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MODULAR POLYNOMIALS VIA ISOGENY VOLCANOES

REINIER BRÖKER, KRISTIN LAUTER, AND ANDREW V. SUTHERLAND

Abstract. We present a new algorithm to compute the classical modular
polynomial Φl in the rings Z[X,Y ] and (Z/mZ)[X, Y ], for a prime l and any
positive integer m. Our approach uses the graph of l-isogenies to efficiently
compute Φl mod p for many primes p of a suitable form, and then applies the
Chinese Remainder Theorem (CRT). Under the Generalized Riemann Hypoth-
esis (GRH), we achieve an expected running time of O(l3(log l)3 log log l), and
compute Φl mod m using O(l2(log l)2+ l2 logm) space. We have used the new
algorithm to compute Φl with l over 5000, and Φl mod m with l over 20000.
We also consider several modular functions g for which Φg

l
is smaller than Φl,

allowing us to handle l over 60000.

1. Introduction

For a prime l, the classical modular polynomial Φl is the minimal polynomial of
the function j(lz) over the field C(j), where j(z) is the modular j-function. The
polynomial Φl parametrizes elliptic curves E together with an isogeny E → E′

of degree l. From classical results, we know that Φl lies in the ring Z[X,Y ] and
satisfies Φl(X,Y ) = Φl(Y,X), with degree l + 1 in both variables [58, §69].

The fact that the moduli interpretation of Φl remains valid modulo primes p 6= l
was crucial to the improvements made by Atkin and Elkies to Schoof’s point-
counting algorithm [22, 51]. More recently, the polynomials Φl mod p have been
used to compute Hilbert class polynomials [2, 54], and to determine the endomor-
phism ring of an elliptic curve over a finite field [6]. Explicitly computing Φl is
notoriously difficult, primarily due to its large size. As shown in [20], the logarith-
mic height of its largest coefficient is 6l log l +O(l), thus its total size is

(1) O(l3 log l).

As this bound suggests, the size of Φl grows quite rapidly; the binary representation
of Φ79 already exceeds one megabyte, and Φ659 is larger than a gigabyte.

The polynomial Φl can be computed by comparing coefficients in the Fourier
expansions of j(z) and j(lz), an approach considered by several authors [8, 22, 37,
39, 41, 45, 47]. As detailed in [8], this only requires integer arithmetic, and may
be performed modulo p for any prime p > 2l + 2. The time to compute Φl mod p
is then O(l3+ε(log p)1+ε), and for a sufficiently large p this yields an O(l4+ε) time
algorithm to compute Φl over Z. Alternatively (and preferably), one computes Φl

modulo several smaller primes and applies the Chinese Remainder Theorem, as
suggested in [8, 37, 45, 47].

An alternative CRT-based approach appears in [17]. This algorithm uses isoge-
nies between supersingular elliptic curves defined over a finite field, and computes
Φl mod p in time O(l4+ε(log p)2+ε + (log p)4+ε), under the GRH.
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In [24], Enge uses interpolation and fast floating-point evaluations to compute
Φl ∈ Z[X,Y ] in time O(l3(log l)4+ε), under reasonable heuristic assumptions. The
complexity of this method is nearly optimal, quasi-linear in the size of Φl. How-
ever, most applications actually use Φl in a finite field Fpn , and Φl mod p may be
much smaller than Φl. In general, Enge’s algorithm can compute Φl and reduce
it modulo p much faster than either of the methods above can compute Φl mod p,
but this may use an excessive amount of space. For large l this approach becomes
impractical, even when Φl mod p is reasonably small.

Here we present a new method to compute Φl, either over the integers or modulo
an arbitrary positive integer m, including m ≤ l. Our algorithm is both asymp-
totically and practically faster than alternative methods, and achieves essentially
optimal space complexity. More precisely, we prove the following result.

Theorem 1. Let l denote an odd prime and m a positive integer. Algorithm 6.1

correctly computes Φl ∈ (Z/mZ)[X,Y ]. Under the GRH, it runs in expected time

O(l3 log3 l log log l),

using O(l2 log lm) expected space.

To compute Φl over Z, we choose a modulus m that is large enough to uniquely
determine the coefficients, via an explicit height bound proven in [13]. In general,
we may assume logm = O(l log l), since otherwise Φl and Φl mod m are effectively
the same (hence the time bound does not depend on m).

Our algorithm is of the Las Vegas type, a probabilistic algorithm whose output is
unconditionally correct; the GRH is only used to analyze its running time. We have
used it to compute Φl for all l < 3600, and many larger l up to 5003. The largest
previous computation of which we are aware has l = 1009. Working modulo m we
can go further; we have computed Φl modulo a 256-bit integer m with l = 20011.

Applications that rely on Φl can often improve their running times by using
alternative modular polynomials that have smaller coefficients. Our algorithm can
be adapted to compute polynomials Φg

l relating g(z) and g(lz), for modular func-
tions g that share certain properties with j. This includes the cube root γ2 of j,
and we are then able to compute Φl mod m more quickly by reconstructing it from
Φγ2

l mod m, capitalizing on a suggestion in [22]. Other examples include simple
and double eta-quotients, the Atkin functions, and the Weber f-function. The last
is especially attractive, since the modular polynomials for f are approximately 1728
times smaller than those for j. This has allowed us to compute modular polynomials

Φf
l with l as large as 60013.
The outline of this article is as follows. In Section 2 we give a rough overview of

our new algorithm. The theory behind the algorithm is presented in Sections 3–5.
We present the algorithm, prove its correctness and analyze its runtime in Section 6.
Section 7 deals with modular polynomials for modular functions other than j, and
a final Section 8 contains computational results.

2. Overview

Our basic strategy is a standard CRT approach: we compute Φl mod p for various
primes p and use the Chinese Remainder Theorem to recover Φl ∈ Z[X,Y ]. Alterna-
tively, the explicit CRT (mod m) allows us to directly compute Φl ∈ (Z/mZ)[X,Y ],
via [4, Thm. 3.1]. By applying the algorithm of [54, §6], this can be accomplished
in O(l2 log lm) space, even though the total size of all the Φl mod p is O(l3 log l).
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Our method for computing Φl mod p is new, and applies only to certain primes p.
Strategic prime selection has been used effectively in other CRT-based algorithms,
such as [54], and it is especially helpful here. Working in the finite field Fp, we select
l + 2 distinct values ji, compute Φl(X, ji) ∈ Fp[X ] for each, and then interpolate
the coefficients of Φl ∈ (Fp[Y ])[X ] as polynomials in Fp[Y ]. The key lies in our
choice of p, which allows us to select particular interpolation points that greatly
facilitate the computation. We are then able to compute Φl mod p in expected time

(2) O(l2(log p)3 log log p).

In contrast to the methods above, this is quasi-linear in the size of Φl mod p.
Our algorithm exploits the structure of the l-isogeny graph Gl defined on the set

of j-invariants of elliptic curves over Fp. Each edge in this graph corresponds to
an l-isogeny; the edge (j1, j2) is present if and only if Φl(j1, j2) = 0. As described
in [30, 42], the ordinary components of this graph have a particular structure known
as an l-volcano. Depicted in Figure 1 are a set of four l-volcanoes, each with two
levels: the surface (at the top), and the floor (on the bottom). Note that each vertex
ji on the surface has l + 1 neighbors, these are the roots of Φl(X, ji) ∈ Fp[X ], and
there are at least l + 2 such ji.

figure 1. A set of l-volcanoes arising from Theorem 4.1. In
this example l = 7 splits into ideals of order 3 in cl(O) and we
have h(O) = 12 surface curves and h(R) = 72 floor curves.

This configuration contains enough information to compute the l+2 polynomials
Φl(X, ji) that we need to interpolate Φl(X,Y ) mod p. It is not an arrangement
that is likely to arise by chance; it is achieved by our choice of the order O and the
primes p that we use. To further simplify our task, we choose p so that vertices on
the surface correspond to curves with Fp-rational l-torsion. Our ability to obtain
such primes is guaranteed by Theorems 4.1 and 4.4, proven in Section 4.

The curves on the surface all have the same endomorphism ring type, isomorphic
to an imaginary quadratic order O. Their j-invariants are precisely the roots of the
Hilbert class polynomial HO ∈ Z[X ]. As described in [2], the roots of HO may be
enumerated via the action of the ideal class group cl(O). To do so efficiently, we
use an algorithm of [54] to compute a polycyclic presentation for cl(O) that allows
us to enumerate the roots of HO via isogenies of low degree, typically much smaller
than l. We may use this presentation to determine the action of any element of
cl(O), including those that act via l-isogenies. This allows us to identify the l-
isogeny cycles that form the surfaces of the volcanoes in Figure 1.

Similarly, the vertices on the floor are the roots of HR, where R is the order of
index l in O, and we use a polycyclic presentation of cl(R) to enumerate them. To
identity children of a common parent (siblings), we exploit the fact that siblings
lie in a cycle of l2-isogenies, which we identify using our presentation of cl(R). It
remains only to connect each parent to one of its children. This may be achieved
by using Vélu’s formula [55] to compute an l-isogeny from the surface to the floor.
By matching each parent to a group of siblings, we avoid the need to compute an
l-isogeny to every child, which is critical to obtaining the complexity bound in (2).
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Below is a simplified version of the algorithm to compute Φl mod p.

Algorithm 2.1. Let l be an odd prime, and let O be an imaginary quadratic order
of discriminant D with class number h(O) ≥ l + 2. Let p ≡ 1 mod l be a prime
satisfying 4p = t2 − l2v2D for some integers t and v with l ∤ v. Let R be the order
of index l in O. Compute Φl mod p as follows:

1. Find a root of HO over Fp.

2. Enumerate the roots ji of HO and identify the l-isogeny cycles.

3. For each ji find an l-isogenous j on the floor.

4. Enumerate the roots of HR and identify the l2-isogeny cycles.

5. For each ji compute Φl(X, ji) =
∏

(ji,jk)∈Gl
(X − jk).

6. Interpolate Φl ∈ (Fp[Y ])[X ] using the ji and the polynomials Φl(X, ji).

The conditions on the inputs l, O, and p suffice to ensure that Theorem 4.1 is
satisfied, so that we have a configuration of l-volcanoes similar to the example in
Figure 1. We use the same O for each p, so the Hilbert class polynomial HO may
be precomputed, but we do not need to compute HR, instead we enumerate its
roots by applying the Galois action of cl(R) to a root obtained in Step 3.

A more detailed version of Algorithm 2.1 appears in Section 6 together with
Algorithm 6.1, which selects the order O and the primes p, and performs the CRT
computations needed to determine Φl over Z, or modulo m.

3. Orders in imaginary quadratic fields

It is a classical fact that the endomorphism ring of an ordinary elliptic curve
over a finite field is isomorphic to an imaginary quadratic order O. The order O
is necessarily contained in the maximal order OK of its fraction field K, but we
quite often have O ( OK . As most textbooks on algebraic number theory focus on
maximal orders, we first develop some useful tools for working with non-maximal
orders. To simplify the presentation, we work throughout with fields of discriminant
dK < −4, ensuring that we always have the unit groups O∗ = O∗

K = {±1}. We

use
(dK

p

)

to denote the Kronecker symbol, which is −1, 0, or 1 as the prime p splits,

ramifies, or remains inert in K (respectively).

Let O be a (not necessarily maximal) order in a quadratic field K of discriminant
dK < −4. Let N be a positive integer prime to the conductor u = [OK :O]. The
order R = Z+NO has index N in O, and its ideal class group cl(R) is an extension
of cl(O). More precisely, as in [53, Thm. 6.7], there is an exact sequence

(3) 1 −→ (O/NO)∗/(Z/NZ)∗ −→ cl(R)
ϕ−→ cl(O) −→ 1,

where ϕ maps the class [I] to the class [IO]. For R-ideals prime to uN , the underly-
ing map I 7→ IO preserves ‘norms’, that is, [R : I] = [O : IO], as in [21, Prop. 7.20].
We have a particular interest in the kernel of the map ϕ.

