallel
programming experts

Par Lab Research Overview

17
17

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication & Synch.

Primitives

Efficiency Language Compilers

Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries and Services

ParLab Manycore/RAMP

Hypervisor

C
o

rr
e

c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel Libraries Parallel Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency Languages

Type Systems

D
ia

g
n

o
s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n

c
e

Par Lab is Multi-Lingual

Applications require ability to compose parallel code written in many
languages and several different parallel programming models

Let application writer choose language/model best suited to task

High-level productivity code and low-level efficiency code

Old legacy code plus shiny new code

Correctness through all means possible
Static verification, annotations, directed testing, dynamic checking

Framework-specific constraints on non-determinism

Programmer-specified semantic determinism

Require common spec between languages for static checker

Common linking format at low level (Lithe) not intermediate
compiler form

Support hand-tuned code and future languages & parallel models

18

Why Consider New Languages?

Most of work is in runtime and libraries

Do we need a language? And a compiler?
If higher level syntax is needed for productivity

We need a language

If static analysis is needed to help with correctness
We need a compiler (front-end)

If static optimizations are needed to get performance
We need a compiler (back-end)

Will prototype frameworks in conventional languages, but
investigate how new languages or pattern-specific
compilers can improve productivity, efficiency,
and/or correctness

19

Selective Embedded Just-In-Time Specialization
(SEJITS) for Productivity

Modern scripting languages (e.g., Python and Ruby) have powerful
language features and are easy to use

Idea: Dynamically generate source code in C within the context of a
Python or Ruby interpreter, allowing app to be written using Python
or Ruby abstractions but automatically generating, compiling C
at runtime

Like a JIT but
Selective: Targets a particular method and a particular language/platform
(C+OpenMP on multicore or CUDA on GPU)

Embedded: Make specialization machinery productive by implementing in
Python or Ruby itself by exploiting key features: introspection, runtime
dynamic linking, and foreign function interfaces with language-neutral
data representation

20

Selective Embedded Just-In-Time Specialization
for Productivity

Case Study: Stencil Kernels on AMD Barcelona, 8 threads

Hand-coded in C/OpenMP: 2-4 days

SEJITS in Ruby: 1-2 hours

Time to run 3 stencil codes:

21

Hand-coded

(seconds)

SEJITS

from cache

(seconds)

Extra JIT-time

1st time executed

(seconds)

0.74 0.74 0.25

0.72 0.70 0.27

1.26 1.26 0.27

Autotuningfor Code Generation
(Demmel, Yelick)

22
22

Search space for

block sizes

(dense matrix):

• Axes are block

dimensions

• Temperature is

speed

• Problem: generating optimal code

like searching for needle in haystack

• Manycore even more diverse

• New approach: “Auto-tuners”

• 1st generate program variations of

combinations of optimizations (blocking,

prefetching, …) and data structures

• Then compile and run to heuristically search

for best code for that computer

• Examples: PHiPAC (BLAS), Atlas (BLAS), Spiral

(DSP), FFT-W (FFT)

Anatomy of a Par Lab Application

23

Tessellation OS

Productivity
Programmer

Efficiency
Programmer

Machine
Generated

System
Libraries

Legacy
Parallel
Library Parallel

Framework
Library

Legacy
Serial
Code

Lithe Parallel Runtime

Autotuner

Tuned Code

Interface

Productivity Language

High-
Level
Code

From OS to User-Level Scheduling

Tessellation OS allocates hardware resources (e.g.,
cores) at coarse-grain, and user software shares
hardware threads co-operatively using Lithe ABI

Lithe provides performance composability for
multiple concurrent and nested parallel libraries

Already supports linking of parallel OpenMP code with
parallel TBB code, without changing legacy OpenMP/TBB
code and without measurable overhead

24

Tessellation: Space-Time Partitioning for
ManycoreClient OS

25
25

Wireless

radio

Memory

Media Player Network

Driver

Filesystem

Browser

Video decoder GUI

Windows

VM

De-scheduled

Partitions

QoS Allocations

Tessellation Kernel Structure

26
26

T
e
s

s
e

lla
tio

n
K

e
rn

e
l

Partition

Management

Layer

Hardware Partitioning Mechanisms

CPUs
Physical

Memory

Interconnect

Bandwidth
Cache

Performance

Counters

Partition

Mechanism

Layer

(Trusted)

Application

Or

OS Service

Custom

Scheduler
Library OS

Functionality

Configure

HW-supported

Communication

Message

Passing

Configure Partition

Resources enforced by

HW at runtime

Partition

Allocator

Partition

Scheduler

Comm.

Reqs

Sched

Reqs.

Partition

Resizing

Callback API

Res.

Reqs.

Par Lab Architecture
Architect a long-lived horizontal software platform for independent software
vendors (ISVs)

ISVs won’t rewrite code for each chip or system

Customer buys application from ISV 8 years from now, wants to run on machine bought 13
years from now (and see improvements)

27

…instead, one type of
multi-paradigm core

Fat

Cores

(InstLP)

Thin

Cores

(ThreadLP)

Weird

Cores

(DataLP)

Weirder

Cores

(GateLP)

Not multiple
paradigms of core

Core
L2U$ / LLC slice

Scalar
(ILP)

L1D$

L1I$

Lan
e

Lan
e

Lan
e

Lan
e

Vector-Thread
Unit (DLP+TLP)

System
Interconnect

RAMP Gold

Rapid accurate simulation of manycore
architectural ideas using FPGAs

Initial version models 64 cores of SPARC
v8 with shared memory system on
$750 board

28

Cost
Performance

(MIPS)
Simulations

per day

Software
Simulator

$2,000 0.1 - 1 1

RAMP
Gold

$2,000
+ $750

50 - 100 100

Par Lab’s original research “bets”

Software platform: data center + mobile client

Let compelling applications drive research agenda

Identify common programming patterns

Productivity versus efficiency programmers

Autotuning and software synthesis

Build correctness + power/perf. diagnostics into stack

OS/Architecture support applications, provide primitives not
pre-packaged solutions

FPGA simulation of new parallel architectures: RAMP

Above all, no preconceived big idea –
see what works driven by application needs

To learn more: http://parlab.eecs.berekeley.edu
29

Par Lab Research Overview

30
30

Easy to write correct programs that run efficiently on manycore
Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Sketching

Legacy

Code
Schedulers

Communication & Synch.

Primitives

Efficiency Language Compilers

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
o

rr
e

c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel Libraries Parallel Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency Languages

Type Systems

D
ia

g
n

o
s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n

c
e

