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ABSTRACT 
The performance of a collaborative system depends on how 
two mandatory collaborative tasks, processing and 
transmission of user commands, are scheduled. We have 
developed multiple policies for scheduling these tasks on 
computers that have (a) one processing element on the 
network interface card and (b) one or more processing cores 
on the CPU. To compare these policies, we have a 
developed a formal analytical model that predicts their 
performance. It shows that the optimal scheduling policy 
depends on several factors including the number of cores 
that is available. We have implemented a system that 
supports all of the policies and performed experiments to 
validate the formal model. This system is a component of a 
self-optimizing scheduler we have developed that improves 
response times by automatically choosing the scheduling 
policy based on number of cores and other factors.  
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INTRODUCTION 
Performance is a critical success factor in the world of 
collaborative applications. If an application does not 
respond to actions by a user quickly or notify the user of 
actions of others in a timely fashion, the user may get 
frustrated and quit the session.  

Several performance metrics have been identified, such as 
local [14] and remote [4] response times, throughput [5], 
jitter [7], bandwidth [8], and task completion time [2]. 
While all of them are useful, we focus on response times. 
Response times depend on a variety of factors such as 

processing [3] and communication [10] architecture and 
scheduling of collaborative tasks [11]. We focus on the 
scheduling of tasks for processing and transmission of 
commands, both of which are necessary for coupling.  

Previous work has identified and evaluated several different 
policies for scheduling these tasks [11]. However, it has 
assumed that a single processing element is used to perform 
all aspects of these tasks. We have developed four 
variations of these policies, which leverage parallelism on 
modern devices offered by multiple CPU cores and the 
processor on the network interface card. To compare these 
four policies, we have developed a formal evaluation 
model, which predicts the local and remote response times 
of these policies. This model is a component of a self-
optimizing scheduler we have developed that improves 
response times by automatically choosing the scheduling 
policy based on number of cores and other factors.  

A flavor of the performance improvements the optimizer 
can provide is given in Table 1. The table shows average 
response times of five users with and without the optimizer. 
For four of them, performance is better with than without 
the system, by 99ms, 56ms, 101ms, and 99ms. More 
importantly, the improvements are noticeable to the users. 
In particular, human-perception studies by Youmans [16] 
and Jay et al. [9] have shown that people can notice changes 
of 50ms in local and remote response times, respectively.  

The rest of this paper is organized as follows. First, we 
consider background work that forms the basis of our 
research. Then, we discuss parallelism in modern machines 
and aspects of it that a scheduling system can exploit. 
Following this, we present four parallelizing scheduling 
policies and the analytical model for them. Next, we outline 
implementation of our system and describe the simulations 
and experiments we performed to evaluate it. Then, we 
present discuss the broader impact of our work. Finally, we 
end with conclusions and directions for future work. 

BACKGROUND WORK   
The tasks in a collaborative application are determined by 
the functionality it provides. By definition, all collaborative   
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Response Time (ms) User1 User2 User3 User4 User5

Non-optimized 459 426 473 510 564 

Optimized 360 370 372 411 623 

 Table 1. Average response times of five users in a 
collaborative session with and without optimized scheduling 
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applications must couple the users. By extension, the tasks 
that provide coupling are mandatory. There are two such 
tasks, those for processing and transmitting user commands. 
In general, an application may have tasks related to 
awareness, concurrency control, and consistency 
maintenance mechanisms. While all of these mechanisms 
are important, they are in general optional. Our work 
focuses on the scheduling of the mandatory tasks. 

Because our work focuses on the mandatory tasks, the 
degree to which it applies in applications with optional 
functionality is limited. For instance, World of Warcraft has 
concurrency control. Thus, our work may not correctly 
predict its performance when conflicts occur. However, 
when there are no conflicts, our work may still apply. We 
will return to the issue of scheduling optional tasks in more 
detail in the discussion section. Meanwhile, we focus on 
scheduling of the mandatory tasks whose nature depends on 
the processing [3] and communication [10] architectures.  

Processing Architecture 
Two main processing architectures have been used in the 
construction of collaborative systems: centralized (client-
server) replicated (peer-to-peer). In both cases, it is 
assumed that the shared application is logically divided into 
separate user-interface and processing components. The 
user-interface component transforms user input into input 
commands and sends these commands to the program 
component. Conversely, it processes output commands that 
it receives from the program component and transforms the 
result into updates to the display. The program component 
processes user input by converting input commands to 
output commands. The user-interface component is 
replicated on each user’s computer and allows a user to 
manipulate application state not shared with the other users. 
The program component is logically shared by all users and 
may be physically centralized or replicated, depending on 
the processing architecture. Regardless, each user interface 
is mapped to exactly one program component. 

In the centralized architecture, all of the user-interface 
components are mapped to a single program component 
running on one of the user’s computers. The computer 
running the program component is called the master and all 
of the other computers are called slaves. In the replicated 
architecture, each user-interface component is mapped to 
the program component running on the local computer. 
Whenever a master receives a command from the local 
user, it sends the command to all of the other computers, 
thereby ensuring the program components on different 
masters are kept in sync. 

Communication Architecture 
Regardless of which processing architecture is used, the 
master computers transmit commands to all other 
computers. If commands are large or the number of users is 
high, the transmission costs can be high.  

An important question when transmission costs are high is 
whether a master computer uses unicast or multicast to 
communicate with other computers. The idea of multicast 
requires the construction, for each source of messages, a 
multicast overlay that defines the paths a message takes to 
reach the destinations. In this paper, we make two 
assumptions regarding multicast. First, because IP-multicast 
is not widely deployed, we assume an application-layer 
multicast in which end-hosts form the overlay. Second, as 
in peer-to-peer file sharing systems, we assume that only 
the users’ computers can be used in the overlay.  

