
Scheduling in Variable-Core Collaborative Systems
Sasa Junuzovic

Microsoft Research
Redmond, WA 98052, USA

sasa.junuzovic@microsoft.com

Prasun Dewan
University of North Carolina at Chapel Hill

Chapel Hill, NC 27599, USA
dewan@cs.unc.edu

ABSTRACT
The performance of a collaborative system depends on how
two mandatory collaborative tasks, processing and
transmission of user commands, are scheduled. We have
developed multiple policies for scheduling these tasks on
computers that have (a) one processing element on the
network interface card and (b) one or more processing cores
on the CPU. To compare these policies, we have a
developed a formal analytical model that predicts their
performance. It shows that the optimal scheduling policy
depends on several factors including the number of cores
that is available. We have implemented a system that
supports all of the policies and performed experiments to
validate the formal model. This system is a component of a
self-optimizing scheduler we have developed that improves
response times by automatically choosing the scheduling
policy based on number of cores and other factors.

Author Keywords
Optimization; scheduling; multi-core; analytical model.

ACM Classification Keywords
C.2.4. [Computer-Communication Networks]: Distributed
Systems – distributed applications, client/server; C.4
[Performance of Systems] Performance Attributes.

General Terms
Algorithms, Measurement, Performance, Experimentation.

INTRODUCTION
Performance is a critical success factor in the world of
collaborative applications. If an application does not
respond to actions by a user quickly or notify the user of
actions of others in a timely fashion, the user may get
frustrated and quit the session.

Several performance metrics have been identified, such as
local [14] and remote [4] response times, throughput [5],
jitter [7], bandwidth [8], and task completion time [2].
While all of them are useful, we focus on response times.
Response times depend on a variety of factors such as

processing [3] and communication [10] architecture and
scheduling of collaborative tasks [11]. We focus on the
scheduling of tasks for processing and transmission of
commands, both of which are necessary for coupling.

Previous work has identified and evaluated several different
policies for scheduling these tasks [11]. However, it has
assumed that a single processing element is used to perform
all aspects of these tasks. We have developed four
variations of these policies, which leverage parallelism on
modern devices offered by multiple CPU cores and the
processor on the network interface card. To compare these
four policies, we have developed a formal evaluation
model, which predicts the local and remote response times
of these policies. This model is a component of a self-
optimizing scheduler we have developed that improves
response times by automatically choosing the scheduling
policy based on number of cores and other factors.

A flavor of the performance improvements the optimizer
can provide is given in Table 1. The table shows average
response times of five users with and without the optimizer.
For four of them, performance is better with than without
the system, by 99ms, 56ms, 101ms, and 99ms. More
importantly, the improvements are noticeable to the users.
In particular, human-perception studies by Youmans [16]
and Jay et al. [9] have shown that people can notice changes
of 50ms in local and remote response times, respectively.

The rest of this paper is organized as follows. First, we
consider background work that forms the basis of our
research. Then, we discuss parallelism in modern machines
and aspects of it that a scheduling system can exploit.
Following this, we present four parallelizing scheduling
policies and the analytical model for them. Next, we outline
implementation of our system and describe the simulations
and experiments we performed to evaluate it. Then, we
present discuss the broader impact of our work. Finally, we
end with conclusions and directions for future work.

BACKGROUND WORK
The tasks in a collaborative application are determined by
the functionality it provides. By definition, all collaborative

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW 2011, March 19–23, 2011, Hangzhou, China.
Copyright 2011 ACM 978-1-4503-0556-3/11/03...$10.00.

Response Time (ms) User1 User2 User3 User4 User5

Non-optimized 459 426 473 510 564

Optimized 360 370 372 411 623

 Table 1. Average response times of five users in a
collaborative session with and without optimized scheduling

543

applications must couple the users. By extension, the tasks
that provide coupling are mandatory. There are two such
tasks, those for processing and transmitting user commands.
In general, an application may have tasks related to
awareness, concurrency control, and consistency
maintenance mechanisms. While all of these mechanisms
are important, they are in general optional. Our work
focuses on the scheduling of the mandatory tasks.

Because our work focuses on the mandatory tasks, the
degree to which it applies in applications with optional
functionality is limited. For instance, World of Warcraft has
concurrency control. Thus, our work may not correctly
predict its performance when conflicts occur. However,
when there are no conflicts, our work may still apply. We
will return to the issue of scheduling optional tasks in more
detail in the discussion section. Meanwhile, we focus on
scheduling of the mandatory tasks whose nature depends on
the processing [3] and communication [10] architectures.

Processing Architecture
Two main processing architectures have been used in the
construction of collaborative systems: centralized (client-
server) replicated (peer-to-peer). In both cases, it is
assumed that the shared application is logically divided into
separate user-interface and processing components. The
user-interface component transforms user input into input
commands and sends these commands to the program
component. Conversely, it processes output commands that
it receives from the program component and transforms the
result into updates to the display. The program component
processes user input by converting input commands to
output commands. The user-interface component is
replicated on each user’s computer and allows a user to
manipulate application state not shared with the other users.
The program component is logically shared by all users and
may be physically centralized or replicated, depending on
the processing architecture. Regardless, each user interface
is mapped to exactly one program component.

In the centralized architecture, all of the user-interface
components are mapped to a single program component
running on one of the user’s computers. The computer
running the program component is called the master and all
of the other computers are called slaves. In the replicated
architecture, each user-interface component is mapped to
the program component running on the local computer.
Whenever a master receives a command from the local
user, it sends the command to all of the other computers,
thereby ensuring the program components on different
masters are kept in sync.

Communication Architecture
Regardless of which processing architecture is used, the
master computers transmit commands to all other
computers. If commands are large or the number of users is
high, the transmission costs can be high.

