
The 1st Verified Software Competition:
Extended? Experience Report

Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leavens,
Valentin Wüstholz, Eyad Alkassar, Rob Arthan, Derek Bronish,

Rod Chapman, Ernie Cohen, Mark Hillebrand, Bart Jacobs,
K. Rustan M. Leino, Rosemary Monahan, Frank Piessens, Nadia Polikarpova,
Tom Ridge, Jan Smans, Stephan Tobies, Thomas Tuerk, Mattias Ulbrich, and

Benjamin Weiß

www.vscomp.org

Abstract. We, the organizers and participants, report our experiences
from the 1st Verified Software Competition, held in August 2010 in Ed-
inburgh at the VSTTE 2010 conference.

1 Introduction

Research on SAT solving and automatic theorem proving has been boosted by
the competitions held in connections with conferences such as SAT, CADE, and
CAV. The regular comparisons of tools help the community by exhibiting the
practical impact of algorithms and implementation strategies, and help its clients
by providing an assessment of the performance of individual tools as well as of
the research field overall.

Inspired by this success, participants of the Verified Software Initiative [11]
decided to start a program verification competition, which was first organized by
Peter Müller and Natarajan Shankar and held at the VSTTE 2010 conference.
While the long-term objective is to provide similar benefits to the community
like the ATP, SAT, and SMT competitions, the goals for the initial event were
much more modest—to create interest among researchers and tool builders, to
get an impression of how such an event is received by the community, and to
gain experience in designing and carrying out a verification competition.

The competition was explicitly held as a forum where researchers could
demonstrate the strengths of their tools rather than be punished for their short-
comings. There were no deliberate attempts to expose weaknesses such as un-
soundness or incompleteness of the verification tools, or missing support for
certain language features. The organizers presented five small programs and
suggestions what to prove about them (such as the absence of run-time errors,
functional behavior, or termination). After the presentation followed a four-hour
thinking period where no tool use was allowed. After that, the participants had

? The floor brackets mark parts not present in the short version. This text was last
updated on August 25, 2011.



two hours to develop their solutions. The participants could work in teams of up
to three people, provided that all of them were physically present on site. The
physical presence allowed the organizers to interact with the participants and to
get immediate feedback about the challenge problems and the organization of
the competition.

There was no ranking of solutions or winner announcement. The evaluation
committee (Gary Leavens, Peter Müller, and Natarajan Shankar) manually in-
spected the solutions and pointed out strengths and weaknesses according to the
criteria of completeness, elegance, and (reported) automation; these subjective
results were presented at the conference to foster discussions among the partic-
ipants. Not ranking the results allowed in particular a comparison of different
verification approaches, whereas a fair ranking would have required standardiza-
tion and grouping by disciplines (such as automatic vs. interactive or modular
vs. whole-program verification).

This setup proved to be successful. Eleven teams participated in the compe-
tition and submitted in total 19 (partial) solutions to the five challenge problems
(reproduced in Section 2). For this paper, the participants also had the chance
to revise or complete their solutions (see Table 1 for an overview). Ten out of
11 original teams report their experiences in Section 3. A number of challenges,
common issues, and conclusions are presented in Section 6.

The original problem statements, all team solutions, as well as an extended
version of this report are available on the competition web site.

2 The Challenge Problems

This section presents short versions of the competition problems, which were pre-
pared by the organizers together with Valentin Wüstholz. The original problem
descriptions included reference implementations in pseudocode and test cases.

Problem 1: Sum&Max. Given an N -element array of natural numbers,
write a program to compute the sum and the maximum of the elements in the
array. Prove the postcondition that sum 6 N · max.

Test Case: With the array 9, 5, 0, 2, 7, 3, 2, 1, 10, 6, N is 10, max is 10, and
sum is 45.

Problem 2: Inverting an Injection. Invert an injective (and thus sur-
jective) array A of N elements in the subrange from 0 to N − 1. Prove that the
output array B is injective and that B[A[i]] = i for 0 6 i < N .

Test: If A is 9, 3, 8, 2, 7, 4, 0, 1, 5, 6, then the output B should be 6, 7, 3, 1,
5, 8, 9, 4, 2, 0.

Problem 3: Searching a LinkedList. Given a linked-list representation
of a list of integers, find the index of the first element that is equal to zero. Show
that the program returns a number i equal to the length of the list if there is no
such element. Otherwise, the element at index i must be equal to zero, and all
the preceding elements must be non-zero.

2



T
ea

m
T

o
o
l

P
ro

b
le

m
s

so
lv

ed
Im

p
le

m
en

ta
ti

o
n

/
sp

ec
ifi

ca
ti

o
n

la
n
g
u
a
g
e

T
o
o
l

w
eb

si
te

a
t

co
m

p
et

it
io

n
in

th
e

a
ft

er
m

a
th

Sum&Max

Invert

LinkedList

NQueens

Queue

Sum&Max

Invert

LinkedList

NQueens

Queue

A
.T

sy
b
a
n

1
Is

a
b

el
le

a
a

C
/

H
o
a
re

lo
g
ic

a
n
o
n
H

o
lH

a
ck

er
1

H
O

L
4

a
H

O
L

h
o
l
.
s
o
u
r
c
e
f
o
r
g
e
.
n
e
t

H
o
lf

o
o
t

1
H

o
lf

o
o
t

C
-l

ik
e

/
se

p
.

lo
g
ic

h
o
l
f
o
o
t
.
h
e
a
p
-
o
f
-
p
r
o
b
l
e
m
s
.
o
r
g

K
eY

3
K

eY
a

a
J
av

a
/

J
M

L
(+

)
k
e
y
-
p
r
o
j
e
c
t
.
o
r
g
/
V
S
C
o
m
p
2
0
1
0

L
ei

n
o

1
D

a
fn

y
a

a
a

D
a
fn

y
r
e
s
e
a
r
c
h
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
d
a
f
n
y
/

S
p
a
rk

U
L

ik
e

1
S
P

A
R

K
a

c
c

c
c

S
P

A
R

K
l
i
b
r
e
.
a
d
a
c
o
r
e
.
c
o
m

M
o
n
a
P

o
li

2
B

o
o
g
ie

a
B

o
o
g
ie

r
e
s
e
a
r
c
h
.
m
i
c
r
o
s
o
f
t
.
c
o
m
/
b
o
o
g
i
e
/

R
es

o
lv

e
1

R
es

o
lv

e
b

a
R

es
o
lv

e
r
e
s
o
l
v
e
.
c
s
e
.
o
h
i
o
-
s
t
a
t
e
.
e
d
u
:
8
0
8
0
/
R
e
s
o
l
v
e
V
C
W
e
b
/

