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Abstract
We study the problem of learning a distribution from samples, when the underlying distribution

is a mixture of product distributions over discrete domains. This problem is motivated by several
practical applications such as crowdsourcing, recommendation systems, and learning Boolean func-
tions. The existing solutions either heavily rely on the fact that the number of mixtures is finite or
have sample/time complexity that is exponential in the number of mixtures. In this paper, we in-
troduce a polynomial time/sample complexity method for learning a mixture of r discrete product
distributions over {1, 2, . . . , `}n, for general ` and r. We show that our approach is consistent and
further provide finite sample guarantees.

We use recently developed techniques from tensor decompositions for moment matching. A
crucial step in these approaches is to construct certain tensors with low-rank spectral decompo-
sitions. These tensors are typically estimated from the sample moments. The main challenge in
learning mixtures of discrete product distributions is that the corresponding low-rank tensors can-
not be obtained directly from the sample moments. Instead, we need to estimate a low-rank matrix
using only off-diagonal entries, and estimate a tensor using a few linear measurements. We give an
alternating minimization based method to estimate the low-rank matrix, and formulate the tensor
estimation problem as a least-squares problem.

1. Introduction

Consider the following generative model for sampling from a mixture of product distributions over
discrete domains. We use r to denote the number of components in the mixture, ` to denote the size
of the discrete output alphabet in each coordinate, and n to denote the total number of coordinates.
Each sample belongs to one of r components, and conditioned on its component q ∈ {1, . . . , r} the
n dimensional discrete sample y ∈ {1, . . . , `}n is drawn from some distribution πq. Precisely, the
model is represented by the non-negative weights of the componentsw = [w1 . . . wr] ∈ Rr that sum
to one, and the r distributions Π = [π1 . . . πr] ∈ R‘n×r. We use an `n dimensional binary random
vector x to represent a sample y. For x = [x1 . . . xn] ∈ {0, 1}‘n, the i-th coordinate xi ∈ {0, 1}‘ is
an ` dimensional binary random vector such that

xi = ej if and only if yi = j ,

where ej for some j ∈ {1, . . . , `} is the standard coordinate basis vector.
When a sample is drawn, the type of the sample is drawn from w = [w1 . . . wr] such that

it has type q with probability wq. Conditioned on this type, the sample is distributed according to
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πq ∈ R‘n, such that yi’s are independent, hence it is a product distribution, and distributed according
to

(πq)(i;j) = P(yi = j | y belong to component q) ,

where (πq)(i;j) is the
(
(i− 1)`+ j

)
-th entry of the vector π(q). Note that using the binary encoding,

E[x|its type is q] = πq, and E[x] =
∑

q wqπq. Also, we let π(i) ∈ R‘×r represent the distribution

in the i-th coordinate such that π(i)
j;q = (πq)(i;j) = P(yi = j|y belongs to component q). Then, the

discrete distribution can be represented by the matrix Π ∈ R‘n×r = [π(1);π(2); . . . ;π(n)] and the
weights w = [w1, . . . , wr].

This mixture distribution (of `-wise discrete distributions over product spaces) captures as spe-
cial cases the models used in several problems in domains such as crowdsourcing (Dawid and Skene,
1979), genetics (Sridhar et al., 2007), and recommendation systems (Tomozei and Massoulié, 2010).
For example, in the crowdsourcing application, this model is same as the popular Dawid and Skene
(Dawid and Skene, 1979) model: xi represents answer of the i-th worker to a multiple choice ques-
tion (or task) of type q ∈ [r]. Given the ground truth label q, each of the worker is assumed to
answer independently. The goal is to find out the “quality” of the workers (i.e. learn Π) and/or to
learn the type of each question (clustering).

We are interested in the following two closely related problems:

• Learn mixture parameters {πq}q∈{1;:::;r} and {wq}q∈{1;:::;r} accurately and efficiently.

• Cluster the samples accurately and efficiently?

Historically, however, different algorithms have been proposed depending on which question is
addressed. Also, for each of the problems, distinct measures of performances have been used to
evaluate the proposed solution. In this paper, we propose an efficient method to address both ques-
tions.

The first question of estimating the underlying parameters of the mixture components has been
addressed in (Kearns et al., 1994; Freund and Mansour, 1999; Feldman et al., 2008), where the
error of a given algorithm is measured as the KL-divergence between the true distribution and the
estimated distribution. More precisely, a mixture learning algorithm is said to be an accurate learn-
ing algorithm, if it outputs a mixture of product distribution such that the following holds with
probability at least 1− δ:

DKL

(
X || X̂

)
≡
∑
x

P(X = x) log(P(X = x)/P(X̂ = x)) ≤ ε,

where ε, δ ∈ (0, 1) are any given constants, and X, X̂ ∈ {0, 1}n‘ denote the random vectors dis-
tributed according to the true and the estimated mixture distribution, respectively. Furthermore, the
algorithm is said to efficient if its time complexity is polynomial in n, r, `, 1/ε, and log(1/δ).

This Probably Approximately Correct (PAC) style framework was first introduced by Kearns et
al. (Kearns et al., 1994), where they provided the first analytical result for a simpler problem of
learning mixtures of Hamming balls, which is a special case of our model with ` = 2. However, the
running time of the proposed algorithm is super-polynomial O((n/δ)log r) and also assumes that
one can obtain the exact probability of a sample y. Freund and Mansour (Freund and Mansour,
1999) were the first to addressed the sample complexity, but for the restrictive case of r = 2 and
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` = 2. For this case, their method has running time O(n3:5 log3(1/δ)/ε5) and sample complex-
ity O(n2 log(1/δ)/ε2). Feldman, O’Donnell, and Servedio in Feldman et al. (2008) generalized
approach of Freund and Mansour (1999) to arbitrary number of types r and arbitrary number of out-
put labels `. For general `, their algorithm requires running time scaling as O((n`‘/ε)r

3
). Hence,

the proposed algorithm is an efficient learning algorithm only for finite values of r = O(1) and
` = O(1).

A breakthrough in Feldman et al.’s result is that their result holds for all problem instances, with
no dependence on the minimum weight wmin or the condition number σ1(ΠW 1=2)/σr(ΠW

1=2),
where σi(ΠW 1=2) is the i-th singular value of ΠW 1=2, and W is a r × r diagonal matrix with the
weights w in the diagonals. However, this comes at a cost of running time scaling exponentially in
both r3 and `, which is unacceptable in practice for any value of r beyond two. Further, the running
time is exponential for all problem instances, even when the problem parameters are well-behaved,
with finite condition number.

In this paper, we alleviate this issue by proposing an efficient algorithm for well-behave mixture
distributions. In particular, we give an algorithm with polynomial running time, and prove that it
gives ε-accurate estimate for any problem instance that satisfy the following two conditions: a)
the weight wq is strictly positive for all q; and b) the condition number σ1(ΠW 1=2)/σr(ΠW

1=2) is
bounded as per hypotheses in Theorem 3.

The existence of an efficient learning algorithm for all problem instances and parameters still
remains an open problem, especially in the PAC learning setting.

r, ` = O(1) General r and `
σ1(ΠW 1=2)/σr(ΠW

1=2) = poly(`, r, n) WAM(Feldman et al., 2008), Algorithm 1 Algorithm 1
General cond. number WAM (Feldman et al., 2008) Open

Table 1: Landscape of efficient learning algorithms

The second question finding the clusters has been addressed in (Chaudhuri et al., 2007; Chaud-
huri and Rao, 2008). Chaudhuri et al. in (Chaudhuri et al., 2007) introduced an iterative clustering
algorithm but their method is restricted to the case of a mixture of two product distributions with
binary outputs, i.e. r = 2 and ` = 2. Chaudhuri and Rao in Chaudhuri and Rao (2008) pro-
posed a spectral method for general r, `. However, for the algorithm to correctly recover cluster
of each sample w.h.p, the underlying mixture distribution should satisfy a certain ‘spreading’ con-
dition. Moreover, the algorithm need to know the parameters characterizing the ‘spread’ of the
distribution, which typically is not available apriori. Although it is possible to estimate the mixture
distribution, once the samples are clustered, Chaudhuri et al. provides no guarantees for estimating
the distribution. As is the case for the first problem, for clustering also, we provide an efficient al-
gorithm for general `, r, under the assumption that the condition number of ΠW 1=2 to be bounded.
This condition is not directly comparable with the spreading condition assumed in previous work.
Our algorithm first estimates the mixture parameters and then uses the distance based clustering
method of Arora and Kannan (2001).

Our method for estimating the mixture parameters is based on the moment matching technique
from Anandkumar et al. (2012a), Arora et al. (2012b). Typically, second and third (and sometimes
fourth) moments of the true distribution are estimated using the given samples. Then, using the spec-
tral decomposition of the second moment one develops certain whitening operators that reduce the
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higher-order moment tensors to orthogonal tensors. Such higher order tensors are then decomposed
using a power-method based method (Anandkumar et al., 2012b) to obtain the required distribution
parameters.

While such a technique is generic and applies to several popular models (Hsu and Kakade, 2013;
Anandkumar et al., 2012b), for many of the models the moments themselves constitute the “correct”
intermediate quantity that can be used for whitening and tensor decomposition. However, because
there are dependencies in the `-wise model (for example, x1 to x‘ are correlated), the higher-order
moments are “incomplete” versions of the intermediate quantities that we require (see (1), (2)).
Hence, we need to complete these moments so as to use them for estimating distribution parameters
Π,W .

Completion of the “incomplete” second moment, can be posed as a low-rank matrix completion
problem where the block-diagonal elements are missing. For this problem, we propose an alter-
nating minimization based method and, borrowing techniques from the recent work of Jain et al.
(2013), we prove that alternating minimization is able to complete the second moment exactly. We
would like to note that our alternating minimization result also solves a generalization of the low-
rank+diagonal decomposition problem of Saunderson et al. (2012). Moreover, unlike trace-norm
based method of Saunderson et al. (2012), which in practice is computationally expensive, our
method is efficient, requires only one Singular Value Decomposition (SVD) step, and is robust to
noise as well.