An important question when transmission costs are high is
whether a master computer uses unicast or multicast to
communicate with other computers. The idea of multicast
requires the construction, for each source of messages, a
multicast overlay that defines the paths a message takes to
reach the destinations. In this paper, we make two
assumptions regarding multicast. First, because IP-multicast
is not widely deployed, we assume an application-layer
multicast in which end-hosts form the overlay. Second, as
in peer-to-peer file sharing systems, we assume that only
the users’ computers can be used in the overlay.

Scheduling
Both the processing and the communication architecture
mandate specific tasks that the users’ devices must perform.
The processing architecture determines which computers
process input commands in addition to processing outputs.
The communication architecture, on the other hand, dictates
the destinations to which a computer transmits commands.
The number of such destinations determines the
significance of the transmission cost. In the unicast case,
this cost is negligible on the destination computers.

The order in which a computer carries out the processing
and transmission tasks can impact response times. Four
main policies have been identified by Junuzovic and Dewan
to schedule these tasks [11]. Three of these are
straightforward: (a) process-first, which completes the
processing task before starting the transmission task, (b)
transmit-first, which does the reverse, and (c) concurrent,
which creates a separate thread for each of these tasks and
schedules these threads in a round-robin fashion.

The fourth, called lazy, [11] gives precedence to the
processing task, but delays its execution and allows the
transmission task to run during this delay if the resulting
increase in local response times is not noticeable. The
reason for delaying processing is that a part of the
transmission task can run earlier, thereby noticeably
improving remote response times of some users. By
definition, lazy dominates process-first. Thus, we ignore
process-first in the rest of the related work discussion.

Junuzovic and Dewan have developed a formal model to
compare the other three policies [11]. Using the model, they
show that each of these three policies can offer some users
noticeably better response times than the other two policies.
Their model assumes (a) a single-core CPU, (b) no
concurrent commands, (c) no type-ahead, (d) no batch
transmission, and (e) blocking communication. In blocking
communication, after a CPU thread sends a message to the
network interface card, it bocks until the message is
transmitted to the network.

We extend prior work in four ways. We identify parallelism
in modern computing devices that a scheduling system can
use. We motivate and present four scheduling policies that
take advantage of this parallelism. Three of these are
existing policies in which blocking communication is

544

replaced with non-blocking while still using a single
processing core. The fourth is a variation of the
concurrent non-blocking policy in which two instead of one
CPU cores are used. We develop an analytical model that
extends the previous model by accounting for the
parallelism. Finally, we present a self-optimizing scheduler
that automatically chooses the optimal scheduling policy.

SOURCES OF PARALLELISM
Modern computing devices have multiple general-purpose
and specialized processing units that can be used in parallel.
For example, multi-core CPUs have become common. The
parallelism they offer can significantly improve
performance. As a result, many applications that were
optimized for the traditional single-core CPUs are now
being redesigned to leverage multi-core CPUs.

Devices today also have a specialized processor on the
network interface card that is capable of executing most of
the network stack. For instance, some network cards
execute the full TCP/IP protocol. With such cards, the CPU
is relieved of dealing with the TCP/IP algorithm, and thus,
has more time to perform other tasks. The parallel
processing offered by the network card processor is useful
for any distributed system as some of the transmission task
can be offloaded onto the network card. Non-blocking
communication was invented for this reason.

Graphical processing units (GPUs) can also perform some
tasks on behalf of the CPU. Since GPUs are not general-
purpose, they cannot execute all tasks. However, for tasks
they can execute, such as array operations, they offer
excellent performance – much better than that of a CPU.
Thus, a useful idea is to offload computation from the CPU
to the GPU, which is often done in graphics.

One of the purposes of this paper is to encourage designers
of collaborative systems to think about and exploit the
parallelism in modern devices. For example, collaborative
tasks can be executed in parallel on multi-core devices.
Also, while non-blocking communication is used in some
systems, the benefits it offers were never formally studied
or systematically exploited. As mentioned above, Junuzovic
and Dewan [11] assumed blocking communication in their
analytical model, which logically groups the CPU and the
network card processor into a single processing unit. Also,
it would be useful to use GPUs for performing parts of
input processing, not just output rendering, tasks.

EXPLOTING PARALLELISM
In this paper, we exploit parallelism in two ways. We model
and analyze the effects of executing the processing and
transmission tasks in parallel on the CPU cores and the
network card processor. We leave the use of the GPU and
other processors as future work.

Non-Blocking Communication
In order to take advantage of non-blocking communication,
we must dissect the procedure a computer takes to transmit

a command to a destination. The procedure has two steps.
First, the CPU reads command data from memory and then
writes it to a location in memory which it shares with the
network card. Second, the network card reads the data from
the shared memory location and then transmits it by placing
it on the physical wire. Thus, there are two transmission
tasks: the CPU and the network card transmission task. The
difference between the blocking and non-blocking
communication is whether or not the CPU transmission task
blocks until the network card transmission task completes.

Typically, the network card processor is slower than the
CPU. In all of our experiments, the CPU transmission task
completed at least two times and usually more than ten
faster than the network card transmission task. Thus, it may
seem that non-blocking communication should always be
used because it allows the CPU to perform other tasks while
the network card is transmitting. However, a subtle but an
important issue arises when a large command is transmitted
to a large number of destinations in a non-blocking fashion
– the network card buffers can overflow! Hence, there are
scenarios in which blocking communication should be used
instead of non-blocking communication. In this paper, we
assume that network card buffer overflow does not occur.