R
o
b
A

rt
h
a
n

1
P
ro
o
fP
ow

er
a

a
H

O
L

w
w
w
.
l
e
m
m
a
-
o
n
e
.
c
o
m
/
P
r
o
o
f
P
o
w
e
r
/
i
n
d
e
x
/

V
C

C
ru

sh
er

s
3

V
C

C
C

/
V

C
C

a
n
n
o
ta

t.
v
c
c
.
c
o
d
e
p
l
e
x
.
c
o
m

V
er

iF
a
st

1
V

er
iF

a
st

a
C

,
J
av

a
/

se
p
.

lo
g
ic

w
w
w
.
c
s
.
k
u
l
e
u
v
e
n
.
b
e
/
~
b
a
r
t
j
/
v
e
r
i
f
a
s
t
/

N
u
m

e
ra

l
=

n
u
m

b
e
r

o
f

p
e
rs

o
n
s

a
t

c
o
m

p
e
ti

ti
o
n

a
so

lu
ti

o
n

u
n
ch

a
n
g
e
d

si
n
c
e

c
o
m

p
e
ti

ti
o
n

b
so

lv
e
d

b
e
fo

re
th

e
c
o
m

p
e
ti

ti
o
n

c
so

lv
e
d

a
ft

e
r

p
a
p

e
r

p
re

p
a
ra

ti
o
n

S
in

g
le

e
n
tr

y
=

la
n
g
u
a
g
e

in
te

g
ra

ti
n
g

im
p
le

m
e
n
ta

ti
o
n

a
n
d

sp
e
c
ifi

c
a
ti

o
n

so
lv

e
d

n
o
t

so
lv

e
d

su
b
st

a
n
ti

a
l

p
a
rt

ia
l

so
lu

ti
o
n

T
a
b
le

1
.

S
o
lu

ti
o
n
s

ov
er

v
ie

w

3



Problem 4: NQueens. Write and verify a program to place N queens on
an N × N chess board so that no queen can capture another one with a legal
move. If there is no solution, the algorithm should indicate that.

Thus, with N = 2, the result should be empty, whereas with N = 4, there
should be a legal placement.

Problem 5: Amortized Queue. An applicative queue with a good amor-
tized complexity can be implemented using a pair of linked lists, such that the
front list joined to the reverse of the rear list gives the abstract queue. The queue
offers the operations Enqueue(item: T) to place an element at the rear of the
queue, Tail() to return the queue without the first element, and Front() to
return the first element of the queue. The implementation must maintain the
invariant queue.rear.length 6 queue.front.length (prove this). Also, show
that a client invoking the above operations observes an abstract queue given by
a sequence.

The verification challenges were selected with a number of basic requirements
in mind: (1) the description of the challenges should be concise and easy to under-
stand in the short time that was given, (2) the implementation for each challenge
should only make use of programming language features that are well-supported
by state-of-the-art verification tools and pseudocode should be provided, (3) the
challenges should be of different levels of difficulty without giving an unfair ad-
vantage to particular programming languages or tools. For the more difficult
challenges it was made sure that solving them was feasible using existing tools
and several challenges were dismissed because they seemed too difficult to solve
within the given time. However, due to the wide range of tools and verification
techniques, that we expected to be used in the competition, it was hard to pre-
dict which challenges would be difficult to solve using which tools. Since teams
were allowed to consist of up to three people, challenges, such as Queue, were
included because they seemed well-suited to be worked on in parallel.

3 The Team Reports

3.1 Team anonymousHolHacker (Tom Ridge)

HOL4 [20] is an interactive theorem prover for higher-order logic, broadly similar
to systems such as Isabelle/HOL, HOL Light, and ProofPower. HOL4 has good
automated proof support, including powerful equality reasoning (simplification,
i.e., rewriting with directed equalities), complete first-order proof search, and
decision procedures for decidable fragments of arithmetic. Extensive libraries of
theorems covering many common data types and functions are also provided.

Competition Only Queue was attempted during the competition. Queue was
chosen because it was perceived to be the most challenging, although in some
ways it is more straightforward than the other questions. Invert is also rela-
tively difficult, but unfortunately this was not identified by Ridge during the
competition, and so no attempt at this problem was made.

4



The HOL statement uses an abstraction function abstr to construct the
queue by joining (++) the two underlying implementation lists (represented as
the pair impl):

abstr impl = (front impl) ++ (REVERSE (rear impl))

All the data types, functions, and required properties given in the prob-
lem statement are fairly directly transcribed in HOL. Three very simple arith-
metic facts are established, and proof of the required properties then proceeds
essentially by case analysis on lists, and simplification, with a few trivial in-
stances of first-order proof (first-order proof with appropriate case splitting and
other library lemmas would automatically prove all the required properties out-
right). Induction is not explicitly needed in the proofs, so that Queue is in some
ways simpler than the other problems. However, the arithmetic facts and various
HOL4 library lemmas about lists essentially are inductive: the simplicity of our
proofs (the lack of induction) derives from the maturity of the HOL4 system,
especially the automation for arithmetic lemmas, and the extensive libraries of
theorems about lists.

The HOL4 solution is given at a relatively abstract level, and no attempt is
made to address imperative features such as linked lists and pointer manipula-
tion. The natural approach would be to rephrase the queue functions in a model
of an object-oriented language whose semantics was formalized inside HOL4.
The proofs would be essentially the same, but there would be significant over-
head maintaining various separation-type properties of the two implementation
lists. It would be interesting to define the semantics of a simple object-oriented
language and investigate this approach.

3.2 Team Holfoot (Thomas Tuerk)

Holfoot is an instantiation of a general separation logic framework inside the
HOL4 [20] theorem prover. It is able to reason about the partial correctness of
programs written in a simple, low-level imperative language, which is designed to
resemble C. This language contains pointers, local and global variables, dynamic
memory allocation/deallocation, conditional execution, while loops, and recur-
sive procedures with call-by-value and call-by-reference arguments. Moreover,
concurrency is supported by conditional critical regions and a parallel composi-
tion operator.

Holfoot follows in the footsteps of the separation logic tool Smallfoot [5]. It
uses the same programming language and a similar specification language but
gives them a rigorous formal semantics in HOL. As all inferences pass through
the HOL4 kernel, the Holfoot proofs are highly trustworthy with respect to the
defined formal semantics. Also, while Smallfoot is concerned only with the shape
of data structures, Holfoot can reason about their content as well, supporting
full functional verification. Holfoot can handle arrays and pointer arithmetic.

Simple specifications, like the Smallfoot examples or a fully functional speci-
fication of reversing a singly linked list can be verified automatically in Holfoot.