Scheduling 
Both the processing and the communication architecture 
mandate specific tasks that the users’ devices must perform. 
The processing architecture determines which computers 
process input commands in addition to processing outputs. 
The communication architecture, on the other hand, dictates 
the destinations to which a computer transmits commands. 
The number of such destinations determines the 
significance of the transmission cost. In the unicast case, 
this cost is negligible on the destination computers. 

The order in which a computer carries out the processing 
and transmission tasks can impact response times. Four 
main policies have been identified by Junuzovic and Dewan 
to schedule these tasks [11]. Three of these are 
straightforward: (a) process-first, which completes the 
processing task before starting the transmission task, (b) 
transmit-first, which does the reverse, and (c) concurrent, 
which creates a separate thread for each of these tasks and 
schedules these threads in a round-robin fashion.  

The fourth, called lazy, [11] gives precedence to the 
processing task, but delays its execution and allows the 
transmission task to run during this delay if the resulting 
increase in local response times is not noticeable. The 
reason for delaying processing is that a part of the 
transmission task can run earlier, thereby noticeably 
improving remote response times of some users. By 
definition, lazy dominates process-first. Thus, we ignore 
process-first in the rest of the related work discussion.  

Junuzovic and Dewan have developed a formal model to 
compare the other three policies [11]. Using the model, they 
show that each of these three policies can offer some users 
noticeably better response times than the other two policies. 
Their model assumes (a) a single-core CPU, (b) no 
concurrent commands, (c) no type-ahead, (d) no batch 
transmission, and (e) blocking communication. In blocking 
communication, after a CPU thread sends a message to the 
network interface card, it bocks until the message is 
transmitted to the network.  

We extend prior work in four ways. We identify parallelism 
in modern computing devices that a scheduling system can 
use. We motivate and present four scheduling policies that 
take advantage of this parallelism. Three of these are 
existing policies in which blocking communication is 
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replaced with non-blocking while still using a single 
processing core. The fourth is a variation of the 
concurrent non-blocking policy in which two instead of one 
CPU cores are used. We develop an analytical model that 
extends the previous model by accounting for the 
parallelism. Finally, we present a self-optimizing scheduler 
that automatically chooses the optimal scheduling policy.  

SOURCES OF PARALLELISM 
Modern computing devices have multiple general-purpose 
and specialized processing units that can be used in parallel. 
For example, multi-core CPUs have become common. The 
parallelism they offer can significantly improve 
performance. As a result, many applications that were 
optimized for the traditional single-core CPUs are now 
being redesigned to leverage multi-core CPUs.   

Devices today also have a specialized processor on the 
network interface card that is capable of executing most of 
the network stack. For instance, some network cards 
execute the full TCP/IP protocol. With such cards, the CPU 
is relieved of dealing with the TCP/IP algorithm, and thus, 
has more time to perform other tasks. The parallel 
processing offered by the network card processor is useful 
for any distributed system as some of the transmission task 
can be offloaded onto the network card. Non-blocking 
communication was invented for this reason.  

Graphical processing units (GPUs) can also perform some 
tasks on behalf of the CPU. Since GPUs are not general-
purpose, they cannot execute all tasks. However, for tasks 
they can execute, such as array operations, they offer 
excellent performance – much better than that of a CPU. 
Thus, a useful idea is to offload computation from the CPU 
to the GPU, which is often done in graphics.  

One of the purposes of this paper is to encourage designers 
of collaborative systems to think about and exploit the 
parallelism in modern devices. For example, collaborative 
tasks can be executed in parallel on multi-core devices. 
Also, while non-blocking communication is used in some 
systems, the benefits it offers were never formally studied 
or systematically exploited. As mentioned above, Junuzovic 
and Dewan [11] assumed blocking communication in their 
analytical model, which logically groups the CPU and the 
network card processor into a single processing unit. Also, 
it would be useful to use GPUs for performing parts of 
input processing, not just output rendering, tasks.  

EXPLOTING PARALLELISM 
In this paper, we exploit parallelism in two ways. We model 
and analyze the effects of executing the processing and 
transmission tasks in parallel on the CPU cores and the 
network card processor. We leave the use of the GPU and 
other processors as future work. 

Non-Blocking Communication 
In order to take advantage of non-blocking communication, 
we must dissect the procedure a computer takes to transmit 

a command to a destination. The procedure has two steps. 
First, the CPU reads command data from memory and then 
writes it to a location in memory which it shares with the 
network card. Second, the network card reads the data from 
the shared memory location and then transmits it by placing 
it on the physical wire. Thus, there are two transmission 
tasks: the CPU and the network card transmission task. The 
difference between the blocking and non-blocking 
communication is whether or not the CPU transmission task 
blocks until the network card transmission task completes.  

Typically, the network card processor is slower than the 
CPU. In all of our experiments, the CPU transmission task 
completed at least two times and usually more than ten 
faster than the network card transmission task. Thus, it may 
seem that non-blocking communication should always be 
used because it allows the CPU to perform other tasks while 
the network card is transmitting. However, a subtle but an 
important issue arises when a large command is transmitted 
to a large number of destinations in a non-blocking fashion 
– the network card buffers can overflow! Hence, there are 
scenarios in which blocking communication should be used 
instead of non-blocking communication. In this paper, we 
assume that network card buffer overflow does not occur. 