We reduce the completion of the “incomplete” third moment to a simple least squares problem
that is robust as well. Using techniques from our second moment completion method, we can
analyze an alternating minimization method also for the third moment case as well. However, for
the mixture problem we can exploit the structure to reduce the problem to an efficient least squares
problem with closed form solution.

Next, we present our method (see Algorithm 1) that combines the estimates from the above
mentioned steps to estimate the distribution parameters Π,W (see Theorem 2, Theorem 3). After
estimating the model parameters Π, and W , we also show that the KL-divergence measure and the
clustering error measure can also be shown to be small. In fact the excess error vanishes as the
number of samples grow (see Corollary 3.1, Corollary 3.2).

2. Related Work

Learning mixtures of distributions is an important problem with several applications such as clus-
tering, crowdsourcing, community detection etc. One of the most well studied problems in this
domain is that of learning a mixture of Gaussians. There is a long list of interesting recent results,
and discussing the literature in detail is out side of the scope of this paper. Our approach is in-
spired by both spectral and moment-matching based techniques that have been successfully applied
in learning a mixture of Gaussians (Vempala and Wang, 2004; Arora and Kannan, 2001; Moitra and
Valiant, 2010; Hsu and Kakade, 2013).

Another popular mixture distribution arises in topic models, where each word xi is selected from
a `-sized dictionary. Several recent results show that such a model can also be learned efficiently
using spectral as well as moments based methods (Rabani et al., 2012; Anandkumar et al., 2012a;
Arora et al., 2012a). However, there is a crucial difference between the general mixture of product
distribution that we consider and the topic model distribution. Given a topic (or question) q, each
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of the words xi in the topic model have exactly the same probability. That is, π(i) = π for all
i ∈ {1, . . . , n}. In contrast, for our problem, π(i) 6= π(j), i 6= j, in general.

Learning mixtures of discrete distribution over product spaces has several practical applications
such as crowdsourcing, recommendation systems, etc. However, as discussed in the previous sec-
tion, most of the existing results for this problem are designed for the case of small alphabet size
` or the number of mixture components r. For several practical problems (Karger et al., 2013), `
can be large and hence existing methods either do not apply or are very inefficient. In this work,
we propose first provably efficient method for learning mixture of discrete distributions for general
` and r.

Our method is based on tensor decomposition methods for moment matching that have re-
cently been made popular for learning mixture distributions. For example, Hsu and Kakade (2013)
provided a method to learn mixture of Gaussians without any separation assumption. Similarly,
Anandkumar et al. (2012a) introduced a method for learning mixture of HMMs, and also for topic
models. Using similar techniques, another interesting result has been obtained for the problem of
independent component analysis (ICA) (Arora et al., 2012b; Goyal and Rademacher, 2012; Hsu and
Kakade, 2013).

Typically, tensor decomposition methods proceed in two steps. First, obtain a whitening oper-
ator using the second moment estimates. Then, use this whitening operator to construct a tensor
with orthogonal decomposition, which reveals the true parameters of the distribution. However, in
a mixture of `-way distribution that we consider, the second or the third moment do not reveal all
the “required” entries, making it difficult to find the standard whitening operator. We handle this
problem by posing it as a matrix completion problem and using an alternating minimization method
to complete the second moment. Our proof for the alternating minimization method closely follows
the analysis of Jain et al. (2013). However, Jain et al. (2013) handled a matrix completion problem
where the entries are missing uniformly at random, while in our case the block diagonal elements
are missing.

2.1. Notation

Typically, we denote a matrix or a tensor by an upper-case letter (e.g. M ) while a vector is denoted
by a small-case letter (e.g. v). Mi denotes the i-th column of matrix M . Mij denotes the (i, j)-th
entry of matrix M and Mijk denotes the (i, j, k)-th entry of the third order tensor M . AT denotes
the transpose of matrix A, i.e., ATij = Aji. [k] = {1, . . . , k} denotes the set of first k integers. ei
denotes the i-th standard basis vector.

If M ∈ R‘n×d, then M (m) (1 ≤ m ≤ n) denotes the m-th block of M , i.e., (m − 1)` + 1
to m`-th rows of M . The operator ⊗ denotes the outer product. For example, H = v1 ⊗ v2 ⊗ v3

denote a rank-one tensor such that Habc = (v1)a · (v2)b · (v3)c. For a symmetric third-order tensor
T ∈ Rd×d×d, define an r × r × r dimensional operation with respect to a matrix R ∈ Rd×r as

T [R,R,R] ≡
∑

i1;i2;i3∈[d]

Ti1;i2;i3Ri1;j1Ri2;j2Ri3;j3(ej1 ⊗ ej2 ⊗ ej3).

‖A‖ = ‖A‖2 denotes the spectral norm of a tensor A. That is, ‖A‖2 = maxx;‖x‖=1A[x, . . . , x].

‖A‖F denotes the Frobenius norm of A, i.e., ‖A‖F =
√∑

i1;i2;:::;ip
A2
i1i2:::ip

. We use M = UΣV T

to denote the singular value decomposition (SVD) of M , where σr(M) denotes the r-th singular
value of M . Also, wlog, assume that σ1 ≥ σ2 · · · ≥ σr.
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3. Main results

In this section, we present our main results for estimating the mixture weightswq, 1 ≤ q ≤ r and the
probability matrix Π of the mixture distribution. Our estimation method is based on the moment-
matching technique that has been popularized by several recent results (Anandkumar et al., 2012a;
Hsu et al., 2012; Hsu and Kakade, 2013; Anandkumar et al., 2012b). However, our method differs
from the existing methods in the following crucial aspects: we propose (a) a matrix completion
approach to estimate the second moments from samples (Algorithm 2); and (b) a least squares
approach with an appropriate change of basis to estimate the third moments from samples (Algo-
rithm 3). These approaches provide robust algorithms to estimating the moments and might be of
independent interest to a broad range of applications in the domain of learning mixture distributions.

The key step in our method is estimation of the following two quantities:

M2 ≡
∑
q∈[r]

wq
(
πq ⊗ πq

)
= ΠWΠT ∈ R‘n×‘n , (1)

M3 ≡
∑
q∈[r]

wq
(
πq ⊗ πq ⊗ πq

)
∈ R‘n×‘n×‘n , (2)

where W is a diagonal matrix s.t. Wqq = wq.
Now, as is standard in the moment based methods, we exploit spectral structure of M2,M3 to

recover the latent parameters Π and W . The following theorem presents a method for estimating
Π,W , assuming M2,M3 are estimated exactly:

Theorem 1 Let M2,M3 be as defined in (1), (2). Also, let M2 = UM2ΣM2U
T
M2

be the eigen-

value decomposition of M2. Now, define G = M3[UM2Σ
−1=2
M2

, UM2Σ
−1=2
M2

, UM2Σ
−1=2
M2

]. Let V G =

[vG1 v
G
2 . . . vGr ] ∈ Rr×r, λGq , 1 ≤ q ≤ r be the eigenvectors and eigenvalues obtained by the orthog-

onal tensor decomposition of G (see (Anandkumar et al., 2012b)), i.e., G =
∑r

q=1 λ
G
q (vGq ⊗ vGq ⊗

vGq ). Then,

Π = UM2Σ
1=2
M2

V G ΛG , and W = (ΛG)−2,

where ΛG ∈ Rr×r is a diagonal matrix with ΛGqq = λGq .

The above theorem reduces the problem of estimation of mixture parameters Π,W to that of esti-
matingM2 andM3. Typically, in moment based methods, tensors corresponding toM2 andM3 can
be estimated directly using the second moment or third moment of the distribution, which can be
estimated efficiently using the provided data samples. In our problem, however, the block-diagonal
entries of M2 and M3 cannot be directly computed from these sample moments. For example, the
expected value of a diagonal entry at j-th coordinate is E[xxT ]j;j = E[xj ] =

∑
q∈[r]wqΠj;q, where

as the corresponding entry for M2 is (M2)j;j =
∑

q∈[r]wq(Πj;q)
2.

To recover these unknown ` × ` block-diagonal entries of M2, we use an alternating mini-
mization algorithm. Our algorithm writes M2 in a bi-linear form and solves for each factor of the
bi-linear form using the computed off-diagonal blocks of M2. We then prove that this algorithm
exactly recovers the missing entries when we are given the exact second moment. For estimating
M3, we reduce the problem of estimating unknown block-diagonal entries of M3 to a least squares
problem that can be solved efficiently.
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Concretely, to get a consistent estimate of M2, we pose it as a matrix completion problem,
where we use the off-block-diagonal entries of the second moment, which we know are consistent,
to estimate the missing entries. Precisely, let

Ω2 ≡
{

(i, j) ⊆ [`n]× [`n] | d i
`
e 6= dj

`
e
}
,

be the indices of the off-block-diagonal entries, and define a masking operator as:

PΩ2(A)i;j ≡
{
Ai;j , if (i, j) ∈ Ω2 ,

0 , otherwise .
(3)

Now, using the fact thatM2 has rank at most r, we find a rank-r estimate that explains the off-block-
diagonal entries using an alternating minimization algorithm defined in Section 4.

M̂2 ≡ MATRIXALTMIN

 2

|S|
∑

t∈[|S|=2]

xtx
T
t ,Ω2, r, T

 , (4)

where {x1, . . . , x|S|} is the set of observed samples, and T is the number of iterations. We use the
first half of the samples to estimate M2 and the rest to estimate the third-order tensor.