5



More complicated ones like fully functional specifications of quicksort or inser-
tion into a red-black tree require interactive proofs. These interactive proofs can
use all the infrastructure of HOL4.

Competition The Holfoot team consists only of Thomas Tuerk, the developer of
Holfoot. Unluckily, only the first example was solved during the competition due
to time limitations. This is mainly due to Thomas Tuerk not being familiar with
HOL4’s arithmetic reasoning infrastructure. Invert was tried, but not finished
during the competition.

Aftermath Since the competition, all problems have been solved using Holfoot.
As a separation logic tool, Holfoot is aimed at reasoning about dynamic data
structures. Therefore, Holfoot is especially good at reasoning about Queue. For
other examples, HOL4’s infrastructure for defining new predicates and functions
was beneficial. Invert for example uses a newly defined function to translate
the original problem into a functional one inside HOL4.

3.3 Team KeY (Vladimir Klebanov, Mattias Ulbrich, Benjamin
Weiß)

The KeY system [4] is a verification tool for Java programs. At the core of
the system is a deductive prover working in first-order Dynamic Logic for Java
(JavaDL). Properties of programs can be specified in JML or OCL, which KeY
translates into proof obligations in JavaDL. Specifying directly in JavaDL is also
possible.

The KeY system is not strictly a verification condition generator (VCG), but
a theorem prover for program logic interleaving symbolic execution of programs,
first-order reasoning, arithmetic, and symbolic state simplification, etc. Via its
SMT export interface, the system can also use external solvers (such as Z3) to
discharge goals.

For programs annotated with requirements and sufficient loop invariants, the
system can often find verification proofs automatically. On the other hand, the
system does expose an explicit proof object of (relatively) good understand-
ability. The user can provide guidance to the prover by manipulating the proof
manually at key points—for instance adding lemmas or instantiating quantifiers.

Competition At the competition, the KeY team consisted of three developers
with in-depth knowledge of the system. We used a pre-release of KeY 1.6. Dur-
ing the discussion phase, it quickly became clear that—at the current state of
our technology—time constraints alone will not allow solving more than three
problems. By the end of the allotted time, we had solved Sum&Max and In-
vert, which fall into the class where KeY is strongest (functional-arithmetical
properties).

Both problems could be specified without difficulties in standard JML. The
specifications were complete regarding the problem formulation. For Sum&Max,
we have also specified and proven that the program indeed computes the sum

6



and the maximum of the array. KeY found the proof automatically (with one
goal discharged by a tweaked strategy setting), and the pure prover running
time was about six seconds. Quite some time was wasted on Invert in search of
the loop invariant, which turned out to be simpler than expected. In the proof,
it was necessary to invoke Z3 and manually instantiate two quantifiers (in the
surjectivity precondition). Attempts to solve LinkedList were not successful
within the given time limit. We did not attempt NQueens or Queue.

Aftermath After the competition, complete solutions to the three outstanding
problems have been produced, using a development branch of the KeY sys-
tem [17], which is stronger in handling recursive data structures. An extended
variant of JML was used for specification. The solutions to LinkedList and
Queue are inspired by those of Leino (Section 3.4): dynamic frames in the form
of ghost fields are used for framing, and mathematical sequences for specifying
functional behavior. The total effort spent was two person-weeks, which included
some extensions to the verification system.

A closer look at Invert The challenging part of the problem was to prove the
injectivity of B. The goal combines quantifiers with linear arithmetics, which is
notoriously difficult for SMT solvers. Their performance in this regard is very
sensitive to the syntax of the problem formulation.

The goal is to prove that for any N > 0, the injectivity of B

∀x, y. 0 6 x < y < N → B[x] 6= B[y] (1)

follows from the inverse relation between the arrays A and B (which per loop
invariant holds after the loop)

∀x.
(
0 6 x < N → B[A[x]] = x

)
(2)

and the surjectivity of A (which is a lemma that the problem description allowed
to assume)

∀x.
(
(0 6 x < N)→ ∃x′. (0 6 x′ < N) ∧ x = A[x′]

)
. (3)

KeY currently cannot prove this implication automatically. One can, alterna-
tively, invoke the SMT export feature of KeY and have Z3 discharge the formula.
The catch with the latter option is that it only succeeds in the formulation ex-
actly as above. After Skolemizing the quantifiers in (1) (which the automated
proof search of KeY typically does), Z3 no longer recognizes the formula as valid.

A quick sketch of the desired proof can be given as follows:

After Skolemizing (1) and abstracting for clarity from index ranges,
we have to show that for any x0 6= y0:

B[x0] 6= B[y0] . (4)

Instantiating (3) with x0, we can rewrite B[x0] to B[A[x′
0]] (for

some x′
0 with x0 = A[x′

0]) and then to just x′
0 with (2). In the same

7



manner, we can rewrite B[y0] to y′0 (for some y′0 with y0 = A[y′0]).
Thus, we have reduced (4) to showing that x′

0 6= y′0.
Assuming to the contrary x′

0 = y′0, we can derive A[x′
0] = A[y′0]

and thus x0 = y0 (remembering the properties of x′
0 and y′0), which

contradicts our knowledge about x0 and y0.

During the competition, we have manually instantiated the surjectivity assump-
tion (3) with x0 and y0 respectively. After that, the proof obligation was dis-
charged by Z3. It is also possible to complete the rest of the proof in KeY by
also instantiating (2).

3.4 Team Leino (Rustan Leino)

Dafny is an object-based language with built-in specification constructs [13]. To a
first approximation, it is like Java (but without subclasses) with Eiffel- or JML-
like specifications. Language features that are especially useful when writing
specifications include sets and sequences, ghost variables, and user-defined re-
cursive functions. Dafny uses mathematical integers (implemented by big-nums),
which avoids overflow errors.

The Dafny verifier statically checks all specifications, language rules (e.g., ar-
ray index bounds), termination, and other conditions (e.g., well-foundedness of
functions). To help it along, a user supplies assertions like method pre- and post-
conditions, loop invariants, and termination metrics. The compiler then omits
specifications and other ghost constructs from the compiled code. Like VCC, the
Dafny verifier is built using Boogie [3, 15], which in turn uses the SMT-solver
Z3 [9] as its reasoning engine. The preferable way to develop Dafny programs is
in the Microsoft Visual Studio IDE, where the Dafny verifier runs in the back-
ground and verification errors are reported as the program is being designed.

Competition Solving Sum&Max came down to adding a one-line loop invariant.
To solve LinkedList, I associated with every linked-list node a ghost variable

whose value is the sequence of list elements from that point onward in the list. To
state the appropriate invariant about that ghost variable, one must account for
which linked-list nodes contribute to the value, which is done using a common
“dynamic frames” specification idiom in Dafny.

