Microsoft® Research Faculty Summit

Energy-Efficient Computing: Emerging Technologies

Fred Chong Director, Computer Engineering Director, Greenscale Center for Energy-Efficient Computing University of California at Santa Barbara

It's not all Hype...

EPA report, Public Law 109-231, 2007

Maybe a little Hype...

Server

- More precisely:
 - 80 billion terawatt-hr / yr = 6 million SUVs in carbon production (10 mpg, 11K miles/yr)
- Computing is the fastest growing segment of carbon production
- But actually an issue of energy productivity

The First Steps Have Been Taken

$$\text{Efficiency} = \frac{\text{Computation}}{\text{Total Energy}} = \left(\frac{1}{\text{PUE}}\right) \times \left(\frac{1}{\text{SPUE}}\right) \times \left(\frac{\text{Computation}}{\text{Total Energy to Electronic Components}}\right)$$

- Google reports infrastructure (PUE) and server (SPUE) efficiencies close to practical optimal (within 20%)
- Remaining gains in more:
 - Efficient computation
 - Energy proportionality

[Barroso and Hoetzle 2009]

Google Cooling Tower

What's Left?

More efficient computation

- Parallelism
- Communication
- Storage hierarchy
- Energy proportionality
 - Infrastructure, power delivery, storage, networks, servers

[Barroso and Hoetzle 2009]

Persistent Memory

Substantially better energy proportionality

 But distributed system software/protocols must be restructured

FLASH

- 2.5X server performance/watt [Swanson ASPLOS09]
- Lots of work on durability
- Optically-assisted FLASH?
- Phase-change memory
 - Same active energy, 20% slower than DRAM [Lee ISCA 09]

3D Integration

Through-Silicon Vias (TSVs) 3D DRAM

- 2X performance [Loh ISCA08]
- 10X capacity?
- Power dissipation?
 - Vapor / liquid cooling
 - Superlattice microrefrigeration (600 W/cm², 35% efficiency)
 - Carbon nanotube thermal routing
- Combine different technologies
 - Logic, DRAM, Optics

Silicon Photonics

- Server backplane
 - 10 Tbit/s [Beals Appl. Phys A 2009]
- On-chip or on-wafer [Vantrease ISCA08] [Krishnamoorthy Proc IEEE 2009]
 - 1 Tbit/s per frequency per link
 - 100s of frequencies
 - 10-100s Tbytes/s bisection

Changing the Game

- Energy-efficient computation
 - Will likely exploit parallelism
 - Will need game-changing communication support
 - Will need game-changing storage technologies