Similarly for the tensor M3, the sample third moment does not converge to M3. However, the
off-block diagonal entries do converge to the corresponding entries of M3. That is, let

Ω3 ≡
{

(i, j, k) ⊆ [`n]× [`n]× [`n] | d i
`
e 6= dj

`
e 6= dk

`
e 6= d i

`
e
}
,

be the indices of the off-block-diagonal entries, and define the following masking operator:

PΩ3(A)i;j;k ≡
{
Ai;j;k , if (i, j, k) ∈ Ω3 ,

0 , otherwise .
(5)

Then, we have consistent estimates for PΩ3(M3) from the sample third moment.
Now, in the case of M3, we do not explicitly compute M3. Instead, we estimate a r × r × r

dimensional tensor G̃ ≡ M3[ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

] (cf. Theorem 1), using a least
squares formulation that uses only off-diagonal blocks of PΩ(M3). That is,

Ĝ ≡ TENSORLS
( 2

|S|

|S|∑
t=1+|S|=2

xt ⊗ xt ⊗ xt,Ω3, ÛM2 , Σ̂M2

)
,

where M̂2 = ÛM2ŜM2Û
T
M2

is the singular value decomposition of the rank-r matrix M̂2. After
estimation of Ĝ, similar to Theorem 1, we use the whitening and tensor decomposition to estimate
Π,W . See Algorithm 1 for a pseudo-code of our approach.

Remark: Note that we use a new set of |S|/2 samples to estimate the third moment. This sub-
sampling helps us in our analysis, as it ensures independence of the samples x|S|=2+1, . . . , x|S| from
the output of the alternating minimization step (4).

The next theorem shows that the moment matching approach (Algorithm 1) is consistent. Let
Ŵ = diag([ŵ1, . . . , ŵr]) and Π̂ = [π̂1, . . . , π̂r] denote the estimates obtained using Algorithm 1.
Also, let µ denote the block-incoherence of M2 = ΠWΠT as defined in (7).
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Algorithm 1 Spectral-Dist: Moment method for Mixture of Discrete Distribution
1: Input: Samples {xt}t∈S
2: M̂2 ← MATRIXALTMIN

((
2
|S|
∑

t∈[|S|=2] xtx
T
t

)
,Ω2, r, T

)
(see Algorithm 2)

3: Compute eigenvalue decomposition of M̂2 = ÛM2Σ̂M2Û
T
M2

4: Ĝ← TENSORLS
((

2
|S|
∑|S|

t=|S|=2+1 xt ⊗ xt ⊗ xt
)
,Ω3, ÛM2 , Σ̂M2

)
(see Algorithm 3)

5: Compute a rank-r orthogonal tensor decomposition
∑

q∈[r] λ̂
G
q (v̂Gq ⊗ v̂Gq ⊗ v̂Gq ) of Ĝ, using

Robust Power-method of (Anandkumar et al., 2012b)
6: Output: Π̂ = ÛM2Σ̂

1=2
M2
V̂ GΛ̂G, Ŵ = (Λ̂Gq )−2, where (V̂ G)T = [v̂G1 . . . v̂Gr ]

Theorem 2 Assume that the sample second and the third moments are exact, i.e.,
PΩ2( 2

|S|
∑

t∈[|S|=2] xtx
T
t ) = PΩ2(M2) and PΩ3( 2

|S|
∑|S|

t=|S|=2+1 xt⊗xt⊗xt) = PΩ3(M3). Also, let
T = ∞ for the MATRIXALTMINprocedure and let n ≥ C σ1(M2)5µ5r3:5/σr(M2)5, for a global
constant C > 0. Then, there exists a permutation P over [r] such that, for all q ∈ [r],

πq = π̂P (q) and wq = ŵP (q) .

We now provide a finite sample version of the above theorem.

Theorem 3 (Finite sample bound) There exists positive constants C0, C1, C2, C3 and a permu-
tation P on [r] such that if n ≥ C0 σ1(M2)4:5µ4r3:5/σr(M2)4:5 then for any εM ≤ C1√

r+‘
and for a

large enough sample size:

|S| ≥ C2
µ6 r6

wmin

σ1(M2)6n3

σr(M2)9

log(n/δ)

ε2
M

,

the following holds for all q ∈ [r], with probability at least 1− δ:

|ŵP (q) − wq| ≤ εM ,

‖π̂P (q) − πq‖ ≤ εM

√
r wmax σ1(M2)

wmin
.

Further, Algorithm 1 runs in time poly
(
n, `, r, 1/ε, log(1/δ), 1/wmin, σ1(M2)/σr(M2)

)
.

Note that, the estimated π̂i’s and ŵi’s using Algorithm 1 do not necessarily define a valid probability
measure: they can take negative values and might not sum to one. We can process the estimates
further to get a valid probability distribution, and show that the estimated mixture distribution is
close in Kullback-Leibler divergence to the original one. Let εw = C3εM/

√
wmin. We first set

w̃′q =

{
ŵq if ŵq ≥ εw ,
εw if ŵq < εw ,

and set mixture weights w̃q = w̃′q/
∑

q′ w̃
′
q′ . Similarly, let ε� = C3εM

√
�1(M2) r(1+"M�r(M2))

wmin
and

set

π̃′(j)q;p =

{
π̂

(j)
q;p if π̂(j)

q;p ≥ ε� ,
ε� if π̂(j)

q;p < ε� ,

8



LEARNING MIXTURES OF DISCRETE PRODUCT DISTRIBUTIONS USING SPECTRAL DECOMPOSITIONS

Algorithm 2 MATRIXALTMIN: Alternating Minimization for Matrix Completion
1: Input: S2 = 2

|S|
∑

t∈{1;:::;|S|=2} xtx
T
t , Ω2, r, T

2: Initialize `n× r dimensional matrix U0 ← top-r eigenvectors of PΩ2(S2)
3: for all τ = 1 to T − 1 do
4: Û�+1 = arg minU ‖PΩ2(S2)− PΩ2(UUT� )‖2F
5: [U�+1R�+1] = QR(Ût+1) (standard QR

decomposition)
6: end for
7: Output: M̂2 = (ÛT )(UT−1)T

Algorithm 3 TENSORLS: Least Squares method for Tensor Estimation

1: Input: S3 = 2
|S|
∑

t∈{|S|=2+1;:::;|S|}(xt ⊗ xt ⊗ xt), Ω3, ÛM2 , Σ̂M2

2: Define operator ν̂ : Rr×r×r → R‘n×‘n×‘n as follows

ν̂ijk(Z) =

{∑
abc Zabc(ÛM2Σ̂

1=2
M2

)ia(ÛM2Σ̂
1=2
M2

)jb(ÛM2Σ̂
1=2
M2

)kc, if d i‘e 6= d
j
‘e 6= d

k
‘ e 6= d

i
‘e,

0, otherwise.
(6)

3: Define Â : Rr×r×r → Rr×r×r s.t. Â(Z) = ν̂(Z)[ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]

4: Output: Ĝ = arg minZ ‖Â(Z)− PΩ3(S3)[ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]‖2F

for all q ∈ [r], p ∈ [`], and j ∈ [n], and normalize it to get valid distributions π̃(j)
q;p = π̃

′(j)
q;p /

∑
p′ π̃
′(j)
q;p′ .

Let X̂ denote a random vector in {0, 1}‘n obtained by first selecting a random type q with probabil-
ity w̃q and then drawing from a random vector according to π̃q.

Corollary 3.1 (KL-divergence bound) Under the hypotheses of Theorem 3, there exists a pos-
itive constant C such that if |S| ≥ Cn7r7µ6σ1(M2)7`12wmax log(n/δ)/(σr(M2)9η6w2

min), then
Algorithm 1 with the above post-processing produces a r-mixture distribution X̂ that, with proba-
bility at least 1− δ, satisfies : DKL(X||X̂) ≤ η.

Moreover, we can show that the “type” of each data point can also be recovered accurately.

Corollary 3.2 (Clustering bound) Define:

ε̃ ≡ max
i;j∈[r]

{
‖πi − πj‖2 − 2‖Π‖F

√
2 log(r/δ)

(‖πi − πj‖+ 2
√

2 log(r/δ))r1=2

}
.

Under the hypotheses of Theorem 3, there exists a positive numerical constant C such that if ε̃ > 0
and |S| ≥ Cµ6r7n3σ1(M2)7wmax log(n/δ)/(w2

minσr(M2)9ε̃2), then with probability at least 1−δ,
the distance based clustering algorithm of (Arora and Kannan, 2001) computes a correct clustering
of the samples.

4. Algorithm

9
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In this section, we describe the proposed approach in detail and provide finite sample perfor-
mance guarantees for each components: MATRIXALTMIN and TENSORLS. These results are cru-
cial in proving the finite sample bound in Theorem 3. As mentioned in the previous section, the
algorithm first estimates M2 using the alternating minimization procedure. Recall that the sec-
ond moment of the data given by S2 cannot estimate the block-diagonal entries of M2. That is,
even in the case of infinite samples, we only have consistency in the off-block-diagonal entries:
PΩ2(S2) = PΩ2(M2). However, to apply the “whitening” operator to the third order tensor (see
Theorem 1) we need to estimate M2.

In general it is not possible to estimate M2 from PΩ2(M2) as one can fill any entries in the
block-diagonal entries. Fortunately, we can avoid such a case since M2 is guaranteed to be of
rank r � `n. However, even a low-rank assumption is not enough to recover back M2. For
example, if M2 = e1e

T
1 , then PΩ2(M2) = 0 and one cannot recover back M2. Hence, we make

an additional standard assumption that M2 is µ-block-incoherent, where a symmetric rank-r matrix
A with singular value decomposition A = USV T is µ-block-incoherent if the operator norm of all
`× r blocks of U are upper bounded by∥∥U (i)

∥∥
2
≤ µ

√
r

n
, for all i ∈ [n] , (7)

where U (i) is an `× r sub matrix of U which is defined by the block from the ((i− 1)`+ 1)-th row
to the (i`)-th row. For a given matrix M , the smallest value of µ that satisfy the above condition is
referred to as the block-incoherence of M .