The linked list in Queue is similar to the one in LinkedList, but stores in
every node the length of the remaining list and provides additional operations
like Concat and Reverse. To build an amortized queue from two linked lists,
one reversed, is then straightforward using a user-defined function that returns
the reverse of a given sequence.

The competition was an adrenalin rush and a race against the clock. I had
gone into it hoping to finish all five problems, but ended up with incomplete
attempts at Invert and NQueens. In retrospect, I may have finished Invert
had I ignored NQueens.

As the author of the tool, I may not be a good judge of its user-friendliness.
But for me, I found the immediate feedback from the verifier running in the
background useful throughout.

8



Aftermath The difficulty with Invert lies in getting the SMT solver to make use
of the given surjectivity property. The general trick is state a lemma, an assert
statement whose condition supplies the reasoning engine with a stepping stone
in the proof. In particular, the lemma will mention terms that trigger reasoning
about quantifiers that also mention those terms. In Invert, the surjectivity
property does not contain any terms that can be used in a lemma, so I introduced
a dummy function for that purpose.

I found N Queens to be the most difficult problem, because it involves
verifying the absence of a solution in those cases where the given search strategy
does not find one. After some more verbose attempts, I was able to get this down
to two lemmas.

3.5 Team SPARKuLike (Rod Chapman)

SPARK is a contractualized subset of the Ada language, specifically designed
for the construction of high-assurance software. It has an industrial track record
spanning some twenty years, including use in projects such as the EuroFighter
Typhoon, the Lockheed-Martin C130J, and the NSA’s Tokeneer demonstrator
system. The overriding design goal of the language is the provision of a sound
verification system, which is based on information-flow analysis, Hoare logic, and
theorem proving.

Rather than tackling all the problems in this challenge, I decided to take on
the first (Sum&Max), but aiming at a complete implementation and proof to
the standard that we would expect for industrial safety-critical code. In partic-
ular, the solution offers a complete proof of partial correctness, type safety, and
termination. Test cases were also developed that offer a respectable coverage
of boundary conditions and structural coverage. The proof of type safety also
covers the absence of arithmetic overflow. This was not required by the com-
petition rules, but was felt to be achievable in SPARK through the judicious
selection of well-defined ranges for the basic numeric types—a common practice
in SPARK. Indeed, failure to specify numeric ranges is normally considered an
outright design error in SPARK.

The solution took 107 minutes total, broken down as follows: Planning 5,
Design 40, Coding and Proof 50, Compile 1, Test 1, Review and Write-up 10.
The very low times for Compile and Test are encouraging—essentially no defects
were discovered at this stage. The SPARK Verification Condition Generator
produces 18 VCs, of which 14 are proved automatically. The remaining 4 VCs
require some additional Lemmas and are completed with the interactive prover.

In June 2011, after the short version of this report was completed, Claire
Dross, Yannick Moy, and Marc Sango submitted solutions to all of the problems
using a new version of the SPARK Toolset.

All problems are proved without further interaction by a combination of
the SPARK Simplifier, the new SPARKBridge which uses the ViCToR tool to
translates VCs to the SMT format, and the Alt-Ergo prover to prove the goals.
All tools are packaged in the freely available SPARK 2010-SMT GPL Edition.

9



3.6 Team MonaPoli (Rosemary Monahan, Nadia Polikarpova)

Boogie 2 [15] is an intermediate verification language designed to accommodate
the encoding of verification conditions for imperative, object-oriented programs.
Boogie [3] is a static verifier that accepts Boogie 2 programs as input and gen-
erates verification conditions, which are then submitted to one of the supported
theorem provers (the default being the SMT solver Z3 [9]). Several program ver-
ifiers, including verifiers for Spec#, Havoc, VCC, Dafny and Chalice, generate
their verification conditions by first translating the source program and its spec-
ification into the intermediate language Boogie 2 and then transforming that
intermediate language program into logical formulae using the Boogie tool. In
this competition, we chose to write our solutions directly in Boogie 2, using the
Boogie tool and Z3 (version 2.11 during the competition, version 2.15 for the
final version) to verify our solutions.

Competition At the competition the MonaPoli team consisted of Nadia Polikar-
pova and Rosemary Monahan, two people who had just met at VSTTE 2010.
Both had used the Boogie tool but primarily as an underlying component of
verifiers for other languages. The team worked together and submitted solutions
to Sum&Max and LinkedList.

We attempted LinkedList first. Specifying heap-manipulating programs in
Boogie 2 requires explicitly defining the heap, so we defined the linked list by
mapping a list cell to its stored value and to the next list cell. Our specification
included auxiliary functions which calculated the length of the list, determined if
a value was in the list, and returned the value at a particular position in the list.
Our main observation from this solution was that while the need to specify the
heap is an overhead, it ensures that the specifier has a complete understanding
of the program semantics. The solution we submitted at the competition was
incomplete as we used two unproved lemmas. Our solution for the paper is
complete and proves automatically in about 2 seconds.

Our solution to Sum&Max was easily specified and automatically verified in
less than 2 seconds. Our main observation here was that specifications for small,
integer- and array-manipulating programs in Boogie 2 are simple and concise.

We did not prove termination for any of the problems as Boogie 2 does
not directly support termination measures. One way around this is to encode
termination properties by hand, introducing an auxiliary variable to store the
value of the measure at the previous iteration of the loop, a loop invariant that
states that the measure is non-negative, and an assertion that the measure has
decreased.

Aftermath After the competition, solutions to Invert and Queue were com-
pleted.

In Invert, proving that one array is an inversion of another simply requires
the addition of an obvious loop invariant. Proving that an array is injective
is more complicated. The main difficulty was making Boogie instantiate the

10



surjectivity precondition.

∀ k : int • 0 ≤k ∧ k < N =⇒(∃ i : int • 0≤i ∧ i < N ∧A[i] =k)

Instead, we introduced a ghost set mirroring all seen values of A and loop
invariants stating that the set cardinality is exactly k (k being the loop counter)
and that all elements are in [0;N). To this end, we formalized a small theory of
sets.

During the solution development we noticed that verification was often helped
by introducing auxiliary functions and replacing expressions with function calls
(though this does not show with the latest version of Z3).