Since the CPU transmission times are dominated by those
of the network card, it may seem unnecessary to consider
the impact of CPU transmission on performance.
Traditionally, the impact has, in fact, been neglected. The
transmission time of a command has been calculated as
simply “size of command/bandwidth,” which considers
only the network card. This calculation is invalid for end-
user computers because it does not account for the CPU
transmission costs. In particular, before the command
reaches the network interface, the operating system must
traverse the network stack and copy data buffers along the
way, which takes time. Moreover, the operating system
must perform these steps for each destination. Study by
Abdelkhalek et al. [1] of the server for Quake, a popular
multi-player game, found that CPU transmission costs can
be significant in practice. They found that the server spent
50% of CPU time on transmitting commands to clients.

Formal Analysis
We have developed a formal analytical model that accounts
for non-blocking communication. It supports centralized
and replicated processing architectures with unicast and
multicast communication architectures. For a given
processing and communication architecture combination,
the model predicts response times of different scheduling
policies. We do not derive the complete model here because
of space limits; it is presented in the doctoral dissertation on
this work [12]. Instead, we give enough detail to show its
benefits compared to the Junuzovic and Dewan model [11].

Let us consider the remote response times of a slave user
for command entered by the master user in a centralized-
multicast architecture. As we are currently analyzing the
parallelism between the CPU and the network card, suppose

545

that all devices have single-cores. To reach a particular
user’s computer, which we refer to as the destination
computer, the command must travel from the source to the
destination along some path. The path may consist of
additional computers. We refer to the source computer and
these additional computers as intermediate computers. The
terms destination and intermediate are relative to a
particular path. An intermediate computer on one path is a
destination computer on a different path as all users see the
output of an input command. Let ߨ denote the path from the
source to the destination, ݉ the number of computers on the
path, and ߨ, 1 ݇ ݉, the ݇௧ computer on the path ߨ,
where ߨଵ is the source and ߨ the destination.

The remote response time of command ݅ to computer ݆
along path ߨ is given by

,݁ݐ݉݁ݎ ൌ ݀ሺߨ, ାଵሻߨ
ିଵ

ୀଵ
 ,ሺ݅ݐ݊݅ ሻߨ

ିଵ

ୀଵ
 ,ሺ݅ݐݏ݁݀ ሻߨ

where ݀ሺߨ, ାଵሻ is the network latency between the ݇௧ߨ
and ݇ 1௦௧ computers on path ݐ݊݅ ,ߨሺ݅, ሻ is the delayߨ
command ݅ experiences on the ݇௧ intermediate computer
on the path, and ݀݁ݐݏሺ݅, ݅ ሻ is the delay commandߨ
experiences on the destination computer. The destination
and intermediate computers contribute different delays
because the former contributes to the remote response time
of the local user while the latter contribute to the remote
response time of a remote user. This results in a
fundamental difference between the equations for the
intermediate and destination computers. In the case of an
intermediate computer, we must determine when the
computer transmits to the downstream computer. In the
case of the destination computer, we must determine when
the input and output processing complete. While the
network latencies are independent of scheduling policy and
whether or not non-blocking communication is used, the
intermediate and destination delays are not. We present the
benefit of non-blocking communication with the transmit-
first policy; the full model shows the benefit for all policies.

Consider first the transmit-first delay of the destination
computer ߨ when blocking communication is used. In
general, a destination computer may also have to forward
commands as it may be an intermediate computer on a
different path. Thus, the delay of the destination computer
depends on the number of computers to which it forwards
commands because it must first transmit a command to all
of them before processing it. When blocking
communication is used, transmitting a message to a
destination means having to place the entire message on the
physical wire. Thus, the transmit time is equal to the CPU
transmit time plus the network card transmit time. We
denote the CPU and network card output transmit times of
computer ݆ by ݔ,

ை் and ݔேூ,
ை், respectively. Thus,

the destination delay is given by

,గݐݏ݁݀
ைሺ݅, ሻߨ ൌ ቀݔ,గ

ை் ேூ,గݔ

ை்ቁ כ ݂ܽ݊గ
 ,గ

ை்

where ,
ை் and ݂ܽ݊ denote the time computer ݆ requires

to process output to command ݅ and the number of
destinations to which it forwards commands.

When non-blocking communication is used, the CPU and
the network card work in parallel once the CPU transmits to
the first destination. The above equation, however, does not
capture the parallelism. In particular, with non-blocking
communication, the destination delay does not depend on
the network card transmission time. The delay is given by

,గݐݏ݁݀
ேைேைሺ݅, ሻߨ ൌ ,గݔ

ை் כ ݂ܽ݊గ ,గ
ை்

As the two equations show, non-blocking delay is
ேூ,గݔ

ை் כ ݂ܽ݊గ less than the blocking delay. Thus, if the

total network card transmission time is high, then non-
blocking communication will offer noticeably better
response times than blocking communication.

Consider now the transmit-first delay of intermediate
computer ߨ. In this case, the delay is equal to the time the
computer requires to transmit the command to ߨାଵ, the
next computer on the path. When blocking communication
is used, the delay is given by

,గೖݐ݊݅
ைሺ݅, ሻߨ ൌ ቀݔ,గೖ

ை் ேூ,గೖݔ

ை்ቁ כ ,ߨሺݏ ାଵሻߨ

where ݏሺߨ, ାଵߨ ାଵሻ denote the position of computerߨ
in computer ߨ’s list of destinations.

When non-blocking communication is used, the delay is
lower because the CPU is faster than the network card.
Thus, once the CPU transmits to the first destination, the
time the CPU requires to transmit to the remaining
destinations will overlap with the network card
transmission time. Thus, the non-blocking delay is given by

,గೖݐ݊݅
ேைேைሺ݅, ሻߨ ൌ ,గೖݔ

ை் ேூ,గೖݔ

ை் כ ,ߨሺݏ ାଵሻߨ

As the intermediate delay equations show, the non-blocking
delay is ݔேூ,గ

ை் כ ሺݏሺߨ, ାଵሻߨ െ 1ሻ lower than the

blocking delay. Thus, if the number of destinations is large,
the time the CPU requires to transmit a command to all of
them can be high. In this case, the non-blocking delay is
noticeably better than the blocking delay.