Lemma 3.1. In the exact sequence above, if N = pn is a power of an unramified

odd prime p, then kerϕ is cyclic of order pn−1
(

p−
(dK

p

))

.

Proof. We compute the structure of kerϕ ∼= (O/pnO)∗/(Z/pnZ)∗. The group
(Z/pnZ)∗ is cyclic, isomorphic to the additive group (Z/(p − 1)Z) × (Z/pn−1Z).
We now apply [18, Cor. 4.2.11] to compute the structure of (O/pnO)∗:
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(4) (O/pnO)∗ ∼=
{

(Z/(p− 1)Z)2 × (Z/pn−1Z)2, if p splits in K;

(Z/(p2 − 1)Z)× (Z/pn−1Z)2, if p is inert in K.

In both cases, the factor (Z/pn−1Z) of (Z/pnZ)∗ is a maximal cyclic subgroup of
the Sylow p-subgroup of (O/pnO)∗, and must correspond to a direct summand.
Thus the p-rank of the quotient (O/pnO)∗/(Z/pnZ)∗ is 1. The order of the factor
(Z/(p−1)Z) of (Z/pnZ)∗ is not divisible by p, and must correspond to a subgroup of
a cyclic factor of (O/pnO)∗ in both cases. It follows that the quotient is cyclic. The

calculations above also show that #(O/pnO)∗/(Z/pnZ)∗ = pn−1
(

p−
(dK

p

))

. �

Even when kerϕ is not necessarily cyclic, the size of kerϕ is as in Lemma 3.1. More
generally, the exact sequence (3) can be used to derive the formula

(5) h(O) = h(OK)u
∏

p|u

(

1−
(

dK
p

)

p−1

)

,

as in [21, Thm. 7.24].
We now describe a particular representation of kerϕ when N = l is prime. In

this case kerϕ is cyclic, of order l −
(dK

l

)

; this follows from Lemma 3.1 for l > 2,
and from (5) for l = 2. Let O = Z[τ ] for some τ ∈ K that is coprime to l. There are
exactly l+ 1 index l sublattices of O: the order R, and lattices Si = lZ+ (τ + i)Z,
for i from 0 to l − 1. Each O-ideal of norm l corresponds to one of the Si. The
remaining Si are fractional invertible R-ideals corresponding to proper R-ideals

(6) Ji = lSi = l2Z+ l(τ + i)Z,

for which R = {β ∈ K : βJi ⊂ Ji}. Exactly 1+
(dK

l

)

of the Si are O-ideals, leaving
l − 1 −

(dK

l

)

proper R-ideals Ji. These are all non-principal and inequivalent in
cl(R), and each lies in kerϕ, since we have JiO = lO. The invertible Ji are exactly
the non-trivial elements of kerϕ. We summarize with the following lemma, which
guarantees that we can find a generator for the cyclic group kerϕ that has norm l2.

Lemma 3.2. If N = l is prime in the exact sequence (3), then the R-ideal lR and

the invertible R-ideals Ji defined in (6) are representatives for kerϕ. In particular,

kerϕ is generated by the class of an invertible R-ideal with norm l2.

This representation of kerϕ has proven useful in other settings [16]. We use it to
obtain the l2-isogeny cycles we need in Step 4 of Algorithm 2.1.

We conclude this section with a theorem that allows us to construct arbitrarily
large class groups that are generated by elements of bounded norm.

Theorem 3.3. Let O be an order in a quadratic field of discriminant dK < −4,
and let p ∤ disc(O) be an odd prime. Let P be a set of primes that do not divide

p[OK :O]. For n ∈ Z≥0, let Rn denote the order Z + pnO, and let Gn be the

subgroup of cl(Rn) generated by the set Sn of classes of Rn-ideals with norms in P.
Then if G2 = cl(R2), we have Gn = cl(Rn) for every n ∈ Z≥0.

Proof. For each Rn, let ϕn : cl(Rn) → cl(O) denote the corresponding map in
the exact sequence (3), and let φn+1 : cl(Rn+1) → cl(Rn) send [I] to [IRn], so
that ϕn+1 = ϕn ◦ φn+1. These are all surjective group homomorphisms, and the
underlying ideal maps preserve the norms of ideals prime to p[OK :O]. We assume
G2 = cl(R2), which implies Gn = cl(Rn) for n ≤ 2, and proceed by induction on n.
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For each prime q ∈ P and every n, there are exactly 1 −
(dK

q

)

ideals in Rn of

norm q, and φn+1 maps Sn+1 onto Sn and Gn+1 onto Gn. By the inductive hypoth-
esis, Gn = cl(Rn), therefore Gn+1 intersects every coset of kerφn+1 ⊂ kerϕn+1. To
prove Gn+1 = cl(Rn+1), it suffices to show kerϕn+1 ⊂ Gn+1.

The groups kerϕn and kerϕn+1 are cyclic, by Lemma 3.1, since p is odd and
unramified. Let αn be a generator for kerϕn. Since #kerϕn is divisible by p,
αn cannot be a pth power in kerϕn. Expressing αn in terms of Sn, we see that
φ−1
n+1(αn) must intersect Gn+1. Let αn+1 lie in this intersection, and note that
αn+1 ∈ kerϕn+1. The order of αn+1 must be a multiple of |αn| = #kerϕn, and
αn+1 cannot be a pth power in kerϕn+1. It follows that αn+1 has order #kerϕn+1,
hence it generates kerϕn+1, proving kerϕn+1 ⊂ Gn+1 as desired. �

To see Theorem 3.3 in action, let O be the order of discriminant D = −7, let
p = 3, and let P = {2}. The class group of the order Rn of discriminant 32nD
happens to be generated by an ideal of norm 2 when n = 2, and the theorem then
implies that this holds for all n. This allows us to construct arbitrarily large cyclic
class groups, each generated by an ideal of norm 2.

We remark that Theorem 3.3 may be extended to handle p = 2 if the condition
G2 = cl(R2) is replaced by G3 = cl(R3), and easily generalizes to treat families of
orders lying in O that have b-smooth conductors, for any constant b.

4. Explicit CM theory

4.1. The theory of complex multiplication (CM). As in Section 3, let O be
an order in a quadratic field K of discriminant dK < −4. We fix an algebraic
closure of K. It follows from class field theory that there is a unique field KO with
the property that the Artin map induces an isomorphism

Gal(KO/K)
∼−→ cl(O)

between the Galois group of KO/K and the ideal class group of O. The field KO
is called the ring class field for the order O. If O is the maximal order of K, then
KO is the Hilbert class field of K, the maximal totally unramified abelian extension
of K. In general, primes dividing [OK :O] ramify in the ring class field.

The first main theorem of complex multiplication [21, Thm. 11.1] states that

KO = K(j(E)),

for any complex elliptic curve E with endomorphism ring O. Furthermore, the
minimal polynomialHO of j(E) overK actually has coefficients in Z, and its degree
is h(O) = | cl(O)|. The polynomial HO is known as the Hilbert class polynomial .
If p is a prime that splits completely in the extension KO/Q, then HO splits into
distinct linear factors in Fp[X ]. Its roots are the j-invariants of the elliptic curves
E/Fp with End(E) ∼= O, a set we denote EllO(Fp). Let D = disc(O). The primes
that split completely in KO are precisely the primes p ∤ D that are the norm

p = NK/Q

(

t+ v
√
D

2

)

=
t2 − v2D

4

of an element of O. The equation 4p = t2 − v2D is often called the norm equation.
For a positive integer N , there is a unique extension KN,O of the ring class field

KO such that the Artin map induces an isomorphism

Gal(KN,O,KO)
∼−→ (O/NO)∗/{±1}.
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The field KN,O is the ray class field of conductor N for O. When O = OK , this is
simply the ray class field of conductor N , and for N = 1 we recover the ring class
field KO = K1,O. The ring class field KR of the order R = Z+NO is a subfield of
the ray class field KN,O. The Galois group of KR/KO is isomorphic to

(O/NO)∗/(Z/NZ)∗,

the kernel of the map ϕ in (3).
The second main theorem of complex multiplication [21, Thm. 11.39] states that

KN,O = KO(x(E[N ])),

where x(E[N ]) denotes the set of x-coordinates of the N -torsion points of an elliptic
curve E with endomorphism ring O. The Galois invariance of the Weil pairing

E[N ] × E[N ] → µN implies that the cyclotomic field Q(ζN ) is contained in the
ray class field KN,O (a fact that also follows directly from class field theory). In
particular, a prime p that splits completely inKN,O also splits completely in Q(ζN ),
and is therefore congruent to 1 modulo N .

4.2. Primes that split completely in the ray class field. We are specifically
interested in primes p that split completely in the ray class field Kl,O, where l is
an odd prime. For such p we can achieve the desired setting for Algorithm 2.1, as
depicted in Figure 1.

Theorem 4.1. Let l > 2 be prime, and let O 6⊂ Z[i],Z[ζ3] be an imaginary qua-

dratic order that is maximal at l. Let R = Z + lO be the order of index l in O.
Let p be a prime that splits completely in the ray class field Kl,O, but does not split
completely in the ring class field for the order of index l2 in O.

(1) There are exactly h(O) different Fp-isomorphism classes of elliptic curves

E/Fp with endomorphism ring O that have E[l] ⊂ E(Fp).
(2) There are exactly h(R) different Fp-isomorphism classes of elliptic curves

E/Fp with endomorphism ring R that have an Fp-rational l
2-torsion point.

Proof. The inclusions KO ⊆ KR ⊆ Kl,O imply that both HO and HR split into
linear factors in Fp. Each j-invariant in EllO(Fp), resp. EllR(Fp), corresponds
to two distinct isomorphism classes over Fp, since these curves are ordinary and
O 6= Z[i],Z[ζ3]. We will show that exactly one of these satisfies (1), resp. (2).

Since p splits completely in the ray class field Kl,O, we can factor p = πpπp ∈ O
with πp ≡ 1 mod lO. Let E/Fp be an elliptic curve with endomorphism ring O
whose Frobenius endomorphism corresponds to πp under one of the two isomor-
phisms End(E)

∼−→ O. Since πp ≡ 1 mod lO, we have E[l] ⊂ E(Fp). The Frobe-

nius endomorphism of the non-isomorphic quadratic twist Ẽ/Fp corresponds to

−πp, and we then have #Ẽ(Fp) = p+1− tr(−πp) ≡ 2 mod l. For l 6= 2 this implies

that Ẽ has trivial l-torsion over Fp, proving (1).
To prove (2), let E′/Fp be a curve with endomorphism ring R that is l-isogenous

to E. The Frobenius endomorphism of E′ also corresponds to πp under an isomor-
phism End(E′)

∼−→ R. The cardinality of E′(Fp) is thus equal to the cardinality
of E(Fp) and therefore divisible by l2. However, since p does not split completely
in the ring class field of index l2 in O, we cannot have πp ≡ 1 mod lR. It follows
that E′[l] 6⊂ E′(Fp) and E′(Fp) must contain a point of order l2. As above, the
quadratic twist of E′ must have trivial l-torsion over Fp, proving (2). �
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Provided the order O in Theorem 4.1 also satisfies h(O) ≥ l+ 2, we can achieve
the desired setting for Algorithm 2.1. We say such an order is suitable for l.

To determine the coefficients Φl via the Chinese Remainder Theorem, we need to
compute Φl mod p for many primes p satisfying Theorem 4.1. We necessarily have
p > l, since p ≡ 1 mod l, and the height bound [20] on the coefficients of Φl implies
that 6l + O(1) primes suffice. We now show these primes exist and bound their
size, assuming the GRH. For this purpose we define a suitable family of orders.