Now, assuming that M2 satisfies two assumptions, r � `n and M2 is µ-block incoherent, we
provide an alternating minimization method that provably recovers M2. In particular, we model M2

explicitly using a bi-linear form M2 = Û (t+1)(U (t))T with variables Û (t+1) ∈ R‘n×r and U (t) ∈
R‘n×r. We iteratively solve for Û (t+1) for fixed U (t), and use QR decomposition to orthonormalize
Û (t+1) to get U (t+1). Note that the QR-decomposition is not required for our method but we use
it only for ease of analysis. Below, we give the precise recovery guarantee for the alternating
minimization method (Algorithm 2).

Theorem 4 (Matrix completion using alternating minimization) For an `n×`n symmetric rank-
r matrix M with block-incoherence µ, we observe off-block-diagonal entries corrupted by noise:

M̂ij =

{
Mij + Eij if d i‘e 6= d

j
‘e ,

0 otherwise.

Let M̂ (�) denote the output after τ iterations of MATRIXALTMIN. If µ ≤ (σr(M)/σ1(M))
√
n/(32 r1:5),

the noise is bounded by ‖PΩ2(E)‖2 ≤ σr(M)/32
√
r, and each column of the noise is bounded by

‖PΩ2(E)i‖ ≤ σ1(M)µ
√

3r/(8n `), ∀i ∈ n`, then after τ ≥ (1/2) log
(
2‖M‖F /ε

)
iterations of

MATRIXALTMIN, the estimate M̂ (�) satisfies:

‖M − M̂ (�)‖2 ≤ ε+
9 ‖M‖F

√
r

σr(M)
‖PΩ2(E)‖2 ,

for any ε ∈ (0, 1). Further, M̂ (�) is µ1-incoherent with µ1 = 6µσ1(M2)/σr(M2).

For estimating M2, the noise E in the off-block-diagonal entries are due to insufficient sample size.
We can precisely bound how large the sampling noise is in the following lemma.

10
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Lemma 5 Let S2 = 2
|S|
∑

t∈{1;:::;|S|=2} xtx
T
t be the sample co-variance matrix. Also, let E =

‖PΩ2(S2)− PΩ2(M2)‖2. Then,

‖E‖2 ≤ 8

√
n2 log(n`/δ)

|S|
.

Moreover, ‖Ei‖2 ≤ 8
√
n log(1/δ)/|S|, for all i ∈ [n`].

The above theorem shows that M2 can be recovered exactly from infinite many samples, if n ≥
�2�1(M)2r1.5

�r(M)2
. Furthermore, using Lemma 5, M2 can be recovered approximately, with sample size

|S| = O(n2(`+ r)/σr(M)2). Now, recovering M2 = ΠWΠT recovers the left-singular space
of Π, i.e., range(U ). However, we still need to recover W and the right-singular space of Π, i.e.,
range(V ).

To this end, we can estimate the tensor M3, “whiten” the tensor using ÛM2Σ̂
−1=2
M2

(recall that,

M̂2 = ÛM2Σ̂M2Û
T
M2

), and then use tensor decomposition techniques to solve for V,W . However,
we show that estimating M3 is not necessary, we can directly estimate the “whitened” tensor by
solving a system of linear equations. In particular, we design an operator Â : Rr×r×r → Rr×r×r

such that Â(G̃) ≈ PΩ3(S3)[ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

], where

G̃ ≡
∑
q∈[r]

1
√
wq

(R3eq ⊗R3eq ⊗R3eq), and R3 ≡ Σ̂
−1=2
M2

ÛTM2
ΠW 1=2. (8)

Moreover, we show that Â is nearly-isometric. Hence, we can efficiently estimate G̃, using the
following system of equations:

Ĝ = arg min
Z
‖Â(Z)− PΩ3(S3)[ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]‖2F . (9)

Let µ and µ1 denote the block-incoherence of M2 and M̂2 respectively, as defined in (7).

Theorem 6 Let G̃, Ĝ be as defined in (8), (9), respectively. If n ≥ 144r3σ1(M2)2/σr(M2)2, then
the following holds with probability at least 1− δ:

‖Ĝ− G̃‖F ≤ 24µ3
1µr

3:5σ1(M2)3=2

n
√
wminσr(M2)3=2

εM2 + 2
∥∥∥PΩ3(M3 − S3)[ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
∥∥∥
F
,

for εM2 ≡ (1/σr(M2))‖M̂2 −M2‖2.

We can also prove a bound on the sampling noise for the third order tensor in the following lemma.

Lemma 7 Let S3 = 2
|S|
∑

t∈{|S|=2+1;:::;|S|}(xt ⊗ xt ⊗ xt). Then, there exists a positive numerical
constant C such that, with probability at least 1− δ,

∥∥∥PΩ3(M3 − S3)[ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
∥∥∥
F
≤ C r3 µ3

1 n
3=2

σr(M2)3=2

√
log(1/δ)

|S|
.

11
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Next, we apply the tensor decomposition method of (Anandkumar et al., 2012b) to decompose
obtained tensor, Ĝ, and obtain R̂3, Ŵ that approximates R3 and W . We then use the obtained
estimate R̂3, Ŵ to estimate Π; see Algorithm 1 for the details. In particular, using Theorem 4 and
Theorem 6, Algorithm 1 provides the following estimate for Π:

Π̂ = ÛM2Σ̂
1=2
M2
R̂3Ŵ

−1=2 ≈ ÛM2Û
T
M2

Π.

Now, ‖Π̂−Π‖2 can be bounded by using the above equation along with the fact that range(ÛM2) ≈
range(Π). See Section A.6 for a detailed proof.

5. Applications in Crowdsourcing

Crowdsourcing has emerged as an effective paradigm for solving large-scale data-processing tasks
in domains where humans have an advantage over computers. Examples include image classifi-
cation, video annotation, data entry, optical character recognition, and translation. For tasks with
discrete choice outputs, one of the most widely used model is the Dawid-Skene model introduced in
Dawid and Skene (1979): each expert j is modeled through a r×r confusion matrix π(j) where π(j)

pq

is the probability that the expert answers q when the true label is p. This model was developed to
study how different clinicians give different diagnosis, even when they are presented with the same
medical chart. This is a special case, with ` = r, of the mixture model studied in this paper.

Historically, a greedy algorithm based on Expectation-Maximization has been widely used for
inference (Dawid and Skene, 1979; Smyth et al., 1995; Hui and Zhou, 1998; Sheng et al., 2008), but
with no understanding of how the performance changes with the problem parameters and sample
size. Recently, spectral approaches were proposed and analyzed with provable guarantees. For
a simple case when there are only two labels, i.e. r = ` = 2, Ghosh et al. in Ghosh et al.
(2011) and Karger et al. in Karger et al. (2011b) analyzed a spectral approach of using the top
singular vector for clustering under Dawid-Skene model. The model studied in these work is a

special case of our model with r = ` = 2 and w = [1/2, 1/2], and π(j) =

[
pj 1− pj

1− pj pj

]
.

Let q = (1/n)
∑

j∈[n] 2(pj − 1)2, then it follows that σ1(M2) = (1/2)n and σ2(M2) = (1/2)nq.
It was proved in Ghosh et al. (2011); Karger et al. (2011b) that if we project each data point xi
onto the second singular vector of S2 the empirical second moment, and make a decision based on
the sign of this projection, we get good estimates with the probability of misclassification scales as
O(1/σr(M2)).

More recently, Karger et al. in Karger et al. (2011a) proposed a new approach based on a
message-passing algorithm for computing the top singular vectors, and improved this misclassifi-
cation bound to an exponentially decaying O(e−C�r(M2)) for some positive numerical constant C.
However, these approaches highly rely on the fact that there are only two ground truth labels, and
the algorithm and analysis cannot be generalized. These spectral approaches has been extended to
general r in Karger et al. (2013) with misclassification probability scaling asO(r/σr(M2)), but this
approach still uses the existing binary classification algorithms as a black box and tries to solve a
series of binary classification tasks.

Furthermore, existing spectral approaches use S2 directly for inference. This is not consis-
tent, since even if infinite number of samples are provided, this empirical second moment does not
converge to M2. Instead, we use recent developments in matrix completion to recover M2 from

12
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samples, thus providing a consistent estimator. Hence, we provide a robust clustering algorithm for
crowdsourcing and provide estimates for the mixture distribution with provable guarantees. Corol-
lary 3.2 shows that with large enough samples, the misclassification probability of our approach
scales as O(re−C(r �r(M2)2=n)) for some positive constant C. This is an exponential decay and is a
significant improvement over the known error bound of O(r/σr(M2)).

6. Conclusion

We presented a method for learning a mixture of `-wise discrete distribution with distribution pa-
rameters Π,W . Our method shows that assuming n ≥ Cr3κ4:5 and the number of samples to be
|S| ≥ C1(n r7 κ9 log(n/δ))/(w2

minε
2
Π), we have ‖Π̂−Π‖2 ≤ εΠ where κ = σ1(M2)/σr(M2), and

M2 = ΠWΠT .
Note that our algorithm does not require any separability condition on the distribution, is consis-

tent for infinite samples, and is robust to noise as well. That is, our analysis can be easily extended
to the noisy case, where there is a small amount of noise in each sample.

Our sample complexity bounds include the condition number of the distribution κwhich implies
that our method requires κ to be at most poly(`, r). This makes our method unsuitable for the
problem of learning Boolean functions (Feldman et al., 2008). However, it is not clear if is possible
to design an efficient algorithm with sample complexity independent of the condition number. We
leave further study of the dependence of sample complexity on the condition number as a topic for
future research.