Since the CPU transmission times are dominated by those 
of the network card, it may seem unnecessary to consider 
the impact of CPU transmission on performance. 
Traditionally, the impact has, in fact, been neglected. The 
transmission time of a command has been calculated as 
simply “size of command/bandwidth,” which considers 
only the network card. This calculation is invalid for end-
user computers because it does not account for the CPU 
transmission costs. In particular, before the command 
reaches the network interface, the operating system must 
traverse the network stack and copy data buffers along the 
way, which takes time. Moreover, the operating system 
must perform these steps for each destination. Study by 
Abdelkhalek et al. [1] of the server for Quake, a popular 
multi-player game, found that CPU transmission costs can 
be significant in practice. They found that the server spent 
50% of CPU time on transmitting commands to clients.  

Formal Analysis 
We have developed a formal analytical model that accounts 
for non-blocking communication. It supports centralized 
and replicated processing architectures with unicast and 
multicast communication architectures. For a given 
processing and communication architecture combination, 
the model predicts response times of different scheduling 
policies. We do not derive the complete model here because 
of space limits; it is presented in the doctoral dissertation on 
this work [12]. Instead, we give enough detail to show its 
benefits compared to the Junuzovic and Dewan model [11].  

Let us consider the remote response times of a slave user 
for command entered by the master user in a centralized-
multicast architecture. As we are currently analyzing the 
parallelism between the CPU and the network card, suppose 
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that all devices have single-cores. To reach a particular 
user’s computer, which we refer to as the destination 
computer, the command must travel from the source to the 
destination along some path. The path may consist of 
additional computers. We refer to the source computer and 
these additional computers as intermediate computers. The 
terms destination and intermediate are relative to a 
particular path. An intermediate computer on one path is a 
destination computer on a different path as all users see the 
output of an input command. Let ߨ denote the path from the 
source to the destination, ݉ the number of computers on the 
path, and ߨ, 1  ݇  ݉, the ݇௧ computer on the path ߨ, 
where ߨଵ is the source and ߨ  the destination. 

The remote response time of command ݅ to computer ݆ 
along path ߨ is given by 

,݁ݐ݉݁ݎ ൌ  ݀ሺߨ, ାଵሻߨ
ିଵ

ୀଵ
  ,ሺ݅ݐ݊݅ ሻߨ

ିଵ

ୀଵ
 ,ሺ݅ݐݏ݁݀  ሻߨ

where ݀ሺߨ,  ାଵሻ is the network latency between the ݇௧ߨ
and ݇  1௦௧ computers on path ݐ݊݅ ,ߨሺ݅,  ሻ is the delayߨ
command ݅ experiences on the ݇௧ intermediate computer 
on the path, and ݀݁ݐݏሺ݅,  ݅ ሻ is the delay commandߨ
experiences on the destination computer. The destination 
and intermediate computers contribute different delays 
because the former contributes to the remote response time 
of the local user while the latter contribute to the remote 
response time of a remote user. This results in a 
fundamental difference between the equations for the 
intermediate and destination computers. In the case of an 
intermediate computer, we must determine when the 
computer transmits to the downstream computer. In the 
case of the destination computer, we must determine when 
the input and output processing complete. While the 
network latencies are independent of scheduling policy and 
whether or not non-blocking communication is used, the 
intermediate and destination delays are not. We present the 
benefit of non-blocking communication with the transmit-
first policy; the full model shows the benefit for all policies.  

Consider first the transmit-first delay of the destination 
computer ߨ when blocking communication is used. In 
general, a destination computer may also have to forward 
commands as it may be an intermediate computer on a 
different path. Thus, the delay of the destination computer 
depends on the number of computers to which it forwards 
commands because it must first transmit a command to all 
of them before processing it. When blocking 
communication is used, transmitting a message to a 
destination means having to place the entire message on the 
physical wire. Thus, the transmit time is equal to the CPU 
transmit time plus the network card transmit time. We 
denote the CPU and network card output transmit times of 
computer ݆ by ݔ,

ை் and ݔேூ,
ை், respectively. Thus, 

the destination delay is given by 

,గݐݏ݁݀
ைሺ݅, ሻߨ ൌ ቀݔ,గ

ை்  ேூ,గݔ

ை்ቁ כ ݂ܽ݊గ
 ,గ

ை் 

where  ,
ை் and ݂ܽ݊  denote the time computer ݆ requires 

to process output to command ݅ and the number of 
destinations to which it forwards commands.  

When non-blocking communication is used, the CPU and 
the network card work in parallel once the CPU transmits to 
the first destination. The above equation, however, does not 
capture the parallelism. In particular, with non-blocking 
communication, the destination delay does not depend on 
the network card transmission time. The delay is given by 

,గݐݏ݁݀
ேைேைሺ݅, ሻߨ ൌ ,గݔ

ை் כ ݂ܽ݊గ  ,గ
ை் 

As the two equations show, non-blocking delay is 
ேூ,గݔ

ை் כ ݂ܽ݊గ less than the blocking delay. Thus, if the 

total network card transmission time is high, then non-
blocking communication will offer noticeably better 
response times than blocking communication.  

Consider now the transmit-first delay of intermediate 
computer ߨ. In this case, the delay is equal to the time the 
computer requires to transmit the command to ߨାଵ, the 
next computer on the path. When blocking communication 
is used, the delay is given by 

,గೖݐ݊݅
ைሺ݅, ሻߨ ൌ ቀݔ,గೖ

ை்  ேூ,గೖݔ

ை்ቁ כ ,ߨሺݏ  ାଵሻߨ

where ݏሺߨ,  ାଵߨ ାଵሻ denote the position of computerߨ
in computer ߨ’s list of destinations.  