Definition 4.2. Let S be the set of odd primes and let T be the set of all imaginary

quadratic orders. A suitable family of orders is a function F : S → T such that:

(1) for all l ∈ S the order F(l) is suitable for l.
(2) there exist effective constants c1, c2 ∈ R>0 such that for all l ∈ S the bounds

l + 2 ≤ h(F(l)) ≤ c1l and l2 ≤ | disc(F(l))| ≤ c2l2 hold.

Example 4.3. Let F(3) = Z[
√
−47], and for l > 3 let F(l) be the order O of

discriminant −7 ·32n, where n is the least integer for which h(O) = 2 ·3n−1 ≥ l+2.
Letting c1 = 4 and c2 = 205, we see that F is a suitable family of orders.

Theorem 4.4. Let F be a suitable family of orders and let c0 ∈ R>0 be an arbitrary

constant. Then for each prime l > 2 the set of primes p for which l, O = F(l),
and p satisfy the conditions of Theorem 4.1 has positive density.

Assuming the GRH, there is an effective constant c ∈ R>0 such that at least

c0l
3(log l)3 of these primes are bounded by B = cl6(log l)4, for all primes l > 7.

Proof. For a prime l > 2, let O = F(l) have fraction field K, and let u = [OK : O].
The ray class field Kl,O and the ring class field KS for the order S = Z + l2O
are both invariant under the action of complex conjugation, hence both are Galois
extensions of Q. One finds that

#Gal(Kl,O/Q) = 2
(

l − 1
)(

l −
(dK

l

))

h(O) < 2l
(

l−
(dK

l

))

h(O) = #Gal(KS/Q),

and the Chebotarëv density theorem [49, Thm. 13.4] yields the unconditional claim.
To prove the conditional claim, we apply an effective Chebotarëv bound to the

extension Kl,O/Q, assuming the GRH for the Dedekind zeta function of Kl,O.
The extension Kl,O/K is abelian of conductor dividing lu, with degree nh(O),

where n ≤ 2#(O/lO)∗ ≤ 2l2. The OK-ideal disc(Kl,O/O) is a divisor of (lu)nh(O),
by Hasse’s Führerdiskriminantenproduktformel [49, Thm. VII.11.9]. We then have

| disc(Kl,O/Q)| = |NK/Q(disc(Kl,O/K)) · disc(K/Q)[Kl,O:K]|
≤ (lf)2nh(O)| disc(K/Q)|nh(O) ≤ (c2l

4)nh(O),

where disc(O) ≤ c2l2. Using the bound h(O) ≤ c1l, Theorem 1.1 of [43] then yields

(7)

∣

∣

∣

∣

π(x,Kl,O/Q)− Li(x)

2nh(O)

∣

∣

∣

∣

≤ c3
(

x1/2 log(lx) + l3 log l
)

,

where π(x,Kl,O/Q) counts the primes up to x ∈ R>0 that split completely in Kl,O,
and c3 ∈ R>0 is an effectively computable constant, independent of l.

If we now suppose x = cl6(log l)4, and apply Li(x) ∼ x log x and nh(O) ≤ c1l
3,

we may choose c ∈ R>0 so that Li(x)/(2nh(O)) is greater than the RHS of (7)
by an arbitrarily large constant factor. In particular, for any c4 ∈ R>0 there
is an effectively computable choice of c that ensures π(x,Kl,O/Q) ≥ c4l

3(log l)3,
independent of l. Moreover, for the least such c we have c/c4 → 1 as c4 →∞.
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We now show that most of these primes do not split completely in KS. Any
prime p that splits completely in Kl,O must split completely in the ring class field
for R = Z+ lO. Putting D = disc(O), we then have

(8) 4p = t2 − v2l2D,
with t, v ∈ Z>0 and t ≡ 2 mod l. If v 6≡ 0 mod l, then p cannot split completely
in KS . For p ≤ cl6(log l)4, we have v ≤ 2c1/2l(log l)2 and t ≤ 2c1/2l3(log l)2, since
D ≥ l2, hence there are at most 2c1/2(log l)2 positive v ≡ 0 mod l, and at most
2c1/2l2(log l)2 + 1 positive t ≡ 2 mod l, that satisfy (8).

It follows that no more than 4cl2(log l)4 + 2c1/2(log l)2 primes p ≤ cl6(log l)4

split completely in KS. For a sufficiently large choice of c4, we can choose c so that
π(x,Kl,O/Q) = π(cl6(log l)4,Kl,O/Q) ≥ c4l3(log l)3 and also

c4l
3(log l)3 − 4cl2(log l)4 − 2c1/2(log l)2 > c0l

3(log l)3,

provided l > 7, since l/(log l) is bounded above 4 for primes l > 7. �

Theorem 4.4 guarantees we can obtain a sufficient number of primes p for use
with Algorithm 2.1. In fact, as is typical for such bounds, it provides far more than
we need. The task of finding these primes is addressed in Section 6.1.

4.3. Computing the CM action. The Galois action of Gal(KO/K) ∼= cl(O) on
the set EllO(Fp) may be explicitly computed using isogenies, as described in [2].
Let the prime p split completely in the ring class field KO, and let E/Fp be an
elliptic curve with End(E) ∼= O. Fixing an isomorphism End(E)

∼−→ O, for each
invertible O-ideal a we define

E[a] = {P ∈ E(Fp) | ∀τ ∈ a : τ(P ) = 0},
the ‘a-torsion’ subgroup of E. The subgroupE[a] is the kernel of a separable isogeny
E → E/E[a] of degree [O : a], with End(E/E[a]) ∼= O. This yields a group action

j(E)a = j(E/E[a]),

in which the ideal group of O acts on the set EllO(Fp). This action factors through
the class group, and the cl(O)-action is transitive and free. Equivalently, EllO(Fp)
is a torsor for cl(O); for each pair (j1, j2) of elements in EllO there is a unique
element of cl(O) whose action sends j1 to j2.

Now let l0 be an invertible O-ideal of prime norm l0 6= p. The curves E and
E/E[l0] are l0-isogenous, hence

Φl0(j0, j
l0
0 ) = 0,

where j0 = j(E). To compute the action of l0, we need to find the corresponding
root of Φl0(X, j0) ∈ Fp[X ]. We assume that Φl0(X,Y ) is known, either via one of
the algorithms from the introduction, or by a previous application of Algorithm 6.1.
The polynomial Φl0(X, j0) ∈ Fp[X ] has either 1 or 2 roots that lie in EllO(Fp),
depending on whether l0 ramifies or splits (it is not inert). These roots correspond
to the actions of l0 and its inverse l-10 , which coincide when l0 ramifies.

Our fixed isomorphism End(E)
∼−→ O maps the Frobenius endomorphism of E

to an element πp ∈ O ⊂ OK with norm p. We then have the norm equation

(9) 4p = t2 − v2dK ,
where t = tr(πp), and v is the index of Z[πp] in OK . When l0 does not divide v,
the order Z[πp] is maximal at l0 and the only roots of Φl0(X, j0) over Fp are those
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in EllO(Fp). Otherwise Φl0(X, j0) has l + 1 roots in Fp, and those in EllO(Fp) lie
on the surface of the l0-volcano containing j, as described in [30]. The roots on the
surface can be readily distinguished, as in [54, §4], for example, but typically we
choose p with l0 ∤ v so that every root of Φl0(X, j0) in Fp is on the surface.

When l0 splits and does not divide v, the actions of l0 and l-10 may be distinguished
as described in [11, §5] and [31, §3]. The kernels of the two l0-isogenies are subgroups
of E[l0]. A standard component of the SEA algorithm computes a polynomial
Fl0(X), whose roots are the abscissa of the points in one of these kernels [22, 51].
In our setting l0 splits in Z[πp], and provided l0 ∤ v, the action of πp on E[l0] has two
distinct eigenvalues corresponding to the two kernels. Expressing the ideal l0 in the
form (l0, c+ dπp) yields the eigenvalue λ = −c/d mod l0. We may then use Fl0(X)
to test whether πp’s action is equivalent to multiplication by λ in the corresponding
kernel. See [11] for an example and further details.

As a practical optimization (see Section 6.6), we avoid the need to ever make
this distinction. The asymptotic complexity of computing the action of l0 is the
same in any case.

Lemma 4.5. Let l0 and p be distinct odd primes, and let O 6= Z[i],Z[ζ3] be

an imaginary quadratic order. Let j0 = j(E) ∈ EllO(Fp), fix an isomorphism

End(E)
∼−→ O, and let πp ∈ O denote the image of the Frobenius endomorphism.

Let l0 be an invertible O-ideal of norm l0, and assume Z[πp] is maximal at l0.

Given Φl0 ∈ Fp[X,Y ], the j-invariant jl00 may be computed using an expected

O(l20 +M(l0) log p) operations in Fp.

Here M(n) denotes the complexity of multiplying two polynomials of degree less
than n, as in [56, Def. 8.26]. Näıvely, M(n) = O(n2), Karatsuba’s algorithm yields
M(n) = O(nlog

2
3), and methods based on the fast Fourier transform (FFT) achieve

M(n) = O(n log n log logn).

Proof. We first compute gcd(Xp−X,Φl0(X, j0)), the product of the distinct linear
factors of Φl0(X, j0) over Fp. Instantiating f(X) = Φl0(X, j0) uses O(l

2
0) operations

in Fp, exponentiating X
p mod f uses O(M(l0) log p) operations in Fp, and the fast

Euclidean algorithm [56, §11.1] obtains gcd(Xp−X, f) usingO(M(l0) log l0) = O(l20)
operations in Fp. This gcd has degree at most 2, since Z[πp] is maximal to l0, and
we may find its roots using an expected O(log p) Fp-operations [56, Cor. 14.16].

The desired root jl00 is then distinguished as outlined above. We first compute
the eigenvalue λ − c/d mod l0, where l0 = (l0, c + dπp), using O(l20) bit opera-
tions. Applying [9, Thm. 2.1], the kernel polynomial Fl0(X) can be computed
using O(M(l0)) operations in Fp. To compare (Xp, Y p) to the scalar multiple
λ · (X,Y ), we compute Xp, Y p, and the required division polynomials ψn(X,Y ),
modulo Fl0(X) and the curve equation for E, as in the SEA algorithm [7, Ch. VII].
This uses O((log l0 + log p)M(l0)) = O(l20 +M(l0) log p) operations in Fp. �

5. Mapping the CM torsor

The previous section made explicit the Galois action corresponding to an element
of cl(O) ∼= Gal(KO/K) represented by an ideal l0 of prime norm l0. We now use
this to enumerate the set EllO(Fp), and at the same time compute a map that
explicitly identifies the action of each element of cl(O). To do this efficiently it is
critical to work with generators whose norms are small, since the cost of computing
the action of l0 increases quadratically with its norm.
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5.1. Polycyclic presentations. As a finite abelian group, each element of cl(O)
can be uniquely represented using a basis. However, as noted in [54, §5.3], the norms
arising in a basis may need to be much larger than those in a set of generators.
Thus we are led to consider polycyclic presentations.

Let α = (α1, . . . , αk) be a sequence of generators for G, and let Gi = 〈α1, . . . , αi〉
denote the subgroup generated by α1, . . . , αi. The composition series

1 = G0 ≤ G1 ≤ · · · ≤ Gk−1 ≤ Gk = G,

is then polycyclic, meaning that each quotient Gi+1/Gi is a cyclic group. The
sequence r(α) = (r1, . . . , rk) of relative orders for α is defined by

ri = |Gi : Gi−1|.
Each ri necessarily divides |αi|, and for i > 1 we typically have ri < |αi|. The
sequences α and r(α) allow us to uniquely represent each β ∈ G in the form

(10) β = α
x = αx1

1 · · ·αxk

k ,

where x = (x1, . . . , xk) with 0 ≤ xi < ri. The vector s(α, i) = x for which
αri
i = α

x has xj = 0 for j ≥ i, and is called a power relation, see [38, §8.1]. A
generic algorithm to compute r(α) and the s(α, i) can be found in [54, Alg. 2.1].