Queue delivered a more interesting experience as theories of sequences and
heap allocation were required. These were not difficult to specify but were quite
labor-intensive. However, once these theories have been written, it is possible
to solve a whole range of similar problems, so the effort is not wasted. Our
theory of sequences developed for Queue contains several examples of proofs
by induction as well as an example of proof by contradiction (lemma Sequence

.zero_count_empty) which may be of interest to the reader.
When dealing with linked data structures, one typically needs to define in-

ductive properties. We noticed that in order for Z3 to handle them effectively
it is important to use induction on structure instead of induction on integers. A
case in point is the definition of the value function at for the nth cell in the list
from LinkedList. The following definition works (showing recursive case only)

((item[jj] = at (ii , n)) ∧ (next[jj] 6= nil)) =⇒
(item[next[jj]] = at (ii , n + 1)));

while the following definition does not (again, recursive case only):

(n > 0) =⇒ (at(ii, n) = at(next[ii], n - 1))

Verification of the list and queue implementations was also greatly simplified
by the fact that both classes are immutable: no advanced techniques for speci-
fying footprints of the methods (such as dynamic frames) were required. Thus,
proving that a method call does not change the value of a certain expression
could be achieved by asserting that if operands of the expression were allocated
before the call they could not be modified by a call to a weakly-pure method.
This shows how much easier it is to prove immutable classes (even if method
bodies are imperative inside).

Other remarks In many cases during the solution development, Boogie did not
respond from the start within a reasonable time, struggling to complete the
proof. In such cases the usual debugging technique—inserting assert state-
ments to determine which facts the tool can infer—is not effective, as there is
no indication, which assertion the tool is struggling to prove. Weakening the
postcondition was not feasible as the method contained recursion. In this case
an alternative technique was successful: we inserted assume statements for all
postconditions at the end of a procedure and then, adding one assertion at a

11



time, worked towards the final proof goal in small steps. If Boogie then took too
long to respond, it was struggling with the last added assertion.

With regard to teaching program verification we suggest that using Boogie 2
has an advantage over some high-level languages, as all the advanced object-
oriented features (such as heap, class invariants or frame properties) have to be
spelled out explicitly in terms of low-level constructs (global variables, pre- and
postconditions). When we showed our competition solutions to students who
were taking a course on program verification their first reaction was negative.
However, when they started verifying their own specifications they quickly real-
ized the benefits of “no magic” behind the scenes. It helped them to understand
how the verifier works and hence how to debug their code.

3.7 Team Resolve (Derek Bronish)

Resolve is a tool-supported programming and specification language for full-
functional verification of imperative component-based programs [18]. The lan-
guage emphasizes strict separation of client- and implementer-views of compo-
nents, providing full modularity both in terms of human comprehensibility and
the proof process [19]. The key to this approach is the maintenance of value
semantics for all types, so references cannot “leak” across component bound-
aries [21].

Verification conditions generated automatically from Resolve code may be
discharged either by interfaces with third-party provers such as Isabelle and Z3,
or by SplitDecision [1], an internally-developed tool that applies theorems of
the mathematical theories that pervade the specification language (e.g., strings,
finite sets, tuples, etc.).

Competition The Resolve group representative did not originally intend to par-
ticipate in the competition and has only submitted Queue, for which we already
had a solution posted to the web.

Most notably, the Resolve solution to this problem (the StackRealization

of the QueueTemplate, viewable online at http://resolve.cse.ohio-state.

edu:8080/ResolveVCWeb) uses an abstraction to separate the queue from extra-
neous implementation details such as the nodes and pointers that may comprise
the lists’ concrete realizations. In other words, the amortized queue is repre-
sented as two stacks, which themselves may use a linked-list representation, but
the implementation details of the stacks are separated from the proof of the
queue implementation. An important tenet of Resolve is that such modularity
is required for verification efforts to scale upwards to more complex software
systems.

Aftermath Since the competition proper, solutions to all five problems have
been composed in Resolve. An important attribute of the solutions, allowing all
of the VCs to be discharged either mechanically or simply by hand, is the use of
specifier-supplied mathematical definitions to hide quantifiers. For example, the
postcondition for Invert can be expressed as:

12



a.lb = #a.lb and a.ub = #a.ub and

IS_INVERTED_UP_TO(a.ub + 1, #a, a)

This states that the bounds of the array are not changed, and the outgoing
value of the array is completely inverted with respect to its incoming value. The
definition of IS INVERTED UP TO is rather complicated and involves a universal
quantifier, but this definition never needs to be expanded in order to verify the
code. Instead, one simply applies universal algebraic lemmas such as:

i = a.lb =⇒ IS INVERTED UP TO(i, a, b)

How best to design a verification system that allows specifiers to provide such
definitions and lemmas, demonstrate the validity of the lemmas as a one-time
cost, and then incorporate proven lemmas into its automated reasoning engine is
an ongoing research question, which experience in this competition has revealed
is important and promising for the future of Resolve.

3.8 Team RobArthan (Rob Arthan)

ProofPower [2] is a tool supporting specification and proof in HOL (Mike Gor-
don’s polymorphic formulation of Church’s simple type theory) and other lan-
guages, most notably the Z notation, via semantic embeddings in HOL. Proof-
Power is the basis for an Ada verification system called the Ada Compliance Tool
developed for QinetiQ, who use it for verifying safety-critical control software,
using Z specifications derived from Simulink diagrams.

Competition For the competition, as I felt that functional programming was
rather under-represented at VSTTE, I decided to write recursive definitions in
HOL of functional programs and verify those. The resulting “programs” are
executable in ProofPower using the rewriting engine, although this is not really
a general purpose execution environment.

The conservative extension mechanism used to make the definitions imposes
a consistency proof obligation. This proof obligation is discharged automatically
for all the examples in the solutions and the syntactic form of the definitions
then guarantees termination.

The solutions are modular in the sense that the new functions are defined
by combining existing functions, and theorems about those new functions are
derived from theorems about their constituent functions. The list searching so-
lution first defines a polymorphic search function with a higher-order parameter
giving the search criteria and instantiates it to search for zeroes in a list of
integers.

This means that one can do particular calculations in the theorem prover with
the results as theorems. I just did this for testing purposes in the competition,
but it is an important technique in the application of systems like ProofPower to
mathematical and engineering problems requiring highly-assured calculations,
e.g., Tom Hales’s Flyspeck project uses this kind of technique in HOL Light and
Isabelle/HOL.

13



I was the only ProofPower user at VSTTE at the time of the competition,
so I formed a team of one. I am one of the main authors of the system. Given
the time available, I chose Sum&Max and LinkedList as the problems most
amenable to the techniques I was using. The other problems could easily be
handled in much the same way, but a few more hours would be required.