When non-blocking communication is used, the delay is 
lower because the CPU is faster than the network card. 
Thus, once the CPU transmits to the first destination, the 
time the CPU requires to transmit to the remaining 
destinations will overlap with the network card 
transmission time. Thus, the non-blocking delay is given by  

,గೖݐ݊݅
ேைேைሺ݅, ሻߨ ൌ ,గೖݔ

ை்  ேூ,గೖݔ

ை் כ ,ߨሺݏ  ାଵሻߨ

As the intermediate delay equations show, the non-blocking 
delay is ݔேூ,గ

ை் כ ሺݏሺߨ, ାଵሻߨ െ 1ሻ lower than the 

blocking delay. Thus, if the number of destinations is large, 
the time the CPU requires to transmit a command to all of 
them can be high. In this case, the non-blocking delay is 
noticeably better than the blocking delay.  

The above discussion illustrates two results. First, the 
existing model cannot be used to accurately predict 
response times when non-blocking communication is used. 
Second, the new model is capable of making response time 
predictions with non-blocking communication. From now 
on, we assume non-blocking communication in all policies. 

Parallel Multi-Core Scheduling Policy 
As the above discussion shows, when non-blocking 
communication is used, only partial control of scheduling is 
possible. Specifically, the network card transmission task is 
not schedulable – it always follows the CPU transmission 
task. Fortunately, this does not affect the control over the 
scheduling of CPU tasks. 
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As mentioned before, prior work has studied four different 
single-core scheduling policies: process-first, transmit-first, 
lazy, and concurrent. Each of these policies has a multi-core 
equivalent. Their pseudo-code for a centralized-multicast 
architecture is given in Figure 1. Regardless of policy, the 
master must process an input before processing and 
transmitting the corresponding output. Thus, the first step is 
always to process the input on all cores if the computer is 
the master. To process and transmit the output, the multi-
core equivalents of the sequential schemes simply use all 
cores for one and then for the other task. The lazy policy is 
more complex. It delays processing while the delay is not 
noticeable. During the delay, it transmits. If transmission 
does not complete before processing starts, it is completed 
after processing completes. Thus, the multi-core equivalent 
of lazy delays the processing task on all cores. Finally, the 
multi-core equivalent of the concurrent policy uses half of 
the cores for one and half of the cores for the other task.  

There are two important issues with multi-core scheduling 
policies. The first issue is whether a task can be parallelized 
on multiple cores. From a general framework perspective, 
the processing task is opaque – hence, the policies cannot 
parallelize it explicitly. The CPU transmission task, on the 
other hand, is parallelizable by nature. For example, two 
cores can transmit to two different destinations in parallel. 
More importantly, as the communication architecture 
defines the transmission tasks on each computer, the 
scheduling policy used by the framework can split the 
transmission task among multiple cores.  

The second issue is whether or not it is beneficial to 
parallelize a task on multiple cores. From the point of view 
of predicting performance, it is in fact not beneficial to 
parallelize the transmission task. The reason is that when 
multiple cores perform a send call, the operating system can 
service these calls in an arbitrary order. Thus, there is no 
guarantee of the order in which the operating system will 
queue messages for transmission by the network card. As a 
result, it is difficult to predict when a message is actually 
transmitted to, and therefore received by, a destination. In 
addition, parallelizing the transmission task is also not 
beneficial from the perspective of optimizing response 
times. As one core is sufficient to saturate the network card, 
executing the transmission task in parallel on multiple cores 
will not improve remote response times.  

It is still beneficial to carry out the processing and 
transmission tasks in parallel on different cores. The 
reasons are that with that policy (a) the CPU transmission 

times does not impact the response times to the local user 
and (b) the processing time does impact the response times 
of the remote users to which the computer transmits. We 
refer to such scheduling as the parallel multi-core 
scheduling policy. It is like the multi-core concurrent policy 
except that it uses only one core for the processing task and 
only one core for the transmission task.  

Since we cannot explicitly parallelize the processing task 
and parallelizing the transmission task makes it difficult to 
predict performance, our self-optimizing system does not 
support the multi-core versions of the process-first, 
transmit-first, and lazy policies. The only multi-core policy 
it supports is the parallel policy.  

Formal Analysis 
Our formal model is able to account for the parallelism 
offered by multiple cores. As above, due to space 
constraints, we present only a flavor of it. We give 
sufficient detail to demonstrate the benefits of the multi-
core parallel policy over other (single-core) policies.  

Let us consider again the remote response times of a slave 
user for commands entered by the master user in a 
centralized-multicast architecture. Suppose that each 
machine has a multi-core CPU. Moreover, suppose that 
non-blocking communication is used. As explained earlier, 
the response time is a sum of the network delays, 
intermediate computer delays, and the destination delay 
along the path from the source to the destination. The 
network delays are independent of scheduling policy, while 
the intermediate and destination computer delays are not. 

Consider first the parallel policy delay of the destination 
computer ߨ. With the parallel scheduling policy, the 
transmission and processing tasks are performed by 
different cores. Therefore, the delay is a function of only 
the processing times and is given by 

,ݐݏ݁݀
ோሺ݅, ሻߨ ൌ ,గ

ை் 

Compared to the transmit-first destination delay with non-
blocking communication derived earlier, the parallel delay 
is ݔ,గ

ூே כ ݂ܽ݊గ lower, which is the time the CPU 

requires to forward the command. If the time the CPU 
requires to forward a command is than greater than the 
noticeable threshold, then the transmit-first delay is 
noticeably worse than the parallel delay. In fact, the parallel 
delay is equal to the minimal possible destination delay, as 
the destination computer must process the output.  