The vector x in (10) is the discrete logarithm or exponent vector of β. We let

X(α) = {x ∈ Zk : 0 ≤ xi < rk},
and note that the map x 7→ α

x defines a bijection from X(α) to G.

We now consider the case G = cl(O), where O is an order in a quadratic field
K of discriminant dK < −4. Let P = (p1, p2, p3, . . .) be an increasing sequence of
primes with the property that cl(O) is generated by the classes of invertible ideals
with norms in P . By Dirichlet’s density theorem [21, Thm. 9.12], any sequence
containing all but a finite set of primes works, and from [21, Cor. 7.17] we know
that some finite prefix of P actually suffices. For O = OK we may take P to be
the sequence of primes less than |dK/3|1/2, by [14, Prop. 9.5.2].

There is a unique lexicographically minimal subsequence (l1, . . . , lk) of P that
corresponds to a polycyclic sequence α = (α1, . . . , αk) for cl(O) in which αi is
represented by an ideal of norm li and r(α) has ri > 1. When li splits there are
two possibilities for αi. To fix a choice, let αi be the ideal class represented by the
unique binary quadratic form ax2 + bxy + cy2 of discriminant D = disc(O) with

a = li and b nonnegative [14, §3.4], corresponding to the ideal li = (li, (−b+
√
D)/2).

We call α the polycyclic presentation of cl(O) determined by P . We use l(α)
to denote the sequence of norms (l1, . . . , lk), but note that this also depends on P ;
each li is the least prime in P that is the norm of an ideal in αi.

We may compute α by applying [54, Alg. 2.1] to an implicit sequence of gen-
erators γ = (γ1, γ2, γ3, . . .) corresponding to the subsequence of P for which there
exists an invertible O-ideal of norm pi. The algorithm computes ri for each γi in
turn, and if we find that ri > 1, we append γi to an initially empty vector α. We
terminate when

∏

ri = h(O), a value which we assume has been precomputed.
The computation of α uses |G| = h(O) group operations in G = cl(O), and

creates a table T : X(α)→ G that stores |G| = h(O) group elements [54, Prop. 6].
Using binary quadratic forms to represent cl(O), the group operation has bit-

complexity O(log2 | disc(O)|), as shown in [5], and each element may be stored in
O(log | disc(O)|) space. Evaluating T (x), or T−1(β), has bit-complexity O(log |G|).
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5.2. Suitable presentations. When P is the sequence of all primes, the norms
l(α) for the polycyclic presentation α of cl(O) determined by P are as small as
possible. However, when working in the finite field Fp we may wish to ensure that
each norm li does not divide v = [OK : Z[πp]], as noted in Section 4.3. This is
achieved by excluding from P primes that divide v, and we call the corresponding
α the presentation of cl(O) suitable for p. This may cause us to use norms that are
slightly larger than optimal. We now show that, provided we work with a family
of orders that satisfies certain (easily met) constraints, the norms in every suitable
presentation are quite small, assuming the GRH.

Theorem 5.1. Let c3 ∈ R>0 be a fixed constant, and let F be a suitable family of

orders with the following additional property: if O is an order in F whose fraction

field K has discriminant dK , and sO denotes the square-free part of [OK : O], then
sO is coprime to 2dk and both sO and |dK | are bounded by c3.

Then under the GRH, for every O in F and every prime p that splits completely

in KO, the presentation α of cl(O) suitable for p has norms l(α) for which

max l(α) ≤ cω(v) log(ω(v) + 1),

where v is defined by 4p = t2 − v2 disc(O), the function ω(v) counts the distinct

prime factors of v, and c is an effective constant that depends only on c3.

Proof. Let O, p, v, and α be as above. Let R be the order of index s2O in OK ,
and let γ be the presentation of R determined by the increasing sequence of primes
that do not divide v. It follows from Theorem 3.3 that max l(α) ≤ max l(γ).

Let KR be the ring class field for R, and let πC(x,KR/Q) count the primes
bounded by x ∈ R>0 whose Frobenius symbol (under the Artin map) lies in the
conjugacy class C of Gal(KR/Q). We may bound [KR :Q], #Gal(KR/Q), and
disc(KR) by constants that depend only on c3, independent of O. Under the GRH,
the Chebotarëv bound of [43, Thm. 1.1] then yields

πC(x,KR/Q) ≥ c4x/ log x,
for some effective constant c4 ∈ R>0 and all x > 2, where c4 depends only on c3.
For an effective constant c depending on c3, setting x = cω(v) log(ω(v) + 1) yields
πC(x,KR/Q) > ω(v). In this case the Frobenius symbol of at least one prime not
dividing v lies in C, and this applies to every C. It follows that every class in cl(R)
contains an element whose norm is a prime bounded by x that does not divide v.
We then have max l(α) ≤ max l(γ) ≤ x = cω(v) log(ω(v) + 1), as desired. �

The family of orders in Example 4.3 satisfies the requirements of Theorem 5.1.
We note that provided log p = O(log l), we have ω(v) = O(log l/ log log l), and the
theorem then yields an O(log l) bound on the norms l(α). This is sharper than

the more general O(log2 l) bound implied by [1]. In fact, by [34, Thm. 431], one
expects ω(v) = O(log log p), which yields a bound of O(log log l log log log l).

5.3. Realizing the CM torsor. We now consider how to explicitly map cl(O)
to the torsor EllO(Fp), so that we may then compute the action of any element
or subgroup of cl(O) on any element of EllO(Fp), without needing to compute any

further isogenies. We use the presentation α of cl(O) suitable for p, and the table
T : X(α) → cl(O) described in Section 5.1. As above, we have α = ([l1], . . . , [lk]),
with norms l(α) = (l1, . . . , lk) and relative orders r(α) = (r1, . . . , rk). We assume
the modular polynomials Φl1 , . . . ,Φlk are known, since the li are small.
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To enumerate EllO(Fp) we use [54, Alg. 1.3], but we augment this algorithm
to also compute an explicit bijection φ : cl(O) → EllO(Fp) in which [a] ∈ cl(O)
corresponds to ja0 . Given j0 ∈ EllO(Fp), we compute a path of lk-isogenies

(11) j0
lk−→ j1

lk−→ j2
lk−→ · · · lk−→ jrk−1,

where the ji are distinct elements of EllO(Fp). As explained in Section 4.3, each step
in this path is computed by finding a root ji of Φ(X, ji−1) that lies in EllO(Fp).
When lk splits in K we have two choices for j1, and the correct choice may be
determined using a kernel polynomial as outlined in Section 4.3. For i > 1 we use
the polynomial Φ(X, ji−1)/(X − ji−2), which has exactly one root ji ∈ EllO(Fp).

When k > 1, the enumeration of EllO(Fp) proceeds recursively: for each ji
in (11) we compute a path of lk−1 isogenies containing rk−1 distinct j-invariants.
Eventually, every element of EllO(Fp) is enumerated exactly once [54, Prop. 5].
For each jn ∈ EllO(Fp) we also compute a vector x ∈ X(α) that describes the
path used to reach jn from j0, where xi indicates the number of steps taken on an
li-isogeny path. By correctly choosing the direction of each path, we ensure that
each jn is the image of j0 under the cl(O)-action of αx = αx1

1 · · ·αxk

k . This yields
the desired bijection φ; since α

x uniquely represents some β ∈ cl(O), we may set
φ(αx) = jn, a process facilitated by the map T : X(α)→ cl(O).

The bijection φ allows us translate any computation in the group cl(O) to the
torsor EllO(Fp). In particular, by enumerating the cyclic subgroup H ⊆ cl(O)
generated by [l], where l is an ideal of norm l, we obtain the l-isogeny cycle con-
taining j0, corresponding to the surface of one of the l-volcanoes in Figure 1. Doing
the same for each coset of H partitions EllO(Fp) into l-isogeny cycles.

This may also be applied to the order R = Z+ lO. After obtaining a bijection
from cl(R) to EllR(Fp), we enumerate the kernel of the map ϕ : cl(R)→ cl(O) from
the exact sequence of (3). Here we use one of the generators of norm l2 guaranteed
by Lemma 3.2. Enumerating the cosets of kerϕ then partitions EllR(Fp) into l2-
isogeny cycles of siblings with a common l-isogenous parent in EllO(Fp).

6. The algorithm

We now present our algorithm to compute the modular polynomial Φl using the
Chinese Remainder Theorem (CRT). Algorithm 6.1 follows the standard pattern
of a CRT-based algorithm; the details lie in Algorithm 6.2, which selects a set of
primes S, and in Algorithm 2.1, which computes Φl modulo each prime p ∈ S.

The computation of Φl ∈ Z[X,Y ] may be viewed as a special case of computing
Φl ∈ (Z/mZ)[X,Y ], where m is the product of the primes in S. The choice of S
ensures that this m is large enough to uniquely determine Φl ∈ Z[X,Y ].

Algorithm 6.1. Let l be an odd prime, letm be a positive integer, and letO = F(l)
lie in a suitable family of orders F . Compute Φl ∈ (Z/mZ)[X,Y ] as follows:

1. Compute the Hilbert class polynomial HO ∈ Z[X ].
2. Select a set of primes S with Algorithm 6.2, using l and O.
3. Perform CRT precomputation using S.
4. For each prime p ∈ S:

a. Compute Φl mod p with Algorithm 2.1, using O and HO.
b. Update CRT data using Φl mod p.

5. Perform CRT postcomputation.
6. Output Φl ∈ (Z/mZ)[X,Y ].
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The suitable family of orders F is as defined in Section 4.2, see Definition 4.2.
The polynomial HO computed in Step 1 may be obtained using any of several
algorithms whose running time is quasi-linear in disc(O), including [11, 23, 54].

6.1. Selecting primes. The primes p in the set S selected by Algorithm 6.1 must
satisfy the conditions of Theorem 4.1 in order to use them in Algorithm 2.1. We
require p to split completely in the ray class field Kl,O, but to not split completely
in the ring class field for the order Z+ l2O. Equivalently, we need p ∤ D to satisfy

(12) 4p = t2 − v2l2D,
with t ≡ 2 mod l and l ∤ v, where D = disc(O). To apply the CRT, we also require

(13)
∏

p∈S

log p ≥ 4|c|,

for every coefficient c of Φl ∈ Z[X,Y ]. From [13], we use the explicit bound

(14) Bl = 6l log l + 18l

on the logarithmic height of Φl to achieve this. We then have #S = O(l), by (12).
Heuristically, it is easy to find primes that satisfy (12). If D ≡ 1 mod 8, fix v = 2,

otherwise fix v = 1. Then, for increasing t ≡ 2 mod l with the correct parity, test
whether p = (t2 − v2l2D)/4 is prime. We expect to need O(l log l) primality tests,
and each can be accomplished in time polynomial in log l, although typically p is
small enough to make an attempted factorization more efficient. We could obtain
slightly smaller p’s by letting v vary, but it is more convenient to fix v so that we
can use the same presentation of cl(O) and cl(R) for every p. This approach is easy
to implement and very fast in practice.

However, in order to prove Theorem 1 we must take a more cautious approach.
Even assuming the GRH, we cannot guarantee we will find any primes with a fixed
value of v. On the other hand, Theorem 4.4 implies that if we construct random in-
tegers p ≤ x satisfying (12), for sufficiently large x we have p prime with probability
Ω(1/ logx), and under the GRH, x = O(l6(log l)4) is large enough. Additionally,
we would like to avoid v’s with many prime factors, so that we may more prof-
itably apply Theorem 5.1. The restriction ω(v) ≤ 2 log(log v + 3) eliminates an
asymptotically negligible proportion of the integers v ∈ [1, x] (see Lemma 8.1).