3.9 Team VC Crushers (Eyad Alkassar, Ernie Cohen,
Mark Hillebrand, Stephan Tobies)

VCC is an assertional, first-order deductive verifier for industrial-strength con-
current C (and assembly) code. VCC verification is based on modular two-state
invariants, which allow the encoding of a variety of verification disciplines. (There
is explicit syntactic support for Spec#-style ownership.) To overcome the re-
strictions of first-order reasoning, ghost state/code are typically used to main-
tain inductively defined information (e.g., the reachable nodes of a recursive
data structure), with ghost code substituting for prover guidance. (For exam-
ple, simulation is encoded by maintaining the abstract state as ghost state, with
explicit updates to this state witnessing the simulation.) Verification conditions
are discharged by an automatic prover (currently, Z3), but there is also a back-
end connection to Isabelle/HOL. VCC currently verifies only partial correctness
(but termination is coming soon).

The VC Crushers team consisted of three persons during competition time,
who were joined by a fourth person (Ernie Cohen) afterwards.

Competition Sum&Max was solved modulo two assumptions related to C’s use
of bounded (machine) integers. The first assumption was that the sum main-
tained in the loop did not overflow. This has to either be assumed in the loop,
provided as a precondition, or taken into account in the postcondition. The sec-
ond assumption was of a nonlinear arithmetic property that Z3 could not handle
effectively for bounded integers. In addition to the required postcondition, we
also proved that the result for the maximum is a bound for the individual el-
ements and that the function result is the summation of the array elements.
LinkedList was also fully solved during the contest, but using an overly com-
plex list specification with many superfluous invariants in the list data structure.
Invert was attempted during the competition, and was partially but not com-
pletely finished.

Aftermath The remaining problems were solved after the competition.
For Sum&Max, we discovered that the nonlinear arithmetic assumption

could be proven by Z3 for unbounded integers (which helps explain why other
Z3-based verifiers did not run into the same problem). The work-around in our
solution is to “guide” Z3 by asserting the unbounded property (essentially mak-
ing it available as a lemma). We also removed the no-overflow assumption by
weakening the postcondition to say that either the result is correct or the (un-
bounded) sum overflows.

14



In Invert, we use a ghost map parameter inverse to the function to encode
surjectivity of the input array A. The central hint to the prover to show the
postconditions on the output array B is to rewrite B[j] to B[A[inverse[j]]];
getting Z3 to do this automatically required using a custom trigger. Alterna-
tively, we could have explicitly provided a hint (by mentioning a term of the
form B[A[inverse[j]]]) where needed.

In our contest solution for LinkedList, we used an overly complex list imple-
mentation (one that maintains the reachability relation through arbitrary first-
order surgery on lists). However, this complexity is not needed for the contest
problems, so we re-did the verification using a much simpler list implementation
(used also for Queue).

The main difficulty in NQueens is how to express the non-existence of the
solution when the search procedure returns false. Our C implementation uses
arrays (and destructive updates) to work on the board. VCC does not allow
assertions to quantify over heaps (for reasons related to logical consistency), so
we instead used maps (a mathematical abstraction) to reason about the solution
space (with the same encoding as for boards). To express that there is no solution
in a certain search state, we state that all solutions sharing the same prefix as
the current board are inconsistent (i.e., have a queen i capturing a queen j).

In VCC, reading an object requires evidence that it still exists. In most cases
(including typical sequential code), this is done by owning the object. When the
object has to be shared, this is usually done by owning a ghost object (called a
claim) whose invariant guarantees the existence of the object in question. Ma-
nipulating these claims increases the annotation burden, but allows the data
to eventually be destroyed. On the other hand, this problem tacitly assumes
garbage collection, since the code creates shared data with no way to reclaim
it. We verified a version of the problem that does its own memory management
(essentially consuming data passed into functions); the solution verifies quite
conveniently using ownership, but does not allow reuse. As expected, the solu-
tion had to make additional assumptions (or preconditions) to make sure that
memory allocations do not fail and that the queues do not grow too large.

3.10 Team VeriFast (Bart Jacobs, Frank Piessens, Jan Smans)

VeriFast is a verifier for single- and multithreaded C and Java programs. It
takes as input C or Java source files, annotated with pre- and postconditions,
loop invariants, definitions of inductive data types, fixpoint functions, recursive
separation logic predicates, lemma functions, as well as some proof steps in
specially marked comments. It outputs either “0 errors found” or both the source
location of a potential error, and a symbolic execution trace leading up to the
error, with the symbolic heap, the symbolic store, and the path condition at each
execution step. These can be browsed conveniently in the VeriFast IDE. The tool
is intended to be sound: modulo bugs in the tool, an output of “0 errors found”
implies memory safety, data-race-freedom, and compliance with user-provided
assertions.

15



Our experiences with our verification-condition-generation-based verifiers Spec-
Leuven and VeriCool had left us frustrated with the unpredictable, and often
very bad, performance of the SMT solver on the quantifier-rich queries generated
by those tools, mainly to deal with heap effect framing. When designing Veri-
Fast, we put a very strong premium on predictable performance. To deal with
heap effect framing, we copycat Smallfoot [5] and perform symbolic execution
with memory represented as a separating conjunction of “heap chunks”, i.e.,
separation logic predicate applications. The SMT solver is used only to reason
about the arguments of the heap chunks, i.e., the data values. Furthermore, we
avoid general quantification in specifications—in fact, it is currently not sup-
ported. The only quantifiers that are made available to the SMT solver are
those that axiomatize the inductive data types and fixpoint functions (primitive
recursive functions over inductive data types); these behave very predictably.
The approach pays off: VeriFast’s typical sub-second verification times enable a
comfortable interactive annotation-insertion experience.

Competition One member of our team, Bart Jacobs, participated at VSTTE and
the competition. The first problem he tackled was Sum&Max. He first tried a
Java version, since we have some automation for dealing with arrays in Java.
Unfortunately, however, our automation proved quite incomplete. Bart had so
much trouble dealing with the complex terms involving take, drop, append, etc.
that described the inductive list representing the contents of the array, that he
decided the automation was working against him, so he switched to C where
VeriFast has no special support for arrays. A C array can be described using
a simple recursive predicate. This allowed him to complete Sum&Max, but by
then the competition was more than halfway through. Along the way, however,
he also struggled with an incompleteness in the theory of multiplication and
inequalities in the version of Z3 that he was using.

He then moved to LinkedList, which, since based on a nice recursive data
structure, was a piece of cake for VeriFast.

Finally, he started on Queue, which, it seemed, should have been easy for
the same reason. However, again, VeriFast’s automation started acting up. Shar-
ing of immutable data structures can be expressed in VeriFast using fractional
permissions [6]. VeriFast automatically splits and merges fractional chunks as
necessary—usually. In this case, it did not, so some time-consuming contortions
were necessary to get the sharable linked list implementation finished, not leav-
ing time to complete other problems.