Another drawback of our method is that n is required to be n = Ω(r3). We believe that this
condition is natural, as one cannot recover the distribution for n = 1. However, establishing tight
information theoretic lower bound on n (w.r.t. `, r) is still an open problem.

For the crowdsourcing application, the current error bound for clustering translates intoO(e−Cnq
2
)

when r = 2. This is not as strong as the best known error bound of O(e−Cnq), since q is always
less than one. The current analysis and algorithm for clustering needs to be improved to get an error
bound of O(re−Cr�r(M2)) for general r such that it gives optimal error rate for the special case of
r = 2.

The sample complexity also depends on 1/wmin, which we believe is unnecessary. If there is
a component with small mixing weight, we should be able to ignore such component smaller than
the sample noise level and still guarantee the same level accuracy. To this end, we need an adaptive
algorithm that detects the number of components that are non-trivial and this is a subject of future
research.

More fundamentally, all of the moment matching methods based on the spectral decompositions
suffer from the same restrictions. It is required that the underlying tensors have rank equal to the
number of components, and the condition number needs to be small. However, the problem itself is
not necessarily more difficult when the condition number is larger.

Finally, we believe that our technique of completion of the second and the higher order moments
should have application to several other mixture models that involve `-wise distributions, e.g., mixed
membership stochastic block model with `-wise connections between nodes.
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Appendix

Appendix A. Proofs

In this section, we give detailed proofs for all the key theorems/lemmata that we require to prove
our main result (Theorem 4, Theorem 6).

A.1. Proof of Theorem 4

We analyze each iteration and show that we get closer to the optimal solution up to a certain noise
level at each step. To make the block structures explicit, we use index (i, a) for some i ∈ [n] and
a ∈ [`] to denote (i− 1)`+ a ∈ [`n]. The least squares update gives:

U (t+1) = arg min
V ∈R`n×`n

∑
i;j∈[n];a;b∈[‘];i 6=j

(
M̂(i;a);(j;b) −

(
V (Û (t))T

)
(i;a);(j;b)

)2
.

Setting the gradient to zero, we get:

−2
∑

j 6=i;b∈[‘]

(
M(i;a);(j;b) + E(i;a);(j;b) −

〈
U

(t+1)
(i;a) , Û

(t)
(j;b)

〉)
Û

(t)
(j;b) = 0 ,

for all i ∈ [n] and a ∈ [`]. Here, U (t)
(j;b) is a r-dimensional column vector representing the

((j − 1)`+ b)-th row of U (t). Let M = USUT be the singular value decomposition of M . The
r-dimensional column vector U (t+1)

(i;a) can be written as:

U
(t+1)
(i;a) = (B(i;a))−1C(i;a) S U(i;a) + (B(i;a))−1N(i;a)

= DS U(i;a)︸ ︷︷ ︸
power iteration

− (B(i;a))−1
(
B(i;a)D − C(i;a)

)
S U(i;a)︸ ︷︷ ︸

error due to missing entries

+ (B(i;a))−1N(i;a)︸ ︷︷ ︸
error due to noise

, (10)

where,

B(i;a) =
∑

j 6=i;j∈[n];b∈[‘]

Û
(t)
(j;b)(Û

(t))T(j;b) ∈ Rr×r

C(i;a) =
∑

j 6=i;j∈[n];b∈[‘]

Û
(t)
(j;b)U

T
(j;b) ∈ Rr×r

D =
∑

j∈[n];b∈[‘]

Û
(t)
(j;b)U

T
(j;b) ∈ Rr×r

N(i;a) =
∑

j 6=i;j∈[n];b∈[‘]

E(i;a);(j;b)Û
(t)
(j;b) ∈ Rr×1 .

Note that, the above quantities are independent of index a, but we carry the index for uniformity of
notation.

In a matrix form of dimension `n× r, we use Fmiss ∈ R‘n×r to denote the error due to missing
entries and Fnoise ∈ R‘n×r to denote the error due to the noise such that

U (t+1) = M Û (t) − F (t+1)
miss + F

(t+1)
noise , and

Û (t+1) =
(
M Û (t) − F (t+1)

miss + F
(t+1)
noise

)(
R

(t+1)
U

)−1
, (11)
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where we defineR(t+1)
U to be the upper triangular matrix obtained by QR decomposition ofU (t+1) =

Û (t+1)R
(t+1)
U . The explicit formula for Fmiss and Fnoise is given in (14) and (18). Then, the error

after t iterations of the alternating minimization is bounded by∥∥M − Û (t)
(
U (t+1)

)T ∥∥
F
≤

∥∥ (I− Û (t)
(
Û (t)

)T
)U S

∥∥
F

+
∥∥F (t+1)

miss

∥∥
F

+
∥∥F (t+1)

noise

∥∥
F
.(12)

Let U⊥ ∈ R‘n×(‘n−r) be an orthogonal matrix spanning the subspace orthogonal to U . We use the
following definition of distance between two r-dimensional subspaces in R‘n.

d(Û , U) =
∥∥UT⊥ Û ∥∥2

.

The following key technical lemma provides upper bounds on each of the error terms in (12).

Lemma 8 For any µ1-incoherent orthogonal matrix U (t) ∈ R‘n×r and µ-incoherent matrix M ∈
R‘n×‘n, the error after one step of alternating minimization is upper bounded by

‖F (t+1)
miss ‖F ≤ σ1(M)r1:5µµ1

n(1− �21r
n )

d(Û (t), U) ,

‖F (t+1)
noise ‖F ≤ 1

1− �21r
n

√
r ‖PΩ(E)‖2 ,

where σi(M) is the i-th singular value of M .

We show in Lemma 10 that the incoherence assumption is satisfied for all twith µ1 = 6(σ1(M)/σr(M))µ.
For µ1 ≤

√
n/2r as per our assumption and substituting these bounds into (12), we get

∥∥M − Û (t)
(
U (t+1)

)T ∥∥
F
≤ ‖M‖F d(Û (t), U) +

12σ1(M)2 r1:5 µ2

nσr(M)
d(Û (t), U) + 2

√
r ‖PΩ(E)‖2 ,

where the first term follows from the fact that ‖(I − Û (t)(Û (t))T )U‖2 = ‖Û (t)
⊥ (Û

(t)
⊥ )TU‖2 =

d(Û (t), U). To further bound the distance d(Û (t), U), we first claim that after t iterations of the
alternating minimization algorithm, the estimates satisfy

d(Û (t), U) ≤ ε

2‖M‖F
+

2
√

3 r

σr(M)
‖PΩ(E)‖2 , (13)

for t ≥ (1/2) log
(
2‖M‖F /ε

)
. For µ ≤

√
nσr(M)/(12rσ1(M)) as per our assumption, this gives

∥∥M − Û (t)
(
U (t+1)

)T ∥∥
F
≤ ε +

9 ‖M‖F
√
r

σr(M)
‖PΩ(E)‖2 .

This proves the desired error bound of Theorem 4.
Now, we are left to prove (13) for t ≥ (1/2) log

(
2‖M‖F /ε

)
. This follows from the analysis

of each step of the algorithm, which shows that we improve at each step up to a certain noise

17



JAIN OH

level. Define R(t+1)
U to be the upper triangular matrix obtained by QR decomposition of U (t+1) =

Û (t+1)R
(t+1)
U . Then we can represent the distance using (11) as:

d(Û (t+1), U) =
∥∥∥UT⊥(USUT U (t) − F (t+1)

miss + F
(t+1)
noise

)(
R

(t+1)
U

)−1
∥∥∥

2
,

≤
(
‖F (t+1)

miss ‖2 + ‖F (t+1)
noise ‖2

)∥∥(R(t+1)
U

)−1∥∥
2
,

≤ 12
√

3σ1(M)2 r1:5 µ2

σr(M)2 n
d(Û (t), U) +

2
√

3r

σr(M)
‖PΩ(E)‖2 ,

where we used Lemma 9 to bound
∥∥(R(t+1)

U

)−1∥∥
2
, Lemma 8 to bound ‖F (t+1)

miss ‖2 and ‖F (t+1)
noise ‖2,

and Lemma 10 to bound µ1. For µ ≤
√
nσr(M)/(10 r1:5σ1(M)) as per our assumption, it follows

that

d(Û (t), U) =
(1

4

)t
d(Û (0), U) +

2
√

3r

σr(M)
‖PΩ(E)‖2 ,

Taking t ≥ (1/2) log
(
2‖M‖F /ε

)
, this finishes the proof of the desired bound in (13).

Now we are left to prove that starting from a good initial guess we obtain using a simple
Singular Value Decomposition(SVD), the estimates at every iterate t is incoherent with bounded
‖(R(t+1)

U )−1‖2. We first state the following two lemmas upper bounding µ1 and ‖(R(t+1)
U )−1‖2.

Then we prove that the hypotheses of the lemmas are satisfied, if we start from a good initialization.

Lemma 9 Assume that U is µ-incoherent with µ ≤ (σr(M)/σ1(M))
√
n/(32r1:5), d(Û (t), U) ≤

1/2, and ‖PΩ(E)‖2 ≤ σr(M)/(16
√
r). Then,

‖(R(t+1)
U )−1‖2 ≤

√
3

σr(M)
.

Lemma 10 (Incoherence of the estimates) Assume that Û (t) is µ̃-incoherent with µ̃ ≤
√
n/(2r),

andU is µ-incoherent with µ ≤ (σr(M)/σ1(M))
√
n/(32r), and the noiseE satisfy ‖PΩ(E)(i;a)‖ ≤

σ1(M)µ
√

3r/(8n`) for all i ∈ [n] and a ∈ [`]. Then, Û (t+1) is µ1-incoherent with

µ1 =
6µσ1(M)

σr(M)
.

For the above two lemmas to hold, we need a good initial guess Û (0) with incoherence less than
4µ and error upper bounded by d(Û (0), U) ≤ 1/2. Next lemmas shows that we can get such a
good initial guess by singular value decomposition and truncation. And this finishes the proof of
Theorem 4.