The above discussion illustrates two results. First, the
existing model cannot be used to accurately predict
response times when non-blocking communication is used.
Second, the new model is capable of making response time
predictions with non-blocking communication. From now
on, we assume non-blocking communication in all policies.

Parallel Multi-Core Scheduling Policy
As the above discussion shows, when non-blocking
communication is used, only partial control of scheduling is
possible. Specifically, the network card transmission task is
not schedulable – it always follows the CPU transmission
task. Fortunately, this does not affect the control over the
scheduling of CPU tasks.

546

As mentioned before, prior work has studied four different
single-core scheduling policies: process-first, transmit-first,
lazy, and concurrent. Each of these policies has a multi-core
equivalent. Their pseudo-code for a centralized-multicast
architecture is given in Figure 1. Regardless of policy, the
master must process an input before processing and
transmitting the corresponding output. Thus, the first step is
always to process the input on all cores if the computer is
the master. To process and transmit the output, the multi-
core equivalents of the sequential schemes simply use all
cores for one and then for the other task. The lazy policy is
more complex. It delays processing while the delay is not
noticeable. During the delay, it transmits. If transmission
does not complete before processing starts, it is completed
after processing completes. Thus, the multi-core equivalent
of lazy delays the processing task on all cores. Finally, the
multi-core equivalent of the concurrent policy uses half of
the cores for one and half of the cores for the other task.

There are two important issues with multi-core scheduling
policies. The first issue is whether a task can be parallelized
on multiple cores. From a general framework perspective,
the processing task is opaque – hence, the policies cannot
parallelize it explicitly. The CPU transmission task, on the
other hand, is parallelizable by nature. For example, two
cores can transmit to two different destinations in parallel.
More importantly, as the communication architecture
defines the transmission tasks on each computer, the
scheduling policy used by the framework can split the
transmission task among multiple cores.

The second issue is whether or not it is beneficial to
parallelize a task on multiple cores. From the point of view
of predicting performance, it is in fact not beneficial to
parallelize the transmission task. The reason is that when
multiple cores perform a send call, the operating system can
service these calls in an arbitrary order. Thus, there is no
guarantee of the order in which the operating system will
queue messages for transmission by the network card. As a
result, it is difficult to predict when a message is actually
transmitted to, and therefore received by, a destination. In
addition, parallelizing the transmission task is also not
beneficial from the perspective of optimizing response
times. As one core is sufficient to saturate the network card,
executing the transmission task in parallel on multiple cores
will not improve remote response times.

It is still beneficial to carry out the processing and
transmission tasks in parallel on different cores. The
reasons are that with that policy (a) the CPU transmission

times does not impact the response times to the local user
and (b) the processing time does impact the response times
of the remote users to which the computer transmits. We
refer to such scheduling as the parallel multi-core
scheduling policy. It is like the multi-core concurrent policy
except that it uses only one core for the processing task and
only one core for the transmission task.

Since we cannot explicitly parallelize the processing task
and parallelizing the transmission task makes it difficult to
predict performance, our self-optimizing system does not
support the multi-core versions of the process-first,
transmit-first, and lazy policies. The only multi-core policy
it supports is the parallel policy.

Formal Analysis
Our formal model is able to account for the parallelism
offered by multiple cores. As above, due to space
constraints, we present only a flavor of it. We give
sufficient detail to demonstrate the benefits of the multi-
core parallel policy over other (single-core) policies.

Let us consider again the remote response times of a slave
user for commands entered by the master user in a
centralized-multicast architecture. Suppose that each
machine has a multi-core CPU. Moreover, suppose that
non-blocking communication is used. As explained earlier,
the response time is a sum of the network delays,
intermediate computer delays, and the destination delay
along the path from the source to the destination. The
network delays are independent of scheduling policy, while
the intermediate and destination computer delays are not.

Consider first the parallel policy delay of the destination
computer ߨ. With the parallel scheduling policy, the
transmission and processing tasks are performed by
different cores. Therefore, the delay is a function of only
the processing times and is given by

,ݐݏ݁݀
ோሺ݅, ሻߨ ൌ ,గ

ை்

Compared to the transmit-first destination delay with non-
blocking communication derived earlier, the parallel delay
is ݔ,గ

ூே כ ݂ܽ݊గ lower, which is the time the CPU

requires to forward the command. If the time the CPU
requires to forward a command is than greater than the
noticeable threshold, then the transmit-first delay is
noticeably worse than the parallel delay. In fact, the parallel
delay is equal to the minimal possible destination delay, as
the destination computer must process the output.

Multi-Core Process-First Multi-Core Transmit-First Multi-Core Lazy Multi-Core Concurrent
if master then proc input
on N cores

pro output on N cores

trans output on N cores

if master then proc input
on N cores

trans output on N cores

proc output on N cores

if master then proc input
on N cores

trans output on N cores
while delay < noticeable

proc output on N cores

trans output on N cores

if master then proc input
on N cores

trans output on N/2 cores
AND proc output on other
N/2 cores

Figure 1. Pseudo-code for multi-core process-first, transmit-first, lazy, and concurrent scheduling policies on N-core processors

547

Consider the parallel policy delay of the intermediate
computer ߨ, which is equal to the time computer ߨ
requires to forward the command to ߨାଵ, the next
computer on the path. In this case, the parallel delay is
equal to the transmit-first delay since in both cases, the
processing task does not interfere with the transmission
task. Thus, the parallel delay is given by

,ݐ݊݅
ோሺ݅, ሻߨ ൌ ,గೖݔ

ை் ேூ,గೖݔ

ை் כ ,ߨሺݏ ାଵሻߨ

As was the case with the destination delay, the parallel
intermediate delay is as good as any single-core policy
delay. In fact, the full model also shows that it can be
significantly better when processing times are high.
Moreover, the parallel intermediate delay is equal to the
minimum possible delay because an intermediate computer
must transmit the command to the next destination, and the
delay captures the time requires for the transmission. Thus,
overall, the model predicts that when multiple cores are
available for scheduling, the parallel multi-core scheduling
policy should always be used.