The main conclusion that we took away from the competition is that au-
tomation is evil :-). Nonetheless, we will of course continue to work on more and
better automation.

Aftermath We have now completed all problems. Queue was fairly easy, once
the right encoding of sharability was found. (Quantify over the list’s fraction,
or over each field’s fraction separately? Quantifying over each field’s fraction
works better.) Completing Invert and NQueens required developing quite a

16



bit of theory, which was labor-intensive but possible in VeriFast. For example,
for Invert we proved surjectivity of A from injectivity and boundedness.

4 Solution Verbosity

A proposal to measure textual verbosity as a benchmark criterion in verification
was recently made in [14]. Inspired by this proposal, a number of teams have
measured the verbosity of their solutions in three categories:

1. Code. This category measures the program source code that is compiled and
executed. Does not include “ghost” code. Does not include test harnesses or
main methods (as the latter were not required in the competition).

2. Requirement Annotations. Requirement annotations constitute the specifi-
cation of the program. They assure the behavior of the program module
towards its environment. They are visible externally and cannot be changed
easily. They are the reason for performing verification. Typical requirement
annotations are pre- and postconditions of public (non-helper) methods.
Framing conditions of such methods—even though not explicitly mentioned
in the problem descriptions—have requirement character. In Queue a data
structure invariant was also a requirement.

3. Auxiliary Annotations. Auxiliary annotations exist solely to guide the proof
search. As long as they satisfy their purpose, auxiliary annotations can be
changed anytime without notice. Lemmas, intermediate assertions, loop in-
variants, and ownership clauses are typically members of this category.

It should be noted that the distinction in requirement and auxiliary is in many
parts relative to a module boundary. Since the problems treated in this compe-
tition were very small, the implied module boundary should be clear from the
context.

Verbosity metrics were collected with a Perl script initially released in con-
nection with [14]. The script tokenizes the input, taking into account the lexical
conventions of C-derived programming and specification languages. The tokens
are assigned to one of the above categories according to the mark-up inserted
into the files by solution authors. The results of the measurement are given in
Table 2. The script and the marked-up solutions are available on the competition
web site.

5 Related Work

The closest relatives of the verification competition are programming contests
(such as [10]) and the tool competitions taking place in other automated reason-
ing communities. The connection with the latter is explored in the introduction
and the conclusion.

From the broader perspective of a state-of-the-art survey, there are a number
of related accounts and activities.

17



T
ea

m
S
o
lu

tio
n

v
erb

o
sity

(to
k
en

s)

co
d
e

/
req

u
irem

en
t

a
n
n
o
ta

tio
n
s

/
a
u
x

a
n
n
o
ta

tio
n
s

S
u
m
&
M
a
x

In
v
e
r
t

L
in
k
e
d
L
ist

N
Q
u
e
e
n
s

Q
u
e
u
e

a
n
o
n
H

o
lH

a
ck

er
–

–
–

–
–

–
–

–
–

–
–

–
2
3
1

1
7
2

9
7
6

K
eY

7
0

1
2
0

1
1
0

5
0

1
9
5

5
2
+

9
0

1
5
1

2
3
3

2
2
8

2
5
3

7
9
9
+

4
2
9

5
7
1

3
1
9

L
ein

o
8
0

4
2

1
1

5
2

2
3
4

9
9

1
2
2

1
6
2

1
9
4

2
8
5

1
7
6

4
1
8

4
7
2

4
1
7

2
1
0

M
o
n
a
P

o
li

8
4

1
2

1
2

5
8

1
2
5

4
5
8

8
2

3
1
5

4
1

–
–

–
7
7
9

1
9
0
9

1
8
6
8

R
eso

lv
e

1
3
8

2
2
1

7
1

1
0
9

2
2
8

5
7

1
2
6

4
9
9

4
8

3
0
9

7
1
1

9
0

2
9
2

1
3
8

0

R
o
b
A

rth
a
n

4
8

1
7
3

2
8
5

–
–

–
1
2
1

6
8

5
4
8

–
–

–
–

–
–

V
C

C
ru

sh
ers

8
0

1
4
8

2
0
8

4
4

2
4
1

5
4

7
3

1
2
9

1
1
4

1
9
3

3
4
1

1
4
8

5
0
4

9
9
7

1
5
4

V
eriF

a
st

8
0

6
6

4
5
0

4
7

2
7
3

1
8
3
4

5
9

9
4

3
5
9

2
6
9

6
4
4

3
1
1
0

4
3
0

4
6
3

4
2
2

“
+

”
in

d
ica

tes
a
d
d
itio

n
a
l

n
o
n
-tex

tu
a
l

u
ser

in
tera

ctio
n
.

T
a
b
le

2
.

S
o
lu

tio
n

v
erb

o
sity

m
etrics

18



A historically interesting qualitative overview of the state of program verifi-
cation tools was compiled by Craigen in 1987 [8].

There are several larger comparative case studies in formal development and
verification, treated by a number of different methods and tools. Here we name
the “production cell” case study [16] from 1995 and the Mondex case study [23].

Recently we have seen a resurgence of interest in benchmarking program
verification tools. Several papers appeared during the last years presenting spe-
cific challenges for program verification tools and techniques [12, 22, 14]. COST
Action IC0701 maintains an online repository [7] of verification challenges and
solutions (mainly for object-oriented programs).

The competition takes a unique spot in the benchmarking landscape as it
measured performance in a controlled setting under constrained resources.

6 Conclusions

Results of the competition Sum&Max was the easiest problem, solved by every-
body attempting it. Invert—while not very difficult—challenged the systems’
quantifier handling in presence of linear arithmetic. LinkedList provided differ-
entiation in reasoning about heap data structures. NQueens and Queue were
perceived by most as outside the achievable in the competition time frame. Alto-
gether, NQueens was probably the most difficult problem, combining complex
reasoning and a difficulty to express when there is no legal solution.

The issue of theory reasoning A common issue in the competition was the battle
to solve the arising SMT problems. In the majority of cases, the solvers were
successful. When they were not (this was most notable in Invert), the stress
for the users was high. In the aftermath, we have seen a wide range of more or
less elaborate workarounds for such cases. Better ways for the user to guide the
proof search (and for the system to give feedback) are needed. The inference
speed, on the other hand, was generally deemed adequate in this competition.

The issues of ADTs and modularity For LinkedList and Queue, participants
have produced solutions of different flavors of modularity. An interesting solution
class were behavioral specifications, i.e., the ones completely separating interface
and implementation. In LinkedList, such separation required introducing ad-
ditional methods for constructing lists, even though they did not contribute to
the computation required in the problem. A desirable property of specifications
is a clear syntactic separation of interface and implementation (at best, keeping
them in separate files), as it makes understanding modularity concepts easier.