Multi-Core Process-First Multi-Core Transmit-First Multi-Core Lazy Multi-Core Concurrent 
if master then proc input 
on N cores 

pro output on N cores 

trans output on N cores  

if master then proc input 
on N cores 

trans output on N cores 

proc output on N cores 

if master then proc input 
on N cores 

trans output on N cores 
while delay < noticeable 

proc output on N cores 

trans output on N cores 

if master then proc input 
on N cores 

trans output on N/2 cores 
AND proc output on other 
N/2 cores 

Figure 1. Pseudo-code for multi-core process-first, transmit-first, lazy, and concurrent scheduling policies on N-core processors
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Consider the parallel policy delay of the intermediate 
computer ߨ, which is equal to the time computer ߨ 
requires to forward the command to ߨାଵ, the next 
computer on the  path. In this case, the parallel delay is 
equal to the transmit-first delay since in both cases, the 
processing task does not interfere with the transmission 
task. Thus, the parallel delay is given by 

,ݐ݊݅
ோሺ݅, ሻߨ ൌ ,గೖݔ

ை்  ேூ,గೖݔ

ை் כ ,ߨሺݏ  ାଵሻߨ

As was the case with the destination delay, the parallel 
intermediate delay is as good as any single-core policy 
delay. In fact, the full model also shows that it can be 
significantly better when processing times are high. 
Moreover, the parallel intermediate delay is equal to the 
minimum possible delay because an intermediate computer 
must transmit the command to the next destination, and the 
delay captures the time requires for the transmission. Thus, 
overall, the model predicts that when multiple cores are 
available for scheduling, the parallel multi-core scheduling 
policy should always be used.  

IMPLEMENTATION 
The model has identified several factors that impact the 
response times provided by a scheduling policy, including 
CPU processing and transmission times, network card 
transmission times, network latencies, and number of cores. 
As these factors can change both during and between 
sessions, the optimal scheduling policy may also change. 
For this reason, we implemented a scheduler that can react 
to changes in the parameter values and automatically switch 
to the optimal policy. We do not have space to present its 
full implementation; instead, we focus on one key issue and 
its solution – other issues and the rationale for them are 
given in the dissertation on this topic [12].   

A key issue when comparing predicted performances for 
the scheduling policies is how the system decides which 
policy is optimal. The simplest approach is to define the 
optimal policy as the one whose average response time is 
noticeably better than that of all others. One issue with this 
approach is that there is no way to distinguish between 
response times of different users, which may be important. 
For instance, some users, and hence their response times, 
may be more important than others.  

The problem with the simplistic comparison arises because 
the response times are inherently partially ordered and 
external criteria must be used to create a total order. In 
general, infinitely many external criteria exist. We focus on 
only two: favoring important users and favoring local or 
remote response times. Their exact application depends on 
users’ response time requirements. Thus, what is needed is 
a user-defined function that accepts as parameters the 
response times of all policies, the list of inputting users, and 
the identities of all users, and returns a total performance 
order. Then, one policy is defined to be better than another 
if the function ranks the former higher than the latter. 

EVALUATION 
The model, policies, and the scheduler we have presented 
lead to two important questions. First, does the choice of 
scheduling policy noticeably impact performance in 
practical scenarios? Second, does the scheduler choose the 
optimal policy in these scenarios? To answer these 
questions, we must evaluate the model and the scheduler. 

Simulations vs. Experiments 
In general, in computer science, there are two possible ways 
to evaluate a system: simulations and experiments. 
Simulations estimate the performance of a system by using 
a model of the system. Compared to theoretical applications 
of the model, which give only trends and implications, 
simulations predict quantitative results in practical 
scenarios. Experiments, on the other hand, measure the 
actual performance of the system while it is being used. 

Ideally, experiments should be used to evaluate a system. 
Two issues may make it impractical to run experiments. 
One issue is repeatability: it may not be possible to ensure 
the same conditions across experiments. The other issue is 
resource availability: some experiments require a large 
number of computers that may not be available. When it is 
not practical to run experiments, simulations should be used 
instead. As they rely on models to simulate results, it is 
important to verify that these models accurately represent 
the system being evaluated. Once the simulations are 
validated, they may be used even when experiments are 
practical. The reason is that, in general, it is easier and 
quicker to setup and run simulations than it is experiments. 

Simulations 
To show practical impacts of the choice of scheduling 
policy and the benefits of the self-optimizing scheduler, we 
had to use simulations. The reason is that the choice of 
scheduling policy matters only when transmission costs are 
high, which implies large scenarios. Unfortunately we do 
not have enough computers to perform large scale 
experiments – we only have ten in our lab. One solution is 
to use public clusters, such as PlanetLab and Amazon’s 
EC2. However, these clusters do not provide controls 
necessary for repeatability. For instance, the loads on the 
machines vary because they are shared with other users of 
the cluster, and there is no way to ensure always using use 
of the same working set of machines.  

It may seem that we need to perform two different sets 
simulations, one to evaluate the impact of scheduling 
policies on response times and another to test whether or 
not the scheduler switches to the optimal policy. However, 
in this case, it is possible to perform both simultaneously. 
The reason is that the scheduler must anyway evaluate the 
impact of scheduling policy on response times before it 
decides which policy to use. Therefore, as we present the 
results of the simulations, we first present the impact of 
scheduling policy on response times and then how the 
scheduler chooses the optimal policy. 
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Simulation Setup 
To simulate performance in practical circumstances, we 
consider a scenario in which a PowerPoint presentation is 
being given to a large audience around the world. 
PowerPoint is a good choice of application for two reasons. 
First, it is perhaps the most popular business collaborative 
application today. Second, it has high transmission costs, 
which we need for our simulations, as mentioned above. 