IMPLEMENTATION
The model has identified several factors that impact the
response times provided by a scheduling policy, including
CPU processing and transmission times, network card
transmission times, network latencies, and number of cores.
As these factors can change both during and between
sessions, the optimal scheduling policy may also change.
For this reason, we implemented a scheduler that can react
to changes in the parameter values and automatically switch
to the optimal policy. We do not have space to present its
full implementation; instead, we focus on one key issue and
its solution – other issues and the rationale for them are
given in the dissertation on this topic [12].

A key issue when comparing predicted performances for
the scheduling policies is how the system decides which
policy is optimal. The simplest approach is to define the
optimal policy as the one whose average response time is
noticeably better than that of all others. One issue with this
approach is that there is no way to distinguish between
response times of different users, which may be important.
For instance, some users, and hence their response times,
may be more important than others.

The problem with the simplistic comparison arises because
the response times are inherently partially ordered and
external criteria must be used to create a total order. In
general, infinitely many external criteria exist. We focus on
only two: favoring important users and favoring local or
remote response times. Their exact application depends on
users’ response time requirements. Thus, what is needed is
a user-defined function that accepts as parameters the
response times of all policies, the list of inputting users, and
the identities of all users, and returns a total performance
order. Then, one policy is defined to be better than another
if the function ranks the former higher than the latter.

EVALUATION
The model, policies, and the scheduler we have presented
lead to two important questions. First, does the choice of
scheduling policy noticeably impact performance in
practical scenarios? Second, does the scheduler choose the
optimal policy in these scenarios? To answer these
questions, we must evaluate the model and the scheduler.

Simulations vs. Experiments
In general, in computer science, there are two possible ways
to evaluate a system: simulations and experiments.
Simulations estimate the performance of a system by using
a model of the system. Compared to theoretical applications
of the model, which give only trends and implications,
simulations predict quantitative results in practical
scenarios. Experiments, on the other hand, measure the
actual performance of the system while it is being used.

Ideally, experiments should be used to evaluate a system.
Two issues may make it impractical to run experiments.
One issue is repeatability: it may not be possible to ensure
the same conditions across experiments. The other issue is
resource availability: some experiments require a large
number of computers that may not be available. When it is
not practical to run experiments, simulations should be used
instead. As they rely on models to simulate results, it is
important to verify that these models accurately represent
the system being evaluated. Once the simulations are
validated, they may be used even when experiments are
practical. The reason is that, in general, it is easier and
quicker to setup and run simulations than it is experiments.

Simulations
To show practical impacts of the choice of scheduling
policy and the benefits of the self-optimizing scheduler, we
had to use simulations. The reason is that the choice of
scheduling policy matters only when transmission costs are
high, which implies large scenarios. Unfortunately we do
not have enough computers to perform large scale
experiments – we only have ten in our lab. One solution is
to use public clusters, such as PlanetLab and Amazon’s
EC2. However, these clusters do not provide controls
necessary for repeatability. For instance, the loads on the
machines vary because they are shared with other users of
the cluster, and there is no way to ensure always using use
of the same working set of machines.

It may seem that we need to perform two different sets
simulations, one to evaluate the impact of scheduling
policies on response times and another to test whether or
not the scheduler switches to the optimal policy. However,
in this case, it is possible to perform both simultaneously.
The reason is that the scheduler must anyway evaluate the
impact of scheduling policy on response times before it
decides which policy to use. Therefore, as we present the
results of the simulations, we first present the impact of
scheduling policy on response times and then how the
scheduler chooses the optimal policy.

548

Simulation Setup
To simulate performance in practical circumstances, we
consider a scenario in which a PowerPoint presentation is
being given to a large audience around the world.
PowerPoint is a good choice of application for two reasons.
First, it is perhaps the most popular business collaborative
application today. Second, it has high transmission costs,
which we need for our simulations, as mentioned above.

To obtain realistic processing and transmission costs, we
identified user-commands in logs of actual PowerPoint use.
We analyzed recordings of two presentations. These
recordings contain actual data and users’ actions –
PowerPoint commands and slides. We assume that the data
and users’ actions in the logs are independent of the number
of collaborators and response times. We used these
commands to perform small scale distributed PowerPoint
experiments by replaying commands using built-in replay
capabilities in our scheduler. We configured to system to
collect parameters but not make any optimization decisions.
After each experiment, we obtained the processing and
transmission costs from the performance data file output by
our system. To get costs for different machines, we
repeated the procedure with four different source and
destination computers: Core2 2.0GHz desktop; P4 1.7GHz
desktop; P3 500MHz desktop; and 1.6GHz Atom netbook.
For fear of having our measurements affected by other
applications, we removed as many active processes as
possible on each computer, which is a common approach in
experiments comparing alternatives. Nevertheless, as LAN
delays and CPU loads vary during an experiment, we
performed each one ten times and averaged the values.

Based on the published network latency data between 1740
computers [13], we set the network latencies between all
users equal to those between a random subset of the
published data. One issue with randomly selecting the
subset is whether the subset preserves properties, such as
triangle inequality and latency distributions, of the entire
set. Zhang et al. [17] analyzed random subsets taken from
latencies measured between 3997 computers and found that
they were representative of the overall measurements.