We now present Algorithm 6.2, emphasizing that its purpose is to facilitate the
proof of Theorem 1. In practice we use the heuristic procedure described above.

Algorithm 6.2. Let l be an odd prime, let D < −4 be a discriminant, and let Bl

be as in (14). Construct the set S as follows:

1. Set n← (Bl + 2 log 2)/ log(l2|D|/4) and then x← 4l2|D|n logn.
Set b← 0 and S ← ∅.

2. Set T ← 2x1/2 and V ← 2x1/2l−1|D|−1/2.

3. Repeat ⌈2N log x⌉ times:
a. Construct an integer p = (t2−v2l2D)/4 using uniformly random integers
v ∈ [1, V ] and t ∈ [1, T ], subject to l ∤ v, t ≡ 2 mod l, and t ≡ vD mod 2.

b. If ω(v) > 2 log(log v + 3) then go to Step 3d.
c. If p /∈ S and p is prime then set S ← S ∪ {p} and b← b+ log p.
d. If b > Bl + 2 log 2 then output S and terminate.

4. Set x← 2x and go to Step 2.
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In Step 3a, the integer t is generated as t = al + 2 using a uniformly random
integer a ∈ [0, V/l − 2]. The computation of ω(v) in Step 3b is performed by
factoring v. Note that #S ≤ n, and p ≤ x for all p ∈ S.
Lemma 6.3. Let F be a suitable family of orders, let l be an odd prime and let

D = disc(F(l)). Given inputs l and D, the expected running time of Algorithm 6.2

is finite. Under the GRH we also have the following:

(1) The expected running time is O(l1+ε), for any ε ∈ R>0.

(2) There is a constant c < 1 such that for all l > 7 and k ∈ Z>0, the algorithm

terminates with log x ≤ (6 + k) log l with probability at least 1− c−k log l.

Proof. To analyze Algorithm 6.2, we count the number of times Step 4 is executed,
referring to the period between each execution as an iteration. By Theorem 4.4,
the set of primes that satisfy Theorem 4.1, equivalently, those that satisfy (12), has
positive density. Here we may use the natural density, via [40, Thm. 4.3.e]. For
every fixed odd prime l, this implies a lower bound of Ω(1/ logx) on the proba-
bility that a random integer in [1, x] is a prime that satisfies (12). Each integer p
tested by Algorithm 6.2 necessarily satisfies (12), hence such a p is prime with
probability Ω(1/ logx). By Lemma 8.1 in the appendix, the probability that a
candidate p is skipped due to the test in Step 3b is o(1). This implies that for
all sufficiently large x, the probability that Algorithm 6.2 terminates in a given
iteration is bounded above zero, and the expected running time is finite.

Now assume the GRH and let l > 7. Applying Theorem 4.4 with c0 = 1, there
are at least l3(log l)3 primes p ≤ c1l

6(log l)4 that satisfy (12), for some constant
c1 ∈ R>0 that does not depend on l. Let x0 be the least value of x ≥ c1l6(log l)4).
When x = x0 we have V T/l ≤ 8c1l

3(log l)4, since |D| ≥ l2, and the probability that
a given primality test succeeds is at least 8c1/ log l ≥ c2/ log x, for some constant
c2 ∈ R>0. From the inequality (7) in the proof of Theorem 4.4, one finds that this
holds for all x ≥ x0, with the same constants. As above, Step 3b has negligible
impact, and for x ≥ x0 the probability that the algorithm terminates in a given
iteration is at least c, for some constant c ∈ R>0 independent of l and x.

We now consider the running time as a function of l, fixing an arbitrary ε ∈ R>0.
It takes O(log l) iterations to achieve x = x0, assuming that we don’t terminate
earlier, and we execute Steps 3b and 3c a total of O(l(log l)2) times during this
process. The computation of ω(v) and the primality test of p can both be achieved
in expected time subexponential in log x, by [46], yielding an O(l1+ε) bound on the
time to reach x = x0, since log x0 = O(log(l)).

For x ≥ x0, the probability of reaching each subsequent iteration declines expo-
nentially, while the cost of Steps 3b and 3c grows subexponentially, implying that
the total expected running time is also O(l1+ε), proving (1).

Claim (2) follows from the same analysis. We have log x0 = (6 + o(1)) log l and
add log 2 to log x in each iteration. Once x = x0, it takes more than k log l iterations
to reach log x > (6+ k) log l. There is a probability of at least c that the algorithm
terminates in each subsequent iteration, yielding the bound in (2). �

6.2. CRT computations. The computations involved in Steps 3, 4b, and 5 of
Algorithm 6.1 are described in detail in [54, §6]. We summarize briefly here.

Given S = {pi}, let M =
∏

pi, Mi = M/pi, and ai ≡ M−1
i mod pi. Let c

denote a coefficient of Φl ∈ Z[X,Y ], and let ci ≡ c mod pi denote the corresponding
coefficient of Φl ∈ Fpi

[X,Y ]. As in [56, §10.3], we can use fast Chinese remaindering
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to efficiently compute

(15) c ≡ ciaiMi mod M.

Provided that M > 2|c|, we can then lift the result from Z/MZ to Z.
When m is “large,” by which we mean m ≥ M > 2|c|, we compute c modM ,

lift to Z, and output the integer c as its representative modulo m. In this scenario
Step 4b simply stores the coefficients ci and Step 3 can be deferred to Step 5.

When m is “small,” by which we mean M(logm) = O(log3 l log log l), we instead
use the explicit CRT modulo m. Assuming M > 4|c|, we may apply

(16) c ≡ ciaiMi − rM mod m,

where r is the closest integer to s =
∑

ciai/pi, by [4, Thm. 3.1]. In this scenario,
we update the sum C =

∑

ciaiMi mod m and an approximation to s in Step 4b as
each ci is computed. This uses O(logm + log l) space per coefficient, rather than
the O(l log l) space used to compute c modM . The postcomputation in Step 5
determines r from the approximation to s and computes c mod m via (16).

When m is neither small nor large, a hybrid approach is used, see [54, §6.3].

6.3. Computing Φl(X,Y ) mod p. An overview of Algorithm 2.1 was given in the
introduction, we now fill in the details.

Algorithm 2.1. Let l, p, and O be as in Theorem 4.1, with h(O) ≥ l + 2, and let

R = Z+ lO. Given HO ∈ Z[X ], compute Φl ∈ Fp[X,Y ] as follows:

1. Compute the presentations α of cl(O) and α
′ of cl(R) suitable for p.

2. Find a root of j0 of HO(X) over Fp.

3. Use α to enumerate EllO(Fp) from j0 and identify the l-isogeny cycles.

4. For distinct j0, . . . , jl+1 ∈ EllO(Fp):
a. Construct a curve Ei with j(Ei) = ji such that l divides #Ei(Fp).
b. Generate a random point P ∈ Ei(Fp) of order l.
c. Use Ei and P to compute an l-isogenous curve E′

i/Fp via Algorithm 6.4.
d. If j(E′

i) 6∈ EllO(Fp) then set j′i ← (E′
i), otherwise return to Step 3b.

5. Use α
′ to enumerate EllR(Fp) from j′0 and identify the l2-isogeny cycles.

6. For i from 0 to l + 1:
a. Let ji0, . . . , jil consist of the neighbors of ji in its l-isogeny cycle in

EllO(Fp) together with the l2-isogeny cycle of EllR(Fp) containing j
′
i.

b. Compute Φl(X, ji) =
∑

k aikX
k as the product

∏

k(X − jik).
7. For k from 0 to l + 1:

a. Interpolate φk ∈ Fp[Y ] with deg φk ≤ l + 1 satisfying φk(ji) = aik.

8. Output Φl(X,Y ) =
∑

k φk(Y )Xk.

Steps 2, 6, and 7 involve standard computations with polynomials over finite fields,
as described in [56], for example. Step 1 is addressed in Section 5.1, and Steps 3
and 5 are the topic of Section 5.3. Only Step 4 merits further discussion here.

The existence of the curve Ei constructed in Step 4a is guaranteed by The-
orem 4.1. The trace of Frobenius t of the desired curve is uniquely determined
by the norm equation for p and the constraint t ≡ 2 mod l, as in (12). With
k = ji/(1728− ji), the curve E/Fp defined by y2 = x3 + 3kx + 2k has j(E) = ji,
and we may determine whether it is E or its quadratic twist that has trace t by
attempting to generate a point of order l on both curves in Step 4b.
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To obtain a point P of order l, we generate a random point Q uniformly dis-
tributed over Ei(Fp), compute the scalar multiple P = nQ, where n = (p+1− t)/l,
and then check that P 6= 0. This will be true with probability 1 − 1/l2, since
Theorem 4.1 implies that the Sylow l-subgroup of Ei(Fp) is Ei[l] ∼= Z/lZ× Z/lZ.
Thus we expect to succeed within 1 + O(1/l2) attempts, and the expected cost of
generating P is O(log p) operations in Fp.

Note that Ei(Fp) contains l+1 distinct subgroups of order l, each corresponding
to a distinct l-isogenous j-invariant. At most 2 of these lie in EllO(Fp). Thus in
Step 4d we have j(E′

i) 6∈ EllO(Fp) with probability at least 1−2/(l+1) and expect
to need 1 + O(1/l) random points P to obtain such an E′

i. The curve E′
i is the

image of an l-isogeny whose kernel is generated by P , obtained via Algorithm 6.4.

6.4. Isogenies from subgroups. Let E/Fp be an elliptic curve. Given a cyclic

subgroup H ⊆ E(Fp), Vélu’s formulas construct an isogeny E → E′ with H as its
kernel [55]. In our setting H is actually generated by an Fp-rational l-torsion point,
allowing us to work in Fp rather than an extension field. Additionally, the order l
of H is odd and p > 3, allowing us to simplify the formulas.

Algorithm 6.4. Let l > 2 and p > 3 be primes, let E/Fp be an elliptic curve
defined by y2 = x3 +Ax+B, and let P = (Px, Py) be a point on E(Fp) of order l.
Compute the image E′/Fp of the l-isogeny with kernel H = 〈P 〉 as follows:

1. Set t← 0, w ← 0, and Q← P .

2. Repeat (l − 1)/2 times:
a. Set s← 6Q2

x + 2A, and then set u← 4Q2
y + sQx.

b. Set t← t+ s, w ← w + u, and Q← Q+ P .

3. Set A′ = A− 5t and B′ = B − 7w.

4. Output the curve E′/Fp defined by y2 = x3 +A′x+B′.

The addition Q+P in Step 2b is performed using the group operation in E(Fp).
The complexity of Algorithm 6.4 is O(l) operations in Fp.

6.5. Complexity analysis. We first bound the complexity of Algorithm 2.1, as
used by Algorithm 6.1.

Lemma 6.5. Let F be a suitable family of orders that satisfies the condition of

Theorem 5.1. For an odd prime l, let O = F(l) and let D = disc(O). Let p be a

prime in the set S selected by Algorithm 6.2 on input l and D. Assuming the GRH,

the expected running time of Algorithm 2.1 is O(l2(log p)3 log log p).

Proof. We note that p = t2− v2l2D > l4, thus log l < log p, and recall that the bit-
complexity of multiplying two polynomials of degree O(l) in Fp[X ] may by bounded
by O(M(l log p)), using Kronecker substitution, see Corollaries 8.28 and 9.8 of [56].

In the analysis below we use O(M(l log p)) = O(l(log p)2 log log p), via the bound
M(n) = O(n log n log logn) for fast multiplication [50]. When computing the cost of
multiplications in Fp we use the weaker bound M(log p) = O((log p)2/(log log p)c),
where c is any constant, which is more convenient and does not change the overall
bound. We bound the cost of inversions in Fp by O(M(log p) log log p) = O((log p)2),
via [56, Cor. 11.10].