To obtain realistic processing and transmission costs, we 
identified user-commands in logs of actual PowerPoint use. 
We analyzed recordings of two presentations. These 
recordings contain actual data and users’ actions – 
PowerPoint commands and slides. We assume that the data 
and users’ actions in the logs are independent of the number 
of collaborators and response times. We used these 
commands to perform small scale distributed PowerPoint 
experiments by replaying commands using built-in replay 
capabilities in our scheduler. We configured to system to 
collect parameters but not make any optimization decisions. 
After each experiment, we obtained the processing and 
transmission costs from the performance data file output by 
our system. To get costs for different machines, we 
repeated the procedure with four different source and 
destination computers: Core2 2.0GHz desktop; P4 1.7GHz 
desktop; P3 500MHz desktop; and 1.6GHz Atom netbook. 
For fear of having our measurements affected by other 
applications, we removed as many active processes as 
possible on each computer, which is a common approach in 
experiments comparing alternatives. Nevertheless, as LAN 
delays and CPU loads vary during an experiment, we 
performed each one ten times and averaged the values.  

Based on the published network latency data between 1740 
computers [13], we set the network latencies between all 
users equal to those between a random subset of the 
published data. One issue with randomly selecting the 
subset is whether the subset preserves properties, such as 
triangle inequality and latency distributions, of the entire 
set. Zhang et al. [17] analyzed random subsets taken from 
latencies measured between 3997 computers and found that 
they were representative of the overall measurements.  

As the lazy policy requires response time thresholds in 
order to decide how long processing can be delayed, we 
used the noticeable thresholds of 50ms, which we discussed 
earlier, for both local and remote response times. 

In the simulations, we consider a centralized-multicast 
architecture in which the presenter’s computer is the 
master. Also, we consider a multicast tree in which the 
presenter’s computer and a small subset of the other 
computers forward commands to all of the remaining 
computers. These remaining computers are evenly divided 
among the source and the forwarders. The source sends 
commands to the forwarders, and then the source and the 
forwarders send commands to their respective destinations. 
We fixed the latencies among the six forwarding computers 
to be low (i.e., 0ms). Such a communication architecture is 

similar to the one used by Webex. In Webex, a user joining 
a session connects to one of several infrastructure 
computers. These computers, which are connected by high-
bandwidth low-latency connections, serve as forwarders of 
commands. In our scenario, the presenter’s and the 
forwarding computers are like the dedicated Webex 
forwarders; however, unlike Webex forwarders, which only 
forward commands, they also process commands. Last, the 
computers are all using non-blocking communication.  

Multi-Core Results 
To evaluate the benefit of the self-optimizing system on 
multi-core computers, we simulated a scenario in which (a) 
there are 1200 users, (b) five computers in addition to the 
source act as forwarders, (c) the source and forwarders send 
commands to 199 other computers each, (d) all users are 
using Core2 desktops. The results are best understood as 
response time differences between policies. Thus, we 
compare lazy, transmit-first, and process-first policies 
against the parallel policy. 

The remote and local response times are shown in Table 2 
and Table 3, respectively. The parallel policy provides 
noticeably better remote response times than the process-
first policy to 999 of the 1199 audience members by as 
much as 311ms, while the remote response time differences 
to the remaining 200 users are not noticeable. Moreover, 
compared to the remote response times of the transmit-first 
policy, the parallel policy provides noticeably better 
response times to only five users (69.3ms) and provides 
unnoticeably different response times to the rest. The five 
users whose response times are improved are the 
forwarders. This makes sense as the processing on these 
computers is delayed until transmission completes when the 
transmit-first policy is used, while the processing is not 
delayed when the parallel policy is used. Finally, the 
parallel policy remote response times are the same as those 
of the lazy policy for 1198 users and not noticeably 
different the remaining user. The reason is that when non-
blocking communication is used and the lazy policy delays 
processing, the network card did not catch up complete 
transmitting while the CPU was processing the command – 
when transmission resumed, the network card was still busy 
with previous transmissions. Thus, the pause in the 
transmission did not affect remote response times of the 
downstream users. As for the local response times, those of 
the parallel policy are as good as, not noticeably better, and 
noticeably better than those of process-first, lazy, and 
transmit-first policies, respectively. 

Overall, the response times show a counter-intuitive result. 
When leveraging the network card processor, using a single 
core to perform the CPU tasks can provide unnoticeably 
different performance compared to using multiple cores 
even if processing and transmission times are high. Thus, in 
some scenarios, a single-core policy should be used when it 
offers the same performance as the parallel policy because 
all but one core will be free to perform other tasks.    
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The self-optimizing scheduler uses the predicted values to 
choose the policy that best meets the response time 
requirements. As mentioned above, these response time 
requirements are captured by the total order function. Based 
on the above results, regardless of the response time 
requirements, the scheduler would choose the lazy policy. 

Single-Core Results 
To evaluate the benefit of the self-optimizing system when 
devices only have single-cores, we simulated the same 
scenario as in the multi-core case with the following 
changes: (a) there are 600 instead of 1200 users, (b) the 
source still sends commands to five forwarders, (c) the 
source and the forwarders sends commands to 99 instead of 
199 other computers each, (d) the presenter is using a 
netbook, and (e) the remaining users are using a random 
mix of netbooks or P3 and P4 desktops. As before, the 
results are best understood as differences in response times. 
Thus, we compare the lazy policy response times against 
those of the other three single-core policies.  