Lemma 11 (Bound on the initial guess) Let Û (0) be the output of step 3 in the alternating mini-
mization algorithm, and let µ0 be the incoherence of Û (0). Assuming µ ≤

√
σr(M)n/(32σ1(M) r1:5)

and ‖PΩ(E)‖2 ≤ σr(M)/(32
√
r), we have the following upper bound on the error and the inco-

herence:

d(Û (0), U) ≤ 1

2
,

µ0 ≤ 4µ.

18
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A.1.1. PROOFS OF LEMMAS 8, 9, 10, 11

Proof [Proof of Lemma 8] First, we prove the following upper bound for µ1-incoherent Û (t+1).

‖F (t+1)
miss ‖F ≤ σ1(M)r1:5µµ1

n(1− �21r
n )

d(Û (t), U) .

We drop the time index (t + 1) whenever it is clear from the context, to simplify notations. Let
F(i;a) ∈ Rr be a column vector representing the (`(i− 1) + a)-th row of Fmiss ∈ R‘n×r. We know
from (10) that

F(i;a) = (B(i;a))−1
(
B(i;a)D − C(i;a)

)︸ ︷︷ ︸
≡H(i)

S U(i;a) , (14)

where we define H(i) ≡ B(i;a)D − C(i;a). Notice that we dropped a from the index to emphasize
that B(i;a) and C(i;a) do not depend on a.

‖Fmiss‖F ≤
√∑

i;a

‖(B(i;a))−1‖22 ‖H(i) S U(i;a)‖2

= max
j;b
‖(B(j;b))−1‖2 max

x∈R`n×r;‖x‖F =1

∑
i∈[n];a∈[‘];q∈[r]

x(i;a);q e
T
q H

(i) S U(i;a) .

To upper bound the first term, notice that ‖(B(j;b))−1‖2 ≤ 1/σr(B
(j;b)). Since B(j;b) = Ir×r −∑

a∈[‘] Û(j;a)(Û(j;a))
T , and by incoherence property from Lemma 10, we have

‖(B(j;b))−1‖2 ≤
1

1− �21r
n

, (15)

for all (j, b).
The second term can be bounded using Cauchy-Schwarz inequality:∑

i∈[n];a∈[‘];q∈[r]

x(i;a);q e
T
q H

(i) S U(i;a) =
∑

i∈[n];q;p∈[r]

(∑
a∈[‘]

Sp U(i;a);px(i;a);q

) (
eTq H

(i)ep
)

≤
√∑
i;p;q

(∑
a∈[‘]

Sp U(i;a);px(i;a);q

)2√∑
i;p;q

(eTq H
(i)ep)2 ,

where Sp is the p-th eigenvalue of M . Applying Cauchy-Schwarz again, and by the incoherence of
U is and ‖x‖ = 1,∑

i;p;q

(∑
a∈[‘]

Sp U(i;a);px(i;a);q

)2 ≤
∑
i;p;q

S2
p

(∑
a∈[‘]

U2
(i;a);p

∑
b∈[‘]

x2
(i;b);q

)
≤ σ1(M)2 µ

2 r

n
. (16)
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∑
i;p;q

(eTq H
(i)ep)

2 =
∑
i;p;q

(∑
a

Û(i;a);q

(
U(i;a);p − ÛT(i;a)Û

TUp
))2

≤
∑
i

{∑
a;q

Û2
(i;a);q

∑
b;p

(
U(i;b);p − ÛT(i;b)Û

TUp
)2}

≤ µ2
1 r

n

∑
i;b;p

(
U(i;b);p − ÛT(i;b)Û

TUp
)2

≤ µ2
1 r

n

(
r − Tr(UT Û ÛTU)

)2
≤ µ2

1 r
2 d(Û , U)2

n
, (17)

where the last inequality follows from the fact that d(Û , U)2 = ‖ÛT⊥U‖22 = ‖UT Û⊥ÛT⊥U‖2 =

‖Ir×r − UT Û ÛTU‖2 = 1− σr(ÛTU)2 ≥ 1− (1/r)
∑

p σp(Û
TU)2.

Now, we prove an upper bound on ‖F (t+1)
noise ‖F . Again, we drop the time index (t+ 1) or (t)

whenever it is clear from the context. Let F̃(i;a) ∈ Rr denote a column vector representing the
(`(i− 1) + a)-th row of Fnoise. We know from (10) that

F̃(i;a) = (B(i;a))−1
(
ÛTE(i;a) −

∑
b∈[‘]

E(i;a)(i;b)Ûi;b

)
, (18)

where E(i;a) ∈ R‘n is an column vector representing the (`(i− 1) + a)-th row of E. Then,

‖Fnoise‖F ≤

√√√√ ∑
i∈[n];a∈[‘]

∥∥(B(i;a))−1
∥∥2

2

∥∥∥ÛTE(i;a) −
∑
b∈[‘]

E(i;a)(i;b)Ûi;b

∥∥∥2

≤ max
i;a

∥∥(B(i;a))−1
∥∥

2
‖PΩ(E)Û‖F

≤ 1

1− �21r
n

√
r ‖PΩ(E)‖2 ,

where PΩ is the projection onto the sampled entries defined in (3), and we used (15) to bound
‖(B(i;a))−1‖2. �

Proof [Proof of Lemma 9] From Lemma 7 in (Gunasekar et al., 2013), we know that

‖(R(t+1)
U )−1‖2 ≤ 1

σr(M)
√

1− d2(U (t), U)− ‖F (t+1)
miss ‖2 − ‖F

(t+1)
noise ‖2

.

From Lemma 8 with µ ≤ (σr(M)/(6σ1(M)))
√
n/(2r1:5) and ‖PΩ(E)‖2 ≤ σr(M)/(16

√
r), we

have ‖F (t+1)
noise ‖2 ≤ σr(M)/8 and ‖F (t+1)

miss ‖2 ≤ (1/6)σr(M) d(Û (t), U). Assuming d(Û (t), U) ≤
1/2, this proves the desired claim. �

20



LEARNING MIXTURES OF DISCRETE PRODUCT DISTRIBUTIONS USING SPECTRAL DECOMPOSITIONS

Proof [Proof of Lemma 10] Assuming that Û (t) is µ̃-incoherent, we make use of the following set
of inequalities:

‖(B(i;a))−1‖2 ≥ 1− (µ̃2r/n)

‖B(i;a)‖2 = ‖Ir×r − Û(i)Û
T
(i)‖2 ≤ 1

‖D‖2 = ‖ÛTU‖2 ≤ 1

‖C(i;a)‖2 = ‖ÛTU − Û(i)U
T
(i)‖2 ≤ 1 + µµ̃ r/n .

Also, from Lemma 9, we know that if µ̃ ≤
√
n/2r as per our assumption, then ‖(R(t+1)

U )−1‖2 ≤√
3/σr(M). Then, by (10) and the triangular inequality,∑

a∈[‘]

‖Û (t+1)
(i;a) ‖

2 ≤
∑
a∈[‘]

∥∥(B(i;a))−1C(i;a) S U(i;a) + (B(i;a))−1N(i;a)

∥∥2 ∥∥(R(t+1)
U

)−1∥∥2

2

≤
∑
a∈[‘]

2
∥∥(R(t+1)

U

)−1∥∥2

2

∥∥(B(i;a))−1
∥∥2

2

{∥∥C(i;a)
∥∥2

2
‖S‖22 ‖U(i;a)‖2 + ‖N(i;a)‖2

}
≤ 6

σr(M)2 (1− (µ̃2 r/n))2

∑
a∈[‘]

{
σ1(M)2

(
1 + µµ̃r/n

)
‖U(i;a)‖2 +

∥∥ÛT PΩ(E)(i;a)

∥∥2
}

≤ 6

σr(M)2 (1− (µ̃2 r/n))2

{
σ1(M)2

(
1 +

µµ̃r

n

)µ2r

n
+ ‖PΩ(E)(i;a)‖2

}
≤ 36σ1(M)2

σr(M)2

µ2r

n
,

where the last inequality follows from our assumption that µ̃ ≤
√
n/(2r), µ ≤ (σr(M)/σ1(M))

√
n/(32r),

and ‖PΩ(E)(i;a)‖ ≤ σ1(M)µ
√

3r/(8n`). This proves that Û (t+1) is µ1-incoherent for µ1 =
6µ(σ1(M)/σr(M)). �

Proof [Proof of Lemma 11] Let Pr(M̂) = Ũ S̃ŨT denote the best rank-r approximation of the
observed matrix M̂ and PΩ is the sampling mask operator defined in (3) such that M − M̂ =
PΩ(E) +M − PΩ(M). Then,

‖M − Pr(M̂) ‖2 ≤ ‖M − M̂ ‖2 + ‖ M̂ − Pr(M̂) ‖2
≤ 2 ‖M − M̂ ‖2
≤ 2

(
‖PΩ(E)‖2 + ‖M − PΩ(M)‖2

)
≤ 2

(
‖PΩ(E)‖2 + σ1(M)µ2r/n

)
, (19)

where we used the fact that Pr(M̂) is the best rank-r approximation such that ‖M̂ − Pr(M̂)‖2 ≤
‖M̂−A‖2 for any rank-r matrixA, and ‖M−PΩ(M)‖2 = maxi ‖U(i)SU

T
(i)‖2 ≤ (µ2r/n)σ1(M).

The next series of inequalities provide an upper bound on d(Ũ , U) in terms of the spectral norm:

‖M − Pr(M̂) ‖2 = ‖ (Ũ ŨT )(USUT − Ũ S̃ŨT ) + (Ũ⊥Ũ
T
⊥)(USUT − Ũ S̃ŨT ) ‖2

≥ ‖(Ũ⊥ŨT⊥)(USUT − Ũ S̃ŨT ) ‖2
= ‖ŨT⊥USUT ‖2
≥ σr(S) ‖ŨT⊥U‖2
≥ σr(S) d(Ũ , U) ,
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Together with (19), this implies that

d(Ũ , U) ≤ 2

σr(M)

(
‖PΩ(E)‖2 + σ1(M)µ2r/n

)
.