We now bound the (expected) cost of each step in Algorithm 2.1:
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1. We have h(O) < h(R) = O(l2). As described in Section 5.1, the cost of com-
puting the presentations α andα

′ is O(l2) operations in cl(O) and cl(R). Us-
ing binary quadratic forms, each group operation has complexity O((log l)2),
by [5], yielding an O(l2(log l)2) = O(l2(log p)2) bound on Step 1.

2. Using Berlekamp’s probabilistic root-finding algorithm [3, §7] with a fast
GCD computation [56, Alg. 11.4], the expected time to find a single root
of HD ∈ Fp[X ] may be bounded by O(M(l)(log l + log p)) operations in Fp,
since degHD = O(l). This implies an O(l(log p)3) bound on Step 2.

3. For p ∈ S we have ω(v) ≤ 2 log log p, yielding an O(log log p log log log p)
bound on max l(α), by Theorem 5.1. From Lemma 4.5, O((log log p)2 log p)
operations in Fp suffice to compute the action of any element of α. We
obtain an O(l(log p)3) bound on the time to enumerate EllO(Fp), which
dominates the O(l log l) time to identify the l-isogeny cycles.

4. From the discussion in Section 6.3 and the complexity of Algorithm 6.4, we
expect to use O(l2 + l log p) operations in Fp during Step 4. This yields an
O(l2(log p)2 + l(log p)3) bound.

5. Recall that the surjective map ϕ : cl(R)→ cl(O) in (3) preserves the norms
of representative ideals. The subgroup of cl(R) generated by invertible
R-ideals with norms in l(α) contains ϕ−1(cl(O)). It follows that the ele-
ments of α

′ with norm at most max l(α) generate a subgroup of size at
least h(O) > l. All but O(l) of the O(l2) steps taken when enumerating
EllR(Fp) involve these elements, and, as in Step 3, we obtain a total cost of
O(l2(log p)3) for these steps. Assuming the GRH, the remaining elements
of α′ all have norm O((log |D|)2) = O((log l)2), by [1], yielding a total cost
of O(l(log l)4(log p)3) for these steps, via Lemma 4.5. Thus the expected
time to enumerate EllR(Fp) is O(l

2(log p)3), which dominates the O(l2 log l)
time to identify the l2-isogeny cycles.

6. Using a product tree we may compute
∏

k(X−jik) in time O(M(l log p) log l),
yielding a total cost of O(l2(log p)3 log log p) for Step 6.

7. Using a product tree and fast interpolation [56, Alg. 10.11], we also obtain
a cost of O(l2(log p)3 log log p) for Step 7. Here we use the O(M(l log p))
bit-complexity of polynomial multiplication in Fp[X ] to bound the cost at
each level, rather than using the bound in [56, Cor. 10.12].

The bound O(l2(log p)3 log log p) applies to every step, completing the proof. �

We are now ready to prove our main theorem, which bounds the complexity of
using Algorithm 6.1 to compute Φl mod m, where l is an odd prime and m is any
positive integer. Recall that that the algorithm must be given a suitable family
of orders F , as defined in Definition 4.2, and to prove our complexity bound we
additionally require that F satisfy the property given in Theorem 5.1. Example 4.3
provides one such F , and there are many others that can be efficiently computed
and may yield better performance, as discussed in Section 6.6.

Theorem 1. Let F be a suitable family of orders that satisfies the condition of

Theorem 5.1. Let l be an odd prime and let m ∈ Z>0. Given inputs l, m, and

O = F(l), Algorithm 6.1 correctly computes Φl ∈ (Z/mZ)[X,Y ]. Under the GRH,

its expected running time is

O(l3 log3 l log log l),

using O(l2 log lm) expected space.
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Proof. We first argue correctness. By Lemma 6.3, Algorithm 6.2 obtains a set of
primes S that satisfy Theorem 4.1, with

∏

p∈S p > 4|c|, for every coefficient c of Φl.
We now claim that for p ∈ S, Algorithm 2.1 obtains, for each of l + 2 distinct j-
invariants ji, a list of l+ 1 distinct j-invariants jik of l-isogenous curves. Granting
the claim, we may invoke standard properties of Φl to show that Algorithm correctly
interpolates Φl ∈ Fp[X,Y ], see [57, Thm. 12.19] and [44, Thm. 5.3], for example.
The correctness of Algorithm 6.1 then follows from the CRT and/or the explicit
CRT mod m, via [4, Thm. 3.1], as described in Section 6.2.

As usual, let O = F(l) have fraction field K, and let R = Z + lO. The claim
above rests on three facts: (1) the explicit CM-action described in Section 4.3
is correct, (2) any two l2-isogenous elements of EllR(Fp) must be l-isogenous to
exactly one and the same element of EllO(Fp), and (3) each l2 isogeny cycle in R

contains exactly l −
(dK

l

)

elements. We note that (1) follows from the theory of
complex multiplication and the properties of Φl0 guaranteed by [57, Thm. 12.19],
(2) follows from the l-volcano structure, as shown by [30, §2.2] and [42, Prop. 23],
and (3) is explicitly proven in Lemma 3.1.

We now assume the GRH and bound the complexity of Algorithm 6.1. Lemma 6.3
shows that the expected size of the largest p ∈ S is O(log l), and we have #S = O(l).
Applying [54, §6] yields an O(l2 log lm) space bound for m ∈ Z>0.

By [54, Thm. 1], the expected time to compute HO in Step 1 is O(l2+ε), and
Lemma 6.3 gives an expected time of O(l1+ε) for Step 2, for any ε ∈ R>0. Addi-
tionally, we have log p > (6 + k) log l for all p ∈ S with probability approaching 1
exponentially as k increases. The time complexity of all remaining steps in Algo-
rithm 6.1, including calls to Algorithm 2.1, depends polynomially on log p, hence
we may bound the expected running time assuming log p = O(log l).

Regardless of the exact cutoff used, if M(logm) = O((log l)3 log log l) whenever
we consider m “small”, we may apply the results of [54, §6] to obtain a bound
of O(l3(log l)3 log log l) on the expected time for all CRT computations, for every
m ∈ Z>0. Since F satisfies the property of Theorem 5.1, we may apply Lemma 6.5
with log p = O(log l) to obtain an O(l2(log l)3 log log l) bound on the expected time
of each call to Algorithm 2.1. Applying #S = O(l) completes the proof. �

6.6. Selecting a suitable order. The family of orders used in Theorem 1 suffices
to prove the complexity bound, but we can simplify the implementation and improve
performance with some additional constraints on the order O. Let us fix a bound
b < l (say b = 256, for large l), and a small prime l0 < l (typically l0 = 2). As
above, R is the order of index l in O, and OK is the maximal order. We seek an
order O for which the following hold:

(1) The conductor of O is b-smooth, h(OK) ≤ b, and h(O) ≥ l + 2.
(2) The groups cl(O) and cl(R) are either generated by a single ideal with norm

l0, or by two ideals with norms l0 and l1, where l1 ≤ b is ramified.

The first condition ensures that O is suitable for l and allows us to to obtain a
root of HO(X) using only polynomials of degree at most b. This is accomplished
by finding a root of HOK

(X) and descending to the proper level of the l′-isogeny
volcano for each prime l′ ≤ b dividing the conductor of O, as in [54, §4.1]. The
second condition allows us to realize the torsors for cl(O) and cl(R) either by
walking a single l0-isogeny cycle, or by walking two l0-isogeny cycles connected by
a single l1-isogeny. In the latter case we orient the two cycles by computing one
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extra l1-isogeny. In both cases we avoid the need to ever distinguish the action of
an ideal and its inverse, simplifying the computation described in Section 5.3.

Subject to these conditions, we also wish to minimize h(O) ≥ l + 2. To find

such orders we enumerate fundamental discriminants dK < −4 with
(dK

l1

)

= 1 and

h(dK) ≤ b, and for each dK we select b-smooth integers u for which h(u2dK) is
slightly greater than l+ 2 and test whether condition (2) holds. In practice we are
almost always able to obtain O with h(O) within a few percent of l + 2.

7. Modular functions other than j

Let g be a modular function of level N , and let l ∤ N be a prime. We define the
modular polynomial Φg

l of level l for g as the minimal polynomial of the function
g(lz) over the field C(g). Much of the theory for the classical modular polynomial
of the j-function generalizes to g. In particular, if the Fourier expansion of g has
integer coefficients then we have Φg

l ∈ Z(g)[X ]. The following lemma gives us
further information in this case.

Lemma 7.1. Let g be a modular function and let l be a prime not dividing the level

of g. Suppose that Φg
l has integer coefficients. If g is invariant under the action of

either S =
(

0
1

−1
0

)

∈ SL2(Z) or M =
(

0
1

−l
0

)

∈ GL2(Q), then we have

Φg
l (X,Y ) = Φg

l (Y,X).

Proof. The proof follows the symmetry proof for Φl(X,Y ), see [44, Thm. 5.3]. �

The polynomial Φg
l should not be confused with the minimal polynomial of g as

an element of C(j), which we denote Ψg(X, J). The polynomial Ψg depends only
on g, not l, and we assume it is known (for our purposes, it effectively defines g).
Given Ψg, our goal is to efficiently compute Φg

l for a prime l ∤ N .
To apply our method we require that Φg

l have degree l + 1 (in both X and Y ).
The degree of Φg

l can be explicitly computed using [12, §5.2], and we note that this
degree must be l + 1 when degJ Ψg = 1 (this applies to the function γ2 and the
Weber f-function considered in Sections 7.1 and 7.3), and also when degJ Ψg = 2
and g is invariant under the Atkin-Lehner involution (this applies to the various
modular functions considered in Section 7.4).

We wish to adapt Algorithm 2.1 to compute Φg
l ∈ Fp[X ]. We may then apply

Algorithm 6.1 to recover Φg
l over the integers or modulo some integer m via the

Chinese Remainder Theorem. To simplify matters, we place some additional re-
strictions on the order O that we use in Algorithm 6.1. Specifically, we require that
there is a generator τ ∈ H of O = Z[τ ] with the property that

g(τ) ∈ KO,

where KO is the ring class field for the order O. We say that g is a class invariant

for O in this case. If we now take a prime p that splits completely in KO and E/Fp

an elliptic curve with endomorphism ring O, then the polynomial

Ψg(X, j(E)) ∈ Fp[X ]

has at least one root in Fp. Indeed, the value h = g(τ) mod p, for a prime p|p
of KO, satisfies Ψg(h, j(E)) = 0.

We can analyze how many roots the polynomial Ψg(X, j(E)) has in Fp using a
combination of Deuring lifting and Shimura reciprocity. We refer to [10, §6.7] for a
detailed description of the techniques involved and only state the result here. Let
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gi : H → C be the roots of Ψg(X, j). The functions gi are modular of level N ,
and they are permuted by the Galois group GL2(Z/NZ) of the field of all modular
functions of level N . To state our result, we will associate a matrix A ∈ GL2(Z/NZ)
to the Frobenius morphism of E as follows. Fix an isomorphism End(E)

∼−→ O and
let πp ∈ O be the image of the Frobenius morphism. If πp has minimal polynomial
X2 − tX + p of discriminant ∆ = t2 − 4p, then we put

(17) A =

(

t−2
2

∆−1
2

2 t+2
2

)

∈ GL2(Z/NZ).

Theorem 7.2. Let g be a modular function with the property that Ψg has integer

coefficients and is separable modulo a prime p that does not divide the level of N . If

E/Fp is an elliptic curve with endomorphism ring O and j0 = j(E), then we have

#{x ∈ Fp : Ψg(x, j0) = 0} = #{gi : Ψg(gi, j) = 0 and gAi = gi},
where A is the matrix in (17).

Proof. See [10, §6.7]. �

To check if gAi = gi holds is a standard computation, see [32] for example.
Although the matrix A has norm p and trace t and therefore depends on p, we can
often derive a result that merely depends on a congruence condition on p mod N .
Lemma 7.3 in Section 7.3 gives an example.