As the lazy policy requires response time thresholds in
order to decide how long processing can be delayed, we
used the noticeable thresholds of 50ms, which we discussed
earlier, for both local and remote response times.

In the simulations, we consider a centralized-multicast
architecture in which the presenter’s computer is the
master. Also, we consider a multicast tree in which the
presenter’s computer and a small subset of the other
computers forward commands to all of the remaining
computers. These remaining computers are evenly divided
among the source and the forwarders. The source sends
commands to the forwarders, and then the source and the
forwarders send commands to their respective destinations.
We fixed the latencies among the six forwarding computers
to be low (i.e., 0ms). Such a communication architecture is

similar to the one used by Webex. In Webex, a user joining
a session connects to one of several infrastructure
computers. These computers, which are connected by high-
bandwidth low-latency connections, serve as forwarders of
commands. In our scenario, the presenter’s and the
forwarding computers are like the dedicated Webex
forwarders; however, unlike Webex forwarders, which only
forward commands, they also process commands. Last, the
computers are all using non-blocking communication.

Multi-Core Results
To evaluate the benefit of the self-optimizing system on
multi-core computers, we simulated a scenario in which (a)
there are 1200 users, (b) five computers in addition to the
source act as forwarders, (c) the source and forwarders send
commands to 199 other computers each, (d) all users are
using Core2 desktops. The results are best understood as
response time differences between policies. Thus, we
compare lazy, transmit-first, and process-first policies
against the parallel policy.

The remote and local response times are shown in Table 2
and Table 3, respectively. The parallel policy provides
noticeably better remote response times than the process-
first policy to 999 of the 1199 audience members by as
much as 311ms, while the remote response time differences
to the remaining 200 users are not noticeable. Moreover,
compared to the remote response times of the transmit-first
policy, the parallel policy provides noticeably better
response times to only five users (69.3ms) and provides
unnoticeably different response times to the rest. The five
users whose response times are improved are the
forwarders. This makes sense as the processing on these
computers is delayed until transmission completes when the
transmit-first policy is used, while the processing is not
delayed when the parallel policy is used. Finally, the
parallel policy remote response times are the same as those
of the lazy policy for 1198 users and not noticeably
different the remaining user. The reason is that when non-
blocking communication is used and the lazy policy delays
processing, the network card did not catch up complete
transmitting while the CPU was processing the command –
when transmission resumed, the network card was still busy
with previous transmissions. Thus, the pause in the
transmission did not affect remote response times of the
downstream users. As for the local response times, those of
the parallel policy are as good as, not noticeably better, and
noticeably better than those of process-first, lazy, and
transmit-first policies, respectively.

Overall, the response times show a counter-intuitive result.
When leveraging the network card processor, using a single
core to perform the CPU tasks can provide unnoticeably
different performance compared to using multiple cores
even if processing and transmission times are high. Thus, in
some scenarios, a single-core policy should be used when it
offers the same performance as the parallel policy because
all but one core will be free to perform other tasks.

549

The self-optimizing scheduler uses the predicted values to
choose the policy that best meets the response time
requirements. As mentioned above, these response time
requirements are captured by the total order function. Based
on the above results, regardless of the response time
requirements, the scheduler would choose the lazy policy.

Single-Core Results
To evaluate the benefit of the self-optimizing system when
devices only have single-cores, we simulated the same
scenario as in the multi-core case with the following
changes: (a) there are 600 instead of 1200 users, (b) the
source still sends commands to five forwarders, (c) the
source and the forwarders sends commands to 99 instead of
199 other computers each, (d) the presenter is using a
netbook, and (e) the remaining users are using a random
mix of netbooks or P3 and P4 desktops. As before, the
results are best understood as differences in response times.
Thus, we compare the lazy policy response times against
those of the other three single-core policies.

The remote and local response time results are given in
Table 4 and Table 5, respectively. Three main points can be
extracted from the tables. First, compared to the lazy policy,
the transmit-first and concurrent policies provide better
remote response times to 407 users by as much as 240ms,
which is noticeable. Moreover, compared to the process-
first policy, the lazy policy provides better response times
to all but one user (604ms), which is also noticeable. By
extension, the transmit-first and concurrent policies also
offer noticeably better remote response time to all but one
user compared to the process-first policy. Second, the local
response times of the lazy policy are noticeably better than
those of transmit-first and not noticeably worse than those
of process-first (although they are not noticeably better than
the concurrent local response times, they are in other
simulations which we do have room to show). Third, for
five users, the lazy remote response times are noticeably
better (158ms) than those of transmit-first and concurrent. It
turns out that four of these five users are one of the
forwarders. Therefore, compared to the transmit-first and
concurrent policies, the lazy policy is more fair to users
whose computers are doing most of the work.

The simulation results show that scheduling policies impact
response times in at least some practical scenarios. Thus,
depending on the total order function, the scheduler can
choose the scheduling policy that provides the best response
times. For instance, if the total order function chooses the
system that provides the best absolute local response times,
the scheduler would choose the process-first scheduling
policy. However, if the function chooses the system that
provides the best remote response times, the scheduler
would choose the transmit-first (or concurrent) the
concurrent scheduling policy. Finally, if the function
chooses a system that provides the best remote response
times without increasing the local response times more than
what is noticeable, our scheduler would use the lazy policy.