For ‖PΩ(E)‖2 ≤ σr(M)/(32
√
r) and µ ≤

√
σr(M)n/(32σ1(M) r1:5) as per our assumptions,

we have

d(Ũ , U) ≤ 1

8
√
r
.

Next, we show that by truncating large components of Ũ , we can get an incoherent matrix Û (0)

which is also close to U . Consider a sub-matrix of U which consists of the rows from `(i−1)+1 to
`i. We denote this block by U(i) ∈ R‘×r. Let U denote an `n× r matrix obtained from Ũ by setting
to zero all blocks that have Frobenius norm greater than 2µ

√
r/n. Let Û (0) be the orthonormal

basis of U . We use the following lemma to bound the error and incoherence of the resulting Û (0).
A similar lemma has been proven in (Jain et al., 2013, Lemma C.2), and we provide a tighter bound
in the following lemma. For δ ≤ 1/(8

√
r), this lemma proves that we get the desired bound of

d(Û (0), U) ≤ 1/2 and µ0 ≤ 4µ. �

Lemma 12 Let µ0 denote the incoherence of U , and define δ ≡ d(Ũ , U). Then

d(Û (0), U) ≤ 3
√
r δ

1− 2
√
r δ

, and µ0 ≤
2µ

1− 2
√
r δ

.

Proof Denote the QR decomposition of U by U = Û (0)R and let δ ≡ d(Ũ , U). Then,

d(Û (0), U) = ‖UT⊥ Û (0)‖2
≤ ‖UT⊥U‖2 ‖R−1‖2
≤

(
‖UT⊥(U − Ũ)‖2 + ‖UT⊥ Ũ‖2

)
‖R−1‖2

=
(
‖U − Ũ‖2 + δ

)
‖R−1‖2 . (20)

First, we upper bound ‖U − Ũ‖F as follows. Let P() denote a projection operator that sets to
zero those blocks whose Frobenius norm is smaller than 2µ

√
r/n such that P(Ũ) = Ũ −U . Then,

‖P(Ũ)‖F ≤ ‖P(Ũ − U(UT Ũ))‖F + ‖P(U(UT Ũ))‖F . (21)

The first term can be bounded by ‖P(Ũ−U(UT Ũ))‖F ≤ ‖Ũ−U(UT Ũ)‖F ≤
√
r‖Ũ−U(UT Ũ)‖2 =√

r δ. The second term can be bounded by ‖P(U(UT Ũ))‖F = ‖P(U) (UT Ũ)‖F ≤ ‖P(U)‖F . By
incoherence of U , we have that ‖P(U)‖F ≤

√
Nµ
√
r/n, where N is the number of ` × r block

matrices that is not set to zero by P(·).
To provide an upper bound on N , notice that the incoherence of an `n × r matrix U(UT Ũ) is

µ. This follows from the fact that ‖UT Ũ‖2 ≤ 1. Then,

‖U(UT Ũ)− Ũ‖F ≥ ‖P(U(UT Ũ)− Ũ)‖F

≥
√
N µ

√
r

n
,
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where the last line follows from the fact that there are N blocks where the Frobenius norm of
U(UT Ũ in that block is at most µ

√
r/n and the Frobenius norm of Ũ is at least 2µ

√
r/n. On the

other hand, we have ‖U(UT Ũ)− Ũ‖F ≤
√
rδ. Putting these inequalities together, we get that

√
N ≤ δ

√
n

µ
and ‖P(U(UT Ũ))‖F ≤

√
r δ .

Substituting these bounds in (21) gives

‖Ũ − U‖F ≤ 2 δ
√
r . (22)

Next, we show that

‖R−1‖2 ≤ 1

1− 2δ
√
r
. (23)

By the definition of R, we know that ‖R−1‖2 = 1/σr(R) = 1/σr(Û
(0) = 1/σr(U). Using Weyl’s

inequality, we can lower bound σr(U) = σr(U − Ũ + Ũ) ≥ σr(Ũ) − σ1(U − Ũ). Since Ũ is an
orthogonal matrix and using (22), this proves (23). Substituting (22) and (23) into (20), we get

d(Û (0), U) ≤ (2
√
r + 1)δ

1− 2δ
√
r
.

For δ ≤, this gives the desired bound.
To provide an upper bound on the incoherence µ0 of Û (0), recall that the incoherence is defined

as µ0

√
r/n = maxi ‖Û (0)

(i) ‖F = maxi ‖U (i)R
−1‖F . By construction, ‖U (i)‖F ≤ 2µ

√
r/n, and

from (23) we know that ‖R−1‖2 ≤ 1/(1− 2δ
√
r). Together, this gives

µ0 ≤ 2µ

1− 2δ
√
r
.

This finishes the proof of the desired bounds. �

A.2. Proof of Theorem 6

In this section, we provide a detailed proof of Theorem 6. To this end, we first provide an infinite
sample version of the proof, i.e., when PΩ3(S3) = PΩ3(M3). Then, in the next subsection, we
bound each element of PΩ3(S3) − PΩ3(M3) and extend the infinite sample version of the proof to
the finite sample case.

Recall that M̂2 = ÛM2Σ̂M2Û
T
M2

, ε = ‖M̂2 −M2‖2‖/σr(M2), M2 is µ-incoherent and M̂2 is
µ1-incoherent. Incoherence of a matrix is defined as in (7). Then, the following two remarks can
be easily proved using standard matrix perturbation results (for example, see (Anandkumar et al.,
2012a)).

Remark 13 Suppose ‖M̂2 −M2‖2 ≤ εσr(M2), then

1− 4
ε2

(1− ε)2
≤ σr(UT ÛM2) ≤ σ1(ÛTM2

U) ≤ 1.
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That is,
‖(I − ÛM2Û

T
M2

)U‖2 ≤ ε, and ,

‖(UT ÛM2)T (UT ÛM2)− I‖ ≤ 8
ε2

(1− ε)2
.

Remark 14 Suppose ‖M̂2 −M2‖2 ≤ εσr(M2), then

‖I− Σ̂
−1=2
M2

ÛTM2
M2ÛM2Σ̂

−1=2
M2
‖2 ≤ 2ε.

Proof

‖I − Σ̂
−1=2
M2

ÛTM2
M2ÛM2Σ̂

−1=2
M2
‖2 = ‖Σ̂−1=2

M2
ÛTM2

(M̂2 −M2)ÛM2Σ̂
−1=2
M2
‖2

≤ ‖Σ̂−1=2
M2

ÛTM2
‖22 ‖M̂2 −M2‖2

≤ 1

σr(M2)(1− ε)
σr(M2)ε ,

where we used the fact that ‖Σ̂−1=2
M2
‖22 ≥ 1/σr(M̂2) and σr(M̂2) ≥ σr(M2)(1 − ε) by Weyl’s

inequality. For ε < 1/2 we have the desired bound.
�

We now define the following operators: ν̂ and Â. Define ν̂ : Rr×r×r → R‘n×‘n×‘n as:

ν̂ijk(Z) =

{∑
abc Zabc(ÛM2Σ̂

1=2
M2

)ia(ÛM2Σ̂
1=2
M2

)jb(ÛM2Σ̂
1=2
M2

)kc, if d i‘e 6= d
j
‘e 6= d

k
‘ e 6= d

i
‘e,

0, otherwise.
(24)

Define Â : R‘n×‘n×‘n → Rr×r×r as:

Â(Z) = ν̂(Z)
[
ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
. (25)

Now, let R3 be defined as: R3 = Σ̂
−1=2
M2

ÛTM2
UΣV TW 1=2. Note that, using Remark 14,

‖R3R
T
3 − I‖ ≤ 2ε.

Also, define the following tensor:

G̃ =
∑
q∈[r]

1
√
wq

(R3eq ⊗R3eq ⊗R3eq). (26)

Note that, as R3 is nearly orthonormal, G̃ is a nearly orthogonally decomposable tensor.
We now present a lemma that shows that PΩ3(M3)

[
ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
and

Â(G̃) are “close”.
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Lemma 15
PΩ3(M3)

[
ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
= Â(G̃) + E,

where

‖E‖F ≤ 12µ3
1 µ r

3:5 σ1(M2)3=2 ε

n
√
wminσr(M2)3=2

,

and we denote the Frobenius norm of a tensor as ‖E‖F = {
∑

i;j;k E
2
i;j;k}1=2

Proof Define H = Â(G) and F = PΩ3(M3)
[
ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
. Also, let

Q = UΣV TW 1=2 and Q̂ = ÛM2Σ̂
−1=2
M2

.
Note that, Fabc =

∑
ijk δijkM3(i, j, k)Q̂iaQ̂jbQ̂kc, where δijk = 1, if (i, j, k) ∈ Ω3 and 0

otherwise. Also, M3(i, j, k) =
∑

q∈[r]
1√
wq
Qiq ·Qjq ·Qkq. Hence,

Fabc =
∑
q∈[r]

1
√
wq

∑
ijk

δijkQiq ·Qjq ·Qkq · Q̂ia · Q̂jb · Q̂kc. (27)

Note that,
∑

i Q̂iaQiq = 〈Q̂a, Qq〉 = eTa Σ̂
−1=2
M2

ÛTM2
UΣV TW 1=2eq = eTaR3eq. That is,

Fabc = Gabc −
∑
q∈[r]

1
√
wq

∑
m∈[n]

〈Q̂(m)
a , Q(m)

q 〉 · 〈Q̂
(m)
b , Q(m)

q 〉 · 〈Q̂(m)
c , Q(m)

q 〉

−
∑
q∈[r]

1
√
wq

eTaR3eq
∑
m∈[n]

〈Q̂(m)
b , Q(m)

q 〉·〈Q̂(m)
c , Q(m)

q 〉−
∑
q∈[r]

1
√
wq

eTb R3eq
∑
m∈[n]

〈Q̂(m)
a , Q(m)

q 〉·〈Q̂(m)
c , Q(m)

q 〉

−
∑
q∈[r]

1
√
wq

eTc R3eq
∑
m∈[n]

〈Q̂(m)
a , Q(m)

q 〉 · 〈Q̂
(m)
b , Q(m)

q 〉. (28)

On the other hand,

ν̂(G)ijk =

{∑
q∈[r]

1√
wq

eTi (ÛM2Σ̂
1=2
M2
R3)eq · eTj (ÛM2Σ̂

1=2
M2
R3)eq · eTk (ÛM2Σ̂

1=2
M2
R3)eq, if d i‘e 6= d

j
‘e 6= d

k
‘ e 6= d

i
‘e,

0, otherwise.
(29)

That is,

Habc =
∑
q∈[r]

1
√
wq

∑
ijk

δijke
T
i (ÛM2Σ̂

1=2
M2
R3)eq·eTj (ÛM2Σ̂

1=2
M2
R3)eq·eTk (ÛM2Σ̂

1=2
M2
R3)eq·Q̂ia·Q̂jb·Q̂kc.