7.1. Computing modular polynomials for γ2. Let γ2(z) denote the unique
cube root of j(z) that has integral Fourier expansion. It was known to Weber
already that γ2 is a modular function of level 3, see [58, §125], and γ2 is a class
invariant for O whenever 3 ∤ disc(O). We have Ψγ2(X, j) = X3 − j, and in this
simple case there is no need to apply Theorem 7.2; if we restrict to p = 2 mod 3
then every element of Fp has a unique cube root. Thus we can compute Φγ2

l with
only minor modifications to Algorithm 6.1:

• Use a suitable order O with 3 ∤ disc(O) and select only primes p ≡ 2 mod 3.
• After Step 5 of Algorithm 2.1, replace each element of EllO(Fp) and EllR(Fp)

with its unique cube root in Fp.

These changes suffice, but we can also improve the algorithm’s performance.
First, Lemmas 2–3 and Corollary 9 of [13] yield the bound

(18) Bγ2

l = 2l log l + 8l

on the logarithmic height of Φγ2

l (conjecturally, Bγ2

l = 2l log l+4l for all l > 60, but
we do not use this). Thus we can reduce the height bound Bl in (14) by a factor of
approximately 3 when computing Φγ2

l . This reduces the number of primes p ∈ S,
and the corresponding number of calls Algorithm 6.1 makes to Algorithm 2.1.

Second, we may take advantage of the fact that Φγ2

l is sparser than Φl. As noted
in [22, p. 37], the coefficient of XaY b in Φγ2

l is zero unless

(19) a+ lb ≡ l + 1 mod 3.

The proof of this relation goes back to Weber: the argument given in [58, p. 266]
generalizes immediately to γ2. It allows us to reduce the number of points we use
to interpolate Φγ2

l by a factor of approximately 3.
Let n = ⌈(l+ 1)/3⌉+ 1. When selecting a suitable order O as in Section 6.6, we

now only require that h(O) ≥ n, and further modify Algorithm 2.1 as follows:



22 REINIER BRÖKER, KRISTIN LAUTER, AND ANDREW V. SUTHERLAND

• In Steps 4-6 we construct just n polynomials Φγ2

l (X, 3
√
ji) of degree l + 1.

• In Step 7 we interpolate l+1 polynomials φ∗k of degree less than n by writing
φk = Y cφ∗k(Y

3), with c ∈ {0, 1, 2} satisfying c+ lk ≡ l+ 1 mod 3.

This reduces the cost of all the significant components of Algorithm 2.1 by a factor
of approximately 3. The reduction in the cost of the interpolations in Step 7 is
actually greater than this, since its complexity is superlinear in the degree.

The total size of Φγ2

l is approximately 9 times smaller than Φl, and with the
optimizations above, the time to compute it is effectively reduced by the same
factor. A small amount of additional time is required to compute the cube roots of
the elements in EllO(Fp) and EllR(Fp), but even this can be avoided.

Provided we have already computed Φγ2

l′ for some small values of l′ (specifically,
for the primes l0 and l1 of Section 6.6), we may use these polynomials to directly
enumerate sets Ellγ2

O (Fp) and Ellγ2

R (Fp) containing the cube roots of the elements in
EllO(Fp) and EllR(Fp) respectively. We need only compute the cube roots of j0 and
j′0 as starting points. This third optimization yields a small but useful improvement
in the case of γ2, and plays a critical role in the examples that follow.

7.2. Recovering Φl from Φγ2

l . Having computed Φγ2

l , we note that Φl may be
computed via [22, Eq. 23]:

(20) Φl(X
3, Y 3) = Φγ2

l (X,Y )Φγ2

l (X,ωY )Φγ2

l (X,ω2Y ),

where ω = e2πi/3. For computation in Z, or modulo m, it is more convenient to
express Φγ2

l in terms of polynomials P0, P1, P2 ∈ Z[X,Y ] satisfying

(21) Φγ2

l (X,Y ) = P0(X
3, Y 3)Y b + P1(X

3, Y 3)XY + P2(X
3, Y 3)X2Y 2−b,

where b = 2 when l ≡ 1 mod 3, and b = 0 when l ≡ 2 mod 3. We then have

(22) Φl = P 3
0 Y

b + (P 3
1 − 3P0P1P2)XY + P 3

2X
2Y 2−b.

Using Kronecker substitution and fast multiplication, it is possible to evaluate (22)
in time O(l3(log l)2+ε), which is asymptotically faster than Algorithm 6.1. This
suggests that we might more efficiently compute Φl by recovering it from Φγ2

l , but
we do not find this to be true in practice: it actually takes longer to evaluate (22)
than it does to compute Φl directly. This can be explained by two factors. First,
the Fp-operations used in Algorithm 2.1 effectively have unit cost for word-size
primes, making it faster than Theorem 1 would suggest for all but very large l.
Secondly, the evaluation of (22) becomes extremely memory intensive when l is
large. However, if we are computing Φl mod m with logm ≪ l log l, then the time
to apply (22) modulo m is negligible. In this situation it is quite advantageous to
derive Φl mod m from Φγ2

l mod m, as may be seen in Table 3 of Section 8.

7.3. Computing modular polynomials for the Weber f function. We now
consider the classical Weber function [58, p. 114] defined by

f(z) = ζ−1
48

η((z + 1)/2))

η(z)
,

where ζ48 = e
πi
24 and η(z) is the Dedekind eta function. This is a modular function

of level 48 that satisfies γ2 = (f24 − 16)/f8, see [58, p. 179], thus we have

Ψf(X, j) = (X24 − 16)3 −X24j.
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Asymptotically, we expect to be able to reduce the height bound Bl by a factor of

degX Ψf/ degj Ψ
f = 72 when computing Φf

l . One can derive an explicit bound along
the lines of (18), but this tends to overestimate the O(l) term quite significantly,
so in practice for large l we use the heuristic bound

(23) Bf
l =

1

12
l log l +

1

5
l (l > 2400),

which has been verified for every prime l between 2400 and 10000. The modular

polynomial Φf
l is also sparse: the coefficient of XaY b can be nonzero only when

(24) la+ b ≡ l + 1 mod 24,

as shown in [58, p. 266]. Thus Φf
l is roughly 72·24 = 1728 times smaller than Φl. By

applying the technique described above for γ2, mutatis mutandis, we can actually

compute Φf
l more than 1728 times faster than Φl for large values of l, as may be

seen in Table 2 of Section 8. When applying Algorithm 6.1, we now insist that the
order O have discriminant D ≡ 1 mod 8 and 3 ∤ D, since the Weber function yields
class invariants in (at least) this case, see [32], for example.

Since −f will also yield class invariants for O, the polynomial Ψf(X, j0) will
always have at least two roots in Fp. The following lemma tells us that we can
impose a congruence condition on p to ensure that we have exactly two roots.

Lemma 7.3. Let p ≡ 11 mod 12 be prime and let j0 be the j-invariant of an

elliptic curve E/Fp with End(E) isomorphic to an imaginary quadratic order O
with discriminant D ≡ 1 mod 8 and 3 ∤ D. Then Ψf(X, j0) ∈ Fp[X ] has exactly

two roots in Fp, and these are of the form x0 and −x0.
Note that if the lemma applies to O, it also applies to the order R of index l in O.

Proof. We only have to apply Theorem 7.2. The action of A on the roots of
Ψf(X, j0) is computed in [10, §6.7], and this yields the lemma. �

Given a j-invariant j0 ∈ Fp that corresponds to j(τ0) ∈ KO, we cannot readily
determine which of the roots x0 and −x0 of Ψf(X, j0) actually corresponds to f(τ0).
The functions f and −f yield distinct class invariants, but they share the same

modular polynomials, since Φf
l(X,Y ) = Φf

l(−X,−Y ) = Φ−f
l (X,Y ), by (24).

Thus for the initial j0 obtained in Step 2 of Algorithm 2.1, it does not matter
whether we pick x0 or −x0 as a root of Ψf(X, j0), and we need not be concerned
with making a consistent choice for each prime p. However it is critical that while

computing Φf
l mod p we make a consistent choice of sign for each j-invariant we

convert to an “f-invariant” (a root of Ψf(X, ji) mod p). This makes it impractical
to enumerate j-invariants and convert them en masse. Instead, as described for

γ2 above, we use modular polynomials Φf
l′ for small l′ to enumerate sets EllfO(Fp)

and EllfR(Fp) from starting points x0 and x′0 satisfying Ψf(x0, j0) = Ψf(x′0, j
′
0) = 0.

This ensures that signs are chosen consistently within each of these sets; we only
need to check that the sign choices for the two sets are consistent with each other.

To do so, we use the fact that the coefficient of X lY l in Φf
l(X,Y ) is −1. This

is shown for Φl in [58, §69], and the same argument applies to Φf
l . We modify

Algorithm 2.1 to compute the coefficient of X lY l in Φf
l mod p in between Steps 5

and 6. We do this twice, switching the signs in EllfO(Fp) the second time, and expect
exactly one of these computations to yield −1, thereby determining a consistent
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choice of signs. This test should be regarded as a heuristic, since we do not rule out
the possibility that both choices produce −1. However, in the course of extensive
testing this has never happened, and we suspect that it cannot. If it does occur,
the algorithm can detect this and simply choose a different prime p.

7.4. Eta quotients and Atkin modular functions. For a prime N , let

fN(z) = Ns/2

(

η(Nz)

η(z)

)s

,

where s = 24/ gcd(12, N − 1). These are modular functions of level N , and the
polynomials ΨN = ΨfN that relate fN to j are sometimes called canonical modular
polynomials [19, p. 418]. The functions fN are closely related to the functions ws

N

considered in [25], and in fact ΨfN = Ψws
N , so what follows applies to both. When

N is 2, 3, 5, 7, or 13, we have degj ΨN = 1 and can adapt Algorithm 6.1 to compute

polynomials ΦfN
l for odd primes l ∤ N . We assume here that N is also odd.

We have degX ΨN = N+1, hence we can reduce the height bound Bl by a factor
of approximately N + 1. When selecting a suitable order O, we require that N is
prime to the conductor and splits into prime ideals that are distinct in cl(O). This
assumption is stronger than we need, but it simplifies the implementation. For the
primes p ∈ S we require that N is prime to v, where 4p = t2 − v2 disc(O).

As shown in [48], the polynomial ΨN (X, j0) mod p has the same splitting type
as ΦN(X, j0) mod p. In particular, for j0 ∈ EllO(Fp) (or j0 ∈ EllR(Fp)) it has
exactly two roots, say x1, and x2. These correspond to N -isogenies as follows:
the j-invariants j1 and j2 of the two elliptic curves that are N -isogenous to j0 are
uniquely determined by the relations ΨN (Ns/x1, j1) = 0 and ΨN (Ns/x2, j2). Here
the transformation x 7→ Ns/x realizes the Atkin-Lehner involution on fN (z).

Starting points x0 and x′0 corresponding to j0 and j′0 are chosen as follows.
Let x′0 be a root of ΨN (X, j′0), chosen arbitrarily, and let j′1 be determined by
ΨN(Ns/x′0, j

′
1) = 0. We then use Vélu’s formulas to obtain the j-invariant j1

of the elliptic curve that is l-isogenous to j′1 (there is exactly one and it lies in
EllO(Fp), since j

′
1 ∈ EllR(Fp) is on the floor of its l-volcano). Finally, x0 is uniquely

determined by the constraints ΨN(x0, j0) = 0 and ΨN (Ns/x0, j1) = 0.
We next consider double eta-quotients [26, 27] of composite level N = p1p2:

ws
p1,p2

(z) =

(

η( z
p1

)η( z
p2

)

η( z
p1p2

)η(z)

)s

,

where p1 6= p2 are primes and s = 24/ gcd(24, (p1 − 1)(p2 − 1)). For (p1, p2) in
{

(2, 3), (2, 5), (2, 7), (2, 13), (3, 5), (3, 7), (3, 13), (5, 7)
}

,

the polynomial Ψp1,p2
= Ψws

p1,p2 has degree 2 in j and we can compute Φ
ws

p1,p2

l for
odd primes l ∤ N . Our restrictions on O are analogous to those for fN or ws

N : we
require that N is prime to the conductor and that both p1 and p2 split into distinct
prime ideals in cl(O). Our requirements for p ∈ S are as above. We can reduce the
height bound Bl by a factor of approximately (p1 + 1)(p2 + 1)/2.