Validating Simulations
As mentioned above, it is important to verify that the
simulations are accurate. The validation requires running
experiments and simulations for the same scenario and
comparing the results. Unfortunately, as mentioned above,
we cannot run experiments for large scenarios. This was the
reason to use simulations in the first place. It seems that this
is “a chicken and an egg” problem. Fortunately, even with
as few as ten machines that we have, we can run some
limited experiments. To do so, we use a virtualization-like
approach in which we treat each user’s computer as a
virtual computer that is mapped to one of the physical
computers. One physical computer may have multiple
virtual computers mapped to it. In fact, in experiments
involving hundreds of users, there can be a large number of
virtual computers mapped to a single physical computer
since we have only ten of them. Using the limited
experiments made possible with the virtualization approach,
we were able to compare the simulated and actual
performance for on both single-core and dual-core
machines. We found that in all cases, the scheduling policy
chosen by the scheduler was also the one that best satisfied
the user’s response time requirements.

DISCUSSION
The evaluation of our system shows its practical benefits in
realistic scenarios. It proves that for some applications, the
self-optimizing scheduler is able to meet response time

Response Time
Differences (ms)

Transmit-First
– Lazy

Process-First
– Lazy

Concurrent
– Lazy

Max Difference 1.79 9.88 0
Min Difference 69.3 311 28

Num Users
for Who the

Difference is:

0 0 1198 407
5 999 0 5
0 0 0 187

1194 200 1 0

Table 2. Remote response time (ms) differences between the
lazy and concurrent, process-first, transmit-first policies.

Lazy Transmit-First Process-First Concurrent
9.88 78.9 9.88 59.7

Table 3. Local response times (ms) of lazy process-first,
transmit-first, and concurrent policies.

Response Time
Differences (ms)

Transmit-First
– Parallel

Process-First
– Parallel

Lazy –
Parallel

Max Difference 158 604 158
Min Difference -240 36 -240

Num Users
for Who the

Difference is:

407 0 407 1198
5 598 5 0

187 0 187 0
0 1 0 1

Table 4. Remote response time (ms) differences between the
parallel and concurrent, process-first, transmit-first policies.

Parallel Transmit-First Process-First Lazy
107 177 58 118

Table 5. Local response times (ms) of parallel, process-first,
transmit-first, and lazy policies.

550

requirements better than existing systems. We do not claim
that it does so for all applications. Developing such a
framework and for all types of applications is difficult. The
reason is that any framework designed to optimize other
systems must be able to handle all salient features of these
systems. Therefore, such a framework must be more
complex than the systems it reconfigures. Since the design
space of collaborative applications is complex, it is beyond
the scope of a single work to create an optimizer for all of
them. A practical alternative is to focus an important subset
of applications, which is the approach we took.

Scope
Our work is motivated by three driving problems: a
distributed PowerPoint presentation; a collaborative
Checkers computer game; and instant messaging. They are
important examples of real collaborative scenarios.
Distributed presentations are becoming common, instant
messaging is pervasive, and collaborative games, such as
checkers, chess, and online poker, are extremely popular. In
fact, by itself, distributed presentations are an important
scenario as an entire industry has been created around them.

Beyond the Scope
The instances of target scenario applications that were
available to us provided only coupling. In general,
applications may have other functionality. While our model
accounts only for coupling tasks, it can still be useful for
predicting performance of application that have other tasks.

Some applications, called thick-client systems [5], support
local-only (or syntactic sugar) commands. An example is a
game that lets users modify non-shared aspects of the game
world. Our model can indirectly account for local-only
commands as the cost of executing them is reflected in the
cost of processing the shared commands. For example, if a
user is entering more local-only commands than other
users, then it appears to the model that the user has a
computer that is slower than that of other computers. In
addition, the model also handles awareness commands.
From a general framework perspective, these commands are
indistinguishable from shared user commands. By
extension, the self-optimizing scheduler works for
applications with awareness and local-only commands.

Our work also accounts for some consistency maintenance
schemes. For instance, operation transforms mechanisms
may transform an incoming command to maintain
consistency across computers. Our work can account for the
time required for the transform by including that time in the
processing time of the command.

Our work can also indirectly apply to systems that transmit
commands in batches even though our model assumes no
batching. Two minor adjustments are required. First,
transmission time is assigned to be equal to 1) zero for a
command whose transmission is delayed because of
batching and 2) the sum of transmission times of all batched
commands for a command whose input triggers the batch

transmission. Second, the remote response time of a
command is adjusted by adding to it the time its
transmission was delayed by the batching algorithm.

Our model, however, does not account for concurrency
control commands. The reason is that these mechanisms
impose their own scheduling schemes. For instance, some
schemes delay processing of a command until they can
ensure that the command does not conflict with other
commands. Others schemes handle a conflict after it occurs
by undoing and then re-execute commands. These extra
scheduling steps do not necessarily imply that our system
will hurt performance when concurrency control
mechanisms are in place. Further study is needed to
determine what actually happens. Moreover, if it turns out
that our system degrades performance of conflicting
commands, the degradation has to be weighed against the
improved performance of non-conflicting commands. This
is especially important given that majority of commands do
not conflict. In fact, in many scenarios, conflicts do not
occur at all. For instance, they did not happen in the
collaborations we logged. Also, in some scenarios, users do
not care if conflicts occur or they rely on social protocols
prevent them [6], so there is no need to handle them.

Future Applicability
Poor performance of collaborative systems today does not
necessarily imply poor performance tomorrow. An
important question is whether the self-optimizing scheduler
will be useful in the future. For instance, it may appear that
the choice of scheduling policy will not matter as all
devices are becoming multi-core, in which case we the
parallel policy can always be used. However, multiple cores
are less power efficient which causes problems on mobile
devices. As proof, consider the latest mobile devices, such
as Apple’s iPhone 4 and iPad or Motorola’s Droid X. They
have single-core processors. Moreover, even if a device has
multiple-cores, using one core may be sufficient to perform
collaboration tasks, leaving the other cores free to perform
other tasks. Our scheduler will choose a single-core policy
in this case. Thus, choice of single-core scheduling policies
will continue to matter.