Concerning the use of abstract data types (ADTs), there is still a gap between
different reasoning traditions. Foundational systems like HOL have elaborate and
well-established ADT theories, while verification systems for imperative and OO
code mainly use ADTs in an ad hoc manner. A systematic connection between
the two realms remains a challenge.

19



Judging solutions and competition organization The competition made apparent
that even a qualitative evaluation of solutions, with an informal setup and no
ranking, is not an easy task. Solutions varied greatly in their requirement for-
malization and proof methods. Understanding the details of a solution (let alone
validating it with a tool) requires a significant effort from an evaluation com-
mittee. Helpful in this regard could be holding a dialogue with the developers,
or using a structured questionnaire such as [7]. Certain merits of a solution can
be effectively measured [14] (the web version of this report contains statistics on
solution verbosity), while others (e.g., elegance) remain subjective. Discussing
verification solutions is not as standardized or automated as judging other rea-
soning tool competitions, but it is extremely instructive.

Other suggestions concerning organization were to include more advanced
programming concepts (e.g., concurrency), to allow remote participation thus
opening the competition to a wider public, or to assign a separate time slot to
each individual problem to achieve a clearer differentiation.

Relevance of the competition The competition (and its aftermath) has shown
that all systems are—in the hands of an experienced user—capable of solving
any problem. At the same time, already the very “simple” problems posed have
exposed many practical issues with current verification tools. These issues are
typically not thematized by the way we judge progress in program verification to-
day, i.e., by how big a project can be verified with essentially unlimited resources.
The competition with its limited time slot offers a very useful complementary
perspective on verification’s way to wide practical use.

An afterword from the organizers The first Verified Software Competition ex-
ceeded the expectations of its organizers. We were impressed by the interest the
competition received and by the enthusiasm of the participants, which is also
demonstrated by the effort spent in the aftermath of the competition to solve the
remaining problems. There was a strong encouragement to continue organizing
such events. We hope the competition becomes a recurring part of the VSTTE
conference and contributes to the Verified Software Initiative.

References

1. B. Adcock. Working Towards The Verified Software Process. PhD thesis, Depart-
ment of Computer Science and Engineering, The Ohio State University, 2010.

2. R. Arthan and R. Jones. Z in HOL in ProofPower. BCS FACS FACTS, 2005-1.
3. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:

A modular reusable verifier for object-oriented programs. In FMCO 2005, volume
4111 of LNCS, pages 364–387. Springer, 2006.

4. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer, 2007.

5. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic asser-
tion checking with separation logic. In FMCO 2005, volume 4111 of LNCS, pages
115–137. Springer, 2006.

20



6. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in
separation logic. In POPL, 2005.

7. COST Action IC0701. Verification problem repository. www.verifythis.org.
8. D. Craigen. Strengths and weaknesses of program verification systems. In Proc. of

the 1st European Software Engineering Conference on ESEC ’87, pages 396–404.
Springer-Verlag, 1987.

9. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS 2008, volume
4963 of LNCS, pages 337–340. Springer, 2008.

10. E. Dolstra, J. Hage, B. Heeren, S. Holdermans, J. Jeuring, A. Löh, C. Löh, A. Mid-
delkoop, A. Rodriguez, and J. van Schie. Report on the tenth ICFP programming
contest. In Proceeding of the 13th ACM SIGPLAN international conference on
Functional programming, ICFP ’08, pages 397–408, New York, NY, USA, 2008.
ACM.

11. C. Hoare, J. Misra, G. T. Leavens, and N. Shankar. The verified software initiative:
A manifesto. ACM Comput. Surv., 41:22:1–22:8, October 2009.

12. G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification
challenges for sequential object-oriented programs. Form. Asp. Comput., 19:159–
189, June 2007.

13. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
In LPAR-16, volume 6355 of LNCS, pages 348–370. Springer, Apr. 2010.

14. K. R. M. Leino and M. Moskal. VACID-0: Verification of ample correctness of
invariants of data-structures, edition 0. In Proceedings of Tools and Experiments
Workshop at VSTTE, 2010.

15. K. R. M. Leino and P. Rümmer. A polymorphic intermediate verification language:
Design and logical encoding. In TACAS 2010, volume 6015 of LNCS, pages 312–
327. Springer, 2010.

16. C. Lewerentz and T. Lindner. Case study “production cell”: A comparative study
in formal specification and verification. In M. Broy and S. Jähnichen, editors,
KORSO: Methods, Languages, and Tools for the Construction of Correct Software,
volume 1009 of LNCS, pages 388–416. Springer, 1995.

17. P. H. Schmitt, M. Ulbrich, and B. Weiß. Dynamic frames in Java dynamic logic.
In FoVeOOS 2010, volume 6528 of LNCS. Springer, 2010.

18. M. Sitaraman, B. Adcock, J. Avigad, D. Bronish, P. Bucci, D. Frazier, H. Friedman,
H. Harton, W. Heym, J. Kirschenbaum, J. Krone, H. Smith, and B. Weide. Building
a push-button RESOLVE verifier: Progress and challenges. Formal Aspects of
Computing, pages 1–20, 2010.

19. M. Sitaraman, S. Atkinson, G. Kulczycki, B. W. Weide, T. J. Long, P. Bucci, W. D.
Heym, S. M. Pike, and J. E. Hollingsworth. Reasoning about software-component
behavior. In ICSR-6: Proceedings of the 6th International Conerence on Software
Reuse, pages 266–283, London, UK, 2000. Springer-Verlag.

20. K. Slind and M. Norrish. A brief overview of HOL4. In TPHOLs 2008, volume
5170 of LNCS, pages 28–32. Springer, 2008.

21. B. W. Weide and W. D. Heym. Specification and verification with references. In
Proceedings OOPSLA Workshop on Specification and Verification of Component-
Based Systems (SAVCBS), October 2001.

22. B. W. Weide, M. Sitaraman, H. K. Harton, B. M. Adcock, P. Bucci, D. Bronish,
W. D. Heym, J. Kirschenbaum, and D. Frazier. Incremental benchmarks for soft-
ware verification tools and techniques. In N. Shankar and J. Woodcock, editors,
Proceedings, Verified Software: Theories, Tools, Experiments (VSTTE), volume
5295 of LNCS, pages 84–98. Springer, 2008.

21



23. J. Woodcock. First steps in the verified software grand challenge. Computer,
39(10):57–64, 2006.

22