(30)
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Now, note that
∑

i Q̂iae
T
i (ÛM2Σ̂

1=2
M2
R3)eq = 〈Q̂a, ÛM2Σ̂

1=2
M2
R3eq〉 = eTa Σ̂

−1=2
M2

ÛTM2
ÛM2Σ̂

1=2
M2
R3eq =

eTaR3eq. Also, let Q̃ = ÛM2Û
T
M2
Q. That is,

Habc = Gabc −
∑
q∈[r]

1
√
wq

∑
m∈[n]

〈Q̂(m)
a , Q̃(m)

q 〉 · 〈Q̂
(m)
b , Q̃(m)

q 〉 · 〈Q̂(m)
c , Q̃(m)

q 〉

−
∑
q∈[r]

1
√
wq

eTaR3eq
∑
m∈[n]

〈Q̂(m)
b , Q̃(m)

q 〉·〈Q̂(m)
c , Q̃(m)

q 〉−
∑
q∈[r]

1
√
wq

eTb R3eq
∑
m∈[n]

〈Q̂(m)
a , Q̃(m)

q 〉·〈Q̂(m)
c , Q̃(m)

q 〉

−
∑
q∈[r]

1
√
wq

eTc R3eq
∑
m∈[n]

〈Q̂(m)
a , Q̃(m)

q 〉 · 〈Q̂
(m)
b , Q̃(m)

q 〉. (31)

Now, ∣∣∣〈Q̂(m)
c , Q̃(m)

q 〉 − 〈Q̂(m)
c , Q(m)

q 〉
∣∣∣ ≤ ‖Q̂(m)

c ‖ ‖Q̃(m)
q −Q(m)

q ‖

≤ ‖Q̂(m)
c ‖ ‖(I − ÛM2Û

T
M2

)U‖2 ‖ΣV TW 1=2‖2

≤ µ1
√
r√

n(1− ε)σr(M2)
ε
√
σ1(M2),

where we used ‖(I − ÛM2Û
T
M2

)U‖2 ≤ ε from Remark 13, and the following remark to bound

‖Q̂(m)
c ‖. Then, from Remark 16,

|〈Q̂(m)
a , Q̃(m)

q 〉〈Q̂(m)
c , Q̃(m)

q 〉 − 〈Q̂(m)
a , Q(m)

q 〉〈Q̂(m)
c , Q(m)

q 〉|

≤ |(〈Q̂(m)
a , Q̃(m)

q 〉 − 〈Q̂(m)
a , Q(m)

q 〉)〈Q̂(m)
c , Q̃(m)

q 〉|+ |〈Q̂(m)
a , Q(m)

q 〉(〈Q̂(m)
c , Q̃(m)

q 〉 − 〈Q̂(m)
c , Q(m)

q 〉)|

≤
µ1

√
r σ1(M2)√

n(1− ε)σr(M2)
ε

µ1(µ+ µ1) r

n (1− ε)σr(M2)

Further, |eTaR3eq| ≤ µ1

√
(rσ1(M2))/(n(1− ε)σr(M2)). The desired bound now follows by using

the above inequalities to bound ‖E‖F = ‖H − F‖F . �

Remark 16 For Q̃ = ÛM2Û
T
M2
Q, Q = UΣV TW 1=2, and Q̂ = ÛM2Σ̂

−1=2
M2

, suppose M2 is µ-

incoherent and M̂2 is µ1-incoherent. Then,

‖Q̂(m)
c ‖ ≤

µ1r
1=2√

(1− ε)nσr(M2)
, ‖Q̃(m)

c ‖ ≤ µ1

√
rσ1(M2)

n
, and ‖Q(m)

c ‖ ≤ µ
√
rσ1(M2)

n
.

Proof

‖Q̂(m)
c ‖ =

1√
Σ̂cc

{∑
a∈[‘]

(ÛM2)‘(m−1)+a;c

}1=2
≤

µ1

√
r/n√

σr(M2)(1− ε)
.

The rest of the remark follows similarly. �

Next, we now show that ‖Â−1‖2 is small.
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Lemma 17 σmin(Â) ≥ 1− 8r3σ1(M2)2(1 + ε)2/(nσr(M2)2(1− ε)2) and hence,

‖Â−1‖2 ≤
1

1− 72r3σ1(M2)2/(nσr(M2)2)
.

Proof Let Q̂ = ÛM2Σ̂
−1=2
M2

, Q̃ = ÛM2Σ̂
1=2
M2

, and H = Â(Z). Then,

Habc =
∑
ijk

δijk
∑
a′b′c′

Za′b′c′Q̃ia′ · Q̃jb′ · Q̃kc′ · Q̂ia · Q̂jb · Q̂kc,

where δijk = 1, if (i, j, k) ∈ Ω3 and 0 otherwise. That is,

Habc = Zabc −
∑
a′b′c′

Za′b′c′
∑
m∈[n]

〈Q̂(m)
a , Q̃

(m)
a′ 〉 · 〈Q̂

(m)
b , Q̃

(m)
b′ 〉 · 〈Q̂

(m)
c , Q̃

(m)
c′ 〉

−
∑
b′c′

Zab′c′
∑
m∈[n]

〈Q̂(m)
b , Q̃

(m)
b′ 〉 · 〈Q̂

(m)
c , Q̃

(m)
c′ 〉 −

∑
a′c′

Za′bc′
∑
m∈[n]

〈Q̂(m)
a , Q̃

(m)
a′ 〉 · 〈Q̂

(m)
c , Q̃

(m)
c′ 〉

−
∑
a′b′

Za′b′c
∑
m∈[n]

〈Q̂(m)
a , Q̃

(m)
a′ 〉 · 〈Q̂

(m)
c , Q̃

(m)
c′ 〉. (32)

Let vec(H) = B·vec(Z). We know that |〈Q̃(m)
a , Q̂

(m)
a 〉| ≤ µ2

1r/n and |〈Q̃(m)
a , Q̃

(m)
a′ 〉| ≤ µ

2
1rσ1(M2)(1+

ε)/(nσr(m2)(1− ε)) for a 6= a′. Now, using the above equation and using incoherence:

1− 4r2µ4
1/n ≤ Bpp ≤ 1 + 4r2µ4

1/n,∀1 ≤ p ≤ r.

Similarly, |Bpq| ≤ 4r2µ4
1σ1(M2)2(1 + ε)2/(nσr(M2)2(1 − ε)2),∀p 6= q. Theorem now follows

using Gershgorin’s theorem. �

Finally, we combine the above two lemmas to show that the least squares procedure approxi-
mately recovers G̃.

Lemma 18 Let G be as defined in (26). Also, let Ĝ be obtained by solving the following least
squares problem:

Ĝ = arg min
Z
‖Â(Z)− PΩ3(M3)

[
ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
‖2F .

Then, for n ≥ 144r3σ1(M2)2/σr(M2)2 such that ‖Â−1‖2 ≤ 2,

‖Ĝ− G̃‖F ≤ 24µ3
1 µ r

3:5σ1(M2)3=2ε

n
√
wminσr(M2)

.

Proof Note that Â : Rr×r×r → Rr×r×r is a square operator. Moreover, using Lemma 15:

PΩ3(M3)
[
ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
= Â(G̃) + E.

Hence, ‖Ĝ− G̃‖F = ‖Â−1(Â(Ĝ)− Â(G̃))‖2 ≤ ‖Â−1‖2 ‖E‖F . Together with Lemma 15 and 17,
we get the desired bound. �
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Proof [Proof of Theorem 6] Note that A : Rr×r×r → Rr×r×r is a square operator. Moreover, using
Lemma 15:

PΩ3(M3)
[
ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
= Â(G̃) + E.

In the case of finite many samples, we use S3 = 1
|S|
∑|S|

t=1+|S|=2 xt ⊗ xt ⊗ xt for estimating the

low-dimensional tensor G̃. In particular, we compute the following quantity:

Ĥ = PΩ3(S3)
[
ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
. (33)

We then use this quantity to solve the least squares problem. That is, we find Ĝ as:

Ĝ = arg min
Z
‖Â(Z)− Ĥ‖2F .

Now, we show that such a procedure gives Ĝ that is close to G̃ (see (26)).

‖Ĝ− G̃‖F = ‖Â−1(Â(Ĝ))− Â−1(Â(G̃))‖F
= ‖Â−1(PΩ3(S3)[ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

])− Â−1(Â(G̃))‖F