Noticeable Response Time Differences
When choosing the optimal policy, we use 50ms as a
noticeable threshold because prior work has shown that it is
noticeable. Also, it is the only noticeable threshold that has
been reported. However, none of the prior work that studied
these thresholds used distributed PowerPoint, distributed
Checkers, or Instant Messaging. Hence, the results may not
apply to these applications. More studies are needed to
resolve this issue. For now, we are operating on the
principle that when all else is equal, a system with response
times that are 50ms better than those of others is superior.

There is no guarantee that a noticeable improvement is
always possible. Specifically, scheduling policy changes
offer performance benefits when network and processor

551

resources are somewhat stressed. An important question is
whether these conditions exist in all scenarios. While we
expect that they do arise, further analysis of network and
processor bottlenecks in real collaborative sessions is
required to determine whether they actually occur.

To the Developers
We are not aware of exiting tools that improve response
times by changing scheduling policies. Nevertheless,
developers can still benefit from our work. They can use
timing loops to measure all parameters in the model and use
the model to predict response times for scheduling policies
we studied. Then, they can enforce the policy that gives
optimal performance by manually setting thread core/CPU
affinities and controlling the order in which tasks execute.

CONCLUSION
This paper makes several contributions. At the highest
level, it shows that it is possible to develop a self-
optimizing scheduler for collaborative systems. It presents
an analytical model that can be used to guide optimization
decisions. The model reflects software and hardware
realities better than previous models by accounting for non-
blocking communication and multi-core processors. The
paper also motivates and presents four scheduling policies
that take advantage of parallelism. Three of these are
existing policies in which blocking communication is
replaced with non-blocking while still using a single
processing core. The fourth is a variation of the
concurrent non-blocking policy in which two instead of one
CPU cores are used. Moreover, it shows that versions of the
process-first, transmit-first, and lazy policies that use more
than one processing core are not necessary. Finally, it
presents new implementation issues that must be tackled in
the creation of any self-optimizing systems.

In the future, we plan to extend the design space of
applications that can benefit from our scheduler. We will
study the interplay of the scheduler and concurrency control
scheduling schemes. In addition, we are interested in
optimizing performance in virtual worlds, such as Second
Life. We also plan to study and evaluate scheduling policies
for collaborative systems that use other specialized
processors, such as GPUs. Moreover, we plan to continue to
study avenues for self-optimization. It would be interesting
to implement systems that self-optimize the communication
architecture. Also, Wolfe et al. [15] have a system that
automatically at runtime switches processing architectures
to improve performance. It would be useful to create a
single system that optimizes processing and communication
architectures, as well as, scheduling policies.

AKNOWLEDGEMENTS
This work was funded in part by an NSERC scholarship, a
Microsoft Research fellowship, and NSF grants IIS
0312328, IIS 0712794, and IIS 0810861. Also, the
reviewers’ comments substantially improved the paper.

REFERENCES
1. Abdelkhalek, A., Bilas, A., and Moshovos, A. Behavior

and performance of interactive multi-player game
servers. IEEE ISPASS (2001), 137-146.

2. Chung, G. Log-based collaboration infrastructure. Ph.D.
Dissertation, UNC Chapel Hill (2002).

3. Dewan, P. Architectures for collaborative applications.
Trends in Software: Computer Supported Co-operative
Work, (1999). 165-194.

4. Ellis, C.A, Gibbs, S.J., and Rein, G. Groupware: some
issues and experiences. ACM CACM, 34, 1 (Jan 1991),
39-58.

5. Graham, T.C.N., Phillips, W.G., and Wolfe, C. Quality
analysis of distribution architectures for synchronous
groupware. CollaborateCom (2006), 1-9.

6. Greenberg, S. and Marwood, D. Real time groupware as
a distributed system: concurrency control and its effect
on the interface. ACM CSCW (1994), 207-217.

7. Gutwin, C., Dyck, J., and Burkitt, J. Using cursor
prediction to smooth telepointer actions. ACM GROUP
(2003), 294-301.

8. Gutwin, C., Fedak, C., Watson, M., Dyck, J., and Bell,
T. Improving network efficiency in real-time groupware
with general message compression. ACM CSCW (2006),
119-128.

9. Jay, C., Glencross, M., and Hubbold, R. Modeling the
effects of delayed haptic and visual feedback in a
collaborative virtual environment. ACM TOCHI, 14, 2
(Aug 2007), Article 8.

10. Junuzovic, S. and Dewan, P. Multicasting in groupware?
IEEE CollaborateCom (2007), 168-177.

11. Junuzovic, S. and Dewan, P. Lazy scheduling of
processing and transmission tasks in collaborative
systems. ACM GROUP (2009), 159-168.

12. Junuzovic, S. Towards self-optimizing collaboration
systems. Ph.D. Dissertation, UNC Chapel Hill (2010).

13. p2pSim: a simulator for peer-to-peer protocols.
http://pdos.csail.mit.edu/p2psim/kingdata, Mar 4, 2009.

14. Shneiderman, B. Response time and display rate in
human performance with computers. ACM CSUR, 16, 3
(Sep 1984), 265-285.

15. Wolfe, C., Graham, T.C.N., Phillips, W.G., and Roy, B.
Fiia: user-centered development of adaptive groupware
systems. ACM Symposium on Interactive Computing
Systems (2009), 275-284.

16. Youmans, D.M. User requirements for future office
workstations with emphasis on preferred response times.
IBM United Kingdom Laboratories (Sep 1981).

17. Zhang, B., Ng, T.S.E, Nandi, A., Riedi, R., Druschel, P.,
and Wang, G. Measurement-based analysis, modeling,
and synthesis of the internet delay space. ACM
Conference on Internet Measurement (2006), 85-98.

552

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