With the double eta-quotients, the polynomial Ψp1,p2
(X, j0) has four roots, cor-

responding to four distinct isogenies of (composite) degreeN . Each root xi uniquely
determines the j-invariant of a curve N -isogenous to E/Fp as the unique root of
Ψp1,p2

(xi, J)/(J − j0) ∈ Fp[J ]. The double eta-quotients are invariant under the
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Atkin-Lehner involution, so we need not transform xi. With this understanding,
the procedure for selecting x0 and x′0 is as above.

In some cases one can obtain smaller modular polynomials by considering suit-
able roots of the functions defined above. For example, a sixth root of f3 also
yields class invariants (this is shown for w2

3 in [25]), and the corresponding modular
polynomials are sparser and of lower height (by a factor of 6).

Our algorithm also applies to the Atkin modular functions, which we denote AN .
These are (optimal) modular functions forX+

0 (N) invariant under the Atkin-Lehner
involution, see [22, 47] for further details. The polynomials ΨAN are known as
Atkin modular polynomials, and are available in computer algebra systems such as
Magma [15] and Sage [52]. For primes N < 32, and alsoN in the set {41, 47, 59, 71},
we have degj Ψ

AN = 2 and can compute polynomials ΦAN

l for odd primes l 6= N .
This is done in essentially the same way as with the double eta-quotients, except
that now N is prime and ΨAN (X, j0) has just two roots, rather than four. For these
AN , the height bound can be reduced by a factor of approximately (N + 1)/2.

Finally, we note an alternative approach applicable to both eta-quotients and
the Atkin modular functions. If we choose O so that the prime factors of N are
all ramified, then there is actually a unique x0 ∈ Fp corresponding to each j0
in EllO(Fp) and EllR(Fp), that is, Ψg(X, j0) has exactly one root in Fp. In this
scenario we can simply enumerate j-invariants as usual and then replace each ji
with a corresponding xi. This is not as efficient and places stricter requirements
on O, but it allows us to compute Φg

l without needing to know Φg
l′ for any l

′. This
provides a convenient way to “bootstrap” the process. In fact all of the modular
polynomials Φg

l we have considered can eventually be obtained via Algorithm 6.1,
starting from the polynomials Ψg and Φ2.

8. Computational results

We have applied our algorithm to compute polynomials Φg
l for all the modular

functions discussed in Section 7 and every applicable l up to 1000. For the functions
j, γ2, and f we have gone further, and present details of these computations here.

8.1. Implementation. The algorithms described in this paper were implemented
using the GNU C/C++ compiler [29] and the GMP library [33] on a 64-bit Linux
platform. Multiplication of large polynomials is handled by the zn poly library
developed by Harvey [36, 35].

The hardware platform included four 3.0 GHz AMD Phenom II processors, each
with four cores and 8GB of memory. Up to 16 cores were used in the larger tests,
with essentially linear speedup. For consistency we report total CPU times, noting
that in a multi-threaded implementation, disk and network I/O can be overlapped
with CPU activity so that all computations are CPU bound.

As a practical optimization, we do not use the Hilbert class polynomial HO in
Step 1 of Algorithm 6.1. Instead, we compute the minimal polynomial of some
more favorable class invariant, as described in [28], which is then used to obtain
a j-invariant. Additionally, as noted in Section 6.6, it suffices to compute a class
polynomial for the maximal order containing O. With these optimizations the time
spent computing class polynomials is completely negligible (well under one second).

Another important optimization is the use of polynomial gcds to accelerate root-
finding when walking paths in the isogeny graph, a technique developed in [28, §2].
This greatly accelerates the enumeration of the sets EllO(Fp) and EllR(Fp) in Steps
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l |D| n Bl bl size (MB) time (s) MB/s

101 216407 184 6511 5751 2.65 2.25 1.18
211 393047 369 14949 13359 27.6 14.4 1.92
307 837407 531 22748 20483 90.5 51.0 1.78
401 626431 725 30640 27642 211 130 1.62
503 3076175 870 39421 35686 431 264 1.63
601 461351 1011 48027 43542 755 485 1.56
701 1254871 1229 56953 51731 1227 863 1.42
809 916599 1376 66731 60743 1926 1410 1.37
907 986855 1517 75712 69017 2759 2010 1.37

1009 2871983 1728 85157 77653 3857 2910 1.32
2003 91696103 3410 180941 166095 33120 31800 1.04
3001 248329639 5122 281635 259272 117256 143000 0.82
4001 72135279 6939 385300 355707 287783 363000 0.79
5003 67243191 8373 491355 454429 577740 749000 0.77

Table 1. Computations of Φl over Z.

3 and 5 of Algorithm 6.1. As a result, most of the computation (typically over 75%)
is spent interpolating polynomials in Steps 6 and 7.

8.2. Computations over Z. Tables 1 and 2 provide performance data for com-

putations of Φl and Φf
l using Algorithm 6.1. For each l we list:

• The discriminant D of the suitable order O.
• The number of CRT primes n = #S used.
• The height bound Bl in bits and the actual bit-size bl of the largest coefficient.

• The total size of Φl (resp. Φ
f
l) in megabytes (1MB = 106 bytes), computed

as the sum of the coefficient sizes, with symmetric terms counted only once.
• The total CPU time, in seconds. This includes the time to select O.
• The throughput, defined as the total size divided by the total CPU time.

In the last column of Table 1 one can see the quasilinear performance of Algo-
rithm 6.1 as a function of the size of Φl, and the constant factors appear to be
advantageous relative to other algorithms. For example, computing Φ1009 with the
evaluation/interpolation algorithm of [24] uses approximately 100000 CPU seconds
(scaled to our hardware platform), while Algorithm 6.1 needs less than 3000.

The first five rows of Table 2 may be compared to the corresponding rows of
Table 1 to see the performance advantage gained when computing modular poly-
nomials for the Weber f function rather than j. As expected, these polynomials are
approximately 1728 times smaller, and the speedup achieved by Algorithm 6.1 is
even better; we already achieve a speedup of around 1800 when l = 1009, and this
increases to to over 3000 when l = 5003. This can be explained by the superlinear
complexity of interpolation, as well as the superior cache utilization achieved by

condensing the sparse coefficients of Φf
l , as described in Section 7.1.

As noted in Section 7.3, we used a heuristic height bound for the computations
in Table 2. The gap between the values of bl and Bl in each case gives us high
confidence in the results (the probability of this occurring by chance is negligible).
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l |D| n Bl bl size (MB) time (s) MB/s

1009 1391 33 1275 1099 2.34 1.59 1.47
2003 37231 58 2542 2271 19.5 10.7 1.81
3001 88879 88 3822 3611 69.6 47.7 1.46
4001 53191 112 5201 4801 167 116 1.45
5003 30959 136 6613 6228 339 241 1.41
6007 463039 170 8052 7530 595 493 1.21
7001 150631 192 9496 8876 957 701 1.37
8009 315031 220 10979 10292 1453 1200 1.21
9001 179159 240 12453 11974 2123 1790 1.18
10009 207919 265 13964 13453 2953 2630 1.12
20011 1114879 537 29485 27860 24942 27600 0.90
30011 2890639 795 45649 43304 87660 123000 0.71
40009 22309439 1032 62210 59439 214273 335000 0.64
50021 37016119 1316 79116 78077 508571 677000 0.75
60013 27334823 1594 96165 91733 747563 1150000 0.65

Table 2. Computations of Φf
l over Z.

8.3. Computations modulo m. Table 3 gives timings for computations of Φl

modulo 256-bit and 1024-bit primes m. The values of m are arbitrary, and, in par-
ticular, they are not of a form suitable for direct computation with Algorithm 2.1.
Instead, Algorithm 6.1 derives Φl mod m from the computations of Φl mod p, for
p ∈ S, using the explicit CRT. The same set S is used as when computing Φl over Z,
so the running time is largely independent of m, but using the explicit CRT yields
a noticeable speedup when logm is significantly smaller than 6l log l. For example,
when l = 1009 it takes approximately 2300 seconds to compute Φl mod m, for the
m listed in Table 3, versus about 2900 seconds to compute Φl over Z.

In addition to computing Φl mod m directly, we may also obtain Φl mod m by
computing Φγ2

l mod m and applying (22), as discussed in Section 7.1. The time to
compute Φγ2

l mod m is essentially independent of m, but the time to apply (22) is
not. Even so, for the 256-bit and 1024-bit m that we used, computing Φl mod m
in this fashion is much faster than computing Φl mod m directly; for l = 1009

we achieve times of 223 and 403 seconds, respectively. As with Φf
l , this speedup

improves superlinearly, and for large l it exceeds the expected factor of 9.
When computing Φγ2

l mod m we used the height bound Bγ2

l = 2l log l+8l given
by (18). The timings in Table 3 would be further improved if the heuristic bound
Bγ2

l = 2l log l + 4l were used instead.
The computations listed in Tables 1 and 2 were practically limited by space, not

time. The largest computations took only a day or two when run on 16 cores, but
required nearly a terabyte of disk storage. However when computing Φl mod m,
we can handle larger values of l without using an excessive amount of space. When
l = 20011, for example, the total size of Φl is over 30 terabytes, but we are able to
compute Φl modulo a 256-bit integer m using less than 10 gigabytes.



28 REINIER BRÖKER, KRISTIN LAUTER, AND ANDREW V. SUTHERLAND

m = 2256 − 189 m = 21024 − 105

l Φl Φγ2

l Φ∗
l Φl Φγ2

l Φ∗
l

101 2.12 0.16 0.47 2.16 0.17 1.53
211 12.4 1.64 3.26 12.7 1.68 7.95
307 43.3 4.82 8.34 44.0 4.93 19.3
401 109 10.9 17.9 111 11.1 38.0
503 215 23.3 34.0 219 23.8 66.4
601 390 40.5 55.8 395 41.4 110
701 695 69.1 90.2 703 70.3 158
809 1130 105 134 1150 107 222
907 1590 158 194 1600 160 306

1009 2300 223 267 2320 225 403
2003 23900 2400 2590 24100 2440 3210
3001 106000 9250 9650 107000 9360 11200
4001 283000 25100 25900 287000 25400 28600
5003 647000 57000 58300 653000 60200 65700
10009 7180000 681000 687000 7320000 688000 713000

Table 3. Computations of Φl and Φγ2

l modulo m.

Columns Φ∗

l
list the total time to obtain Φl by computing Φγ2

l
and applying (22).
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Appendix

Lemma 8.1. Let c be a real number greater than c0 = log2 e ≈ 1.44. Let πc(x) count
the integers n ∈ [3, x] for which ω(n) ≥ c log logn. Then πc(x) = O

(

x(log x)1−c/c0
)

.

Proof. Let d(n) count the divisors of n. From [34, Thm. 320] we have
∑

n≤x

2ω(n) ≤
∑

n≤x

d(n) = x log x+O(x).

At most O
(

x(log x)1−c/c0
)

terms on the LHS have n ≥ √x and ω(n) ≥ c log log x.

Applying
√
x = O

(

x(log x)1−c/c0
)

and log log
√
x

log log x = 1 + o(1) yields the lemma. �
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