The remote and local response time results are given in 
Table 4 and Table 5, respectively. Three main points can be 
extracted from the tables. First, compared to the lazy policy, 
the transmit-first and concurrent policies provide better 
remote response times to 407 users by as much as 240ms, 
which is noticeable. Moreover, compared to the process-
first policy, the lazy policy provides better response times 
to all but one user (604ms), which is also noticeable. By 
extension, the transmit-first and concurrent policies also 
offer noticeably better remote response time to all but one 
user compared to the process-first policy. Second, the local 
response times of the lazy policy are noticeably better than 
those of transmit-first and not noticeably worse than those 
of process-first (although they are not noticeably better than 
the concurrent local response times, they are in other 
simulations which we do have room to show). Third, for 
five users, the lazy remote response times are noticeably 
better (158ms) than those of transmit-first and concurrent. It 
turns out that four of these five users are one of the 
forwarders. Therefore, compared to the transmit-first and 
concurrent policies, the lazy policy is more fair to users 
whose computers are doing most of the work.  

The simulation results show that scheduling policies impact 
response times in at least some practical scenarios. Thus, 
depending on the total order function, the scheduler can 
choose the scheduling policy that provides the best response 
times. For instance, if the total order function chooses the 
system that provides the best absolute local response times, 
the scheduler would choose the process-first scheduling 
policy. However, if the function chooses the system that 
provides the best remote response times, the scheduler 
would choose the transmit-first (or concurrent) the 
concurrent scheduling policy. Finally, if the function 
chooses a system that provides the best remote response 
times without increasing the local response times more than 
what is noticeable, our scheduler would use the lazy policy. 

Validating Simulations 
As mentioned above, it is important to verify that the 
simulations are accurate. The validation requires running 
experiments and simulations for the same scenario and 
comparing the results. Unfortunately, as mentioned above, 
we cannot run experiments for large scenarios. This was the 
reason to use simulations in the first place. It seems that this 
is “a chicken and an egg” problem. Fortunately, even with 
as few as ten machines that we have, we can run some 
limited experiments. To do so, we use a virtualization-like 
approach in which we treat each user’s computer as a 
virtual computer that is mapped to one of the physical 
computers. One physical computer may have multiple 
virtual computers mapped to it. In fact, in experiments 
involving hundreds of users, there can be a large number of 
virtual computers mapped to a single physical computer 
since we have only ten of them. Using the limited 
experiments made possible with the virtualization approach, 
we were able to compare the simulated and actual 
performance for on both single-core and dual-core 
machines. We found that in all cases, the scheduling policy 
chosen by the scheduler was also the one that best satisfied 
the user’s response time requirements. 

DISCUSSION 
The evaluation of our system shows its practical benefits in 
realistic scenarios. It proves that for some applications, the 
self-optimizing scheduler is able to meet response time 

Response Time 
Differences  (ms) 

Transmit-First 
– Lazy 

Process-First 
– Lazy 

Concurrent 
– Lazy 

Max Difference 1.79 9.88 0 
Min Difference 69.3 311 28 

Num Users 
for Who the 

Difference is: 

0 0 1198 407 
5 999 0 5 
0 0 0 187 

1194 200 1 0 

Table 2. Remote response time (ms) differences between the 
lazy and concurrent, process-first, transmit-first policies. 

Lazy Transmit-First Process-First Concurrent 
9.88 78.9 9.88 59.7 

Table 3. Local response times (ms) of lazy process-first, 
transmit-first, and concurrent policies. 

Response Time 
Differences (ms) 

Transmit-First 
– Parallel 

Process-First 
– Parallel 

Lazy – 
Parallel 

Max Difference 158 604 158 
Min Difference -240 36 -240 

Num Users 
for Who the 

Difference is:

407 0 407 1198 
5 598 5 0 

187 0 187 0 
0 1 0 1 

Table 4. Remote response time (ms) differences between the 
parallel and concurrent, process-first, transmit-first policies.

Parallel Transmit-First Process-First Lazy 
107 177 58 118 

Table 5. Local response times (ms) of parallel, process-first, 
transmit-first, and lazy policies. 
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requirements better than existing systems. We do not claim 
that it does so for all applications. Developing such a 
framework and for all types of applications is difficult. The 
reason is that any framework designed to optimize other 
systems must be able to handle all salient features of these 
systems. Therefore, such a framework must be more 
complex than the systems it reconfigures. Since the design 
space of collaborative applications is complex, it is beyond 
the scope of a single work to create an optimizer for all of 
them. A practical alternative is to focus an important subset 
of applications, which is the approach we took. 

Scope 
Our work is motivated by three driving problems: a 
distributed PowerPoint presentation; a collaborative 
Checkers computer game; and instant messaging. They are 
important examples of real collaborative scenarios. 
Distributed presentations are becoming common, instant 
messaging is pervasive, and collaborative games, such as 
checkers, chess, and online poker, are extremely popular. In 
fact, by itself, distributed presentations are an important 
scenario as an entire industry has been created around them.  

Beyond the Scope 
The instances of target scenario applications that were 
available to us provided only coupling. In general, 
applications may have other functionality. While our model 
accounts only for coupling tasks, it can still be useful for 
predicting performance of application that have other tasks. 

Some applications, called thick-client systems [5], support 
local-only (or syntactic sugar) commands. An example is a 
game that lets users modify non-shared aspects of the game 
world. Our model can indirectly account for local-only 
commands as the cost of executing them is reflected in the 
cost of processing the shared commands. For example, if a 
user is entering more local-only commands than other 
users, then it appears to the model that the user has a 
computer that is slower than that of other computers. In 
addition, the model also handles awareness commands. 
From a general framework perspective, these commands are 
indistinguishable from shared user commands. By 
extension, the self-optimizing scheduler works for 
applications with awareness and local-only commands.  

Our work also accounts for some consistency maintenance 
schemes. For instance, operation transforms mechanisms 
may transform an incoming command to maintain 
consistency across computers. Our work can account for the 
time required for the transform by including that time in the 
processing time of the command.  

Our work can also indirectly apply to systems that transmit 
commands in batches even though our model assumes no 
batching. Two minor adjustments are required. First, 
transmission time is assigned to be equal to 1) zero for a 
command whose transmission is delayed because of 
batching and 2) the sum of transmission times of all batched 
commands for a command whose input triggers the batch 

transmission. Second, the remote response time of a 
command is adjusted by adding to it the time its 
transmission was delayed by the batching algorithm. 

Our model, however, does not account for concurrency 
control commands. The reason is that these mechanisms 
impose their own scheduling schemes. For instance, some 
schemes delay processing of a command until they can 
ensure that the command does not conflict with other 
commands. Others schemes handle a conflict after it occurs 
by undoing and then re-execute commands. These extra 
scheduling steps do not necessarily imply that our system 
will hurt performance when concurrency control 
mechanisms are in place. Further study is needed to 
determine what actually happens. Moreover, if it turns out 
that our system degrades performance of conflicting 
commands, the degradation has to be weighed against the 
improved performance of non-conflicting commands. This 
is especially important given that majority of commands do 
not conflict. In fact, in many scenarios, conflicts do not 
occur at all. For instance, they did not happen in the 
collaborations we logged. Also, in some scenarios, users do 
not care if conflicts occur or they rely on social protocols 
prevent them [6], so there is no need to handle them. 

Future Applicability 
Poor performance of collaborative systems today does not 
necessarily imply poor performance tomorrow. An 
important question is whether the self-optimizing scheduler 
will be useful in the future. For instance, it may appear that 
the choice of scheduling policy will not matter as all 
devices are becoming multi-core, in which case we the 
parallel policy can always be used. However, multiple cores 
are less power efficient which causes problems on mobile 
devices. As proof, consider the latest mobile devices, such 
as Apple’s iPhone 4 and iPad or Motorola’s Droid X. They 
have single-core processors. Moreover, even if a device has 
multiple-cores, using one core may be sufficient to perform 
collaboration tasks, leaving the other cores free to perform 
other tasks. Our scheduler will choose a single-core policy 
in this case. Thus, choice of single-core scheduling policies 
will continue to matter. 

Noticeable Response Time Differences 
When choosing the optimal policy, we use 50ms as a 
noticeable threshold because prior work has shown that it is 
noticeable. Also, it is the only noticeable threshold that has 
been reported. However, none of the prior work that studied 
these thresholds used distributed PowerPoint, distributed 
Checkers, or Instant Messaging. Hence, the results may not 
apply to these applications. More studies are needed to 
resolve this issue. For now, we are operating on the 
principle that when all else is equal, a system with response 
times that are 50ms better than those of others is superior. 

There is no guarantee that a noticeable improvement is 
always possible. Specifically, scheduling policy changes 
offer performance benefits when network and processor 
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resources are somewhat stressed. An important question is 
whether these conditions exist in all scenarios. While we 
expect that they do arise, further analysis of network and 
processor bottlenecks in real collaborative sessions is 
required to determine whether they actually occur. 

To the Developers 
We are not aware of exiting tools that improve response 
times by changing scheduling policies. Nevertheless, 
developers can still benefit from our work. They can use 
timing loops to measure all parameters in the model and use 
the model to predict response times for scheduling policies 
we studied. Then, they can enforce the policy that gives 
optimal performance by manually setting thread core/CPU 
affinities and controlling the order in which tasks execute. 

CONCLUSION 
This paper makes several contributions. At the highest 
level, it shows that it is possible to develop a self-
optimizing scheduler for collaborative systems. It presents 
an analytical model that can be used to guide optimization 
decisions. The model reflects software and hardware 
realities better than previous models by accounting for non-
blocking communication and multi-core processors. The 
paper also motivates and presents four scheduling policies 
that take advantage of parallelism. Three of these are 
existing policies in which blocking communication is 
replaced with non-blocking while still using a single 
processing core. The fourth is a variation of the 
concurrent non-blocking policy in which two instead of one 
CPU cores are used. Moreover, it shows that versions of the 
process-first, transmit-first, and lazy policies that use more 
than one processing core are not necessary. Finally, it 
presents new implementation issues that must be tackled in 
the creation of any self-optimizing systems. 

In the future, we plan to extend the design space of 
applications that can benefit from our scheduler. We will 
study the interplay of the scheduler and concurrency control 
scheduling schemes. In addition, we are interested in 
optimizing performance in virtual worlds, such as Second 
Life. We also plan to study and evaluate scheduling policies 
for collaborative systems that use other specialized 
processors, such as GPUs. Moreover, we plan to continue to 
study avenues for self-optimization. It would be interesting 
to implement systems that self-optimize the communication 
architecture. Also, Wolfe et al. [15] have a system that 
automatically at runtime switches processing architectures 
to improve performance. It would be useful to create a 
single system that optimizes processing and communication 
architectures, as well as, scheduling policies.  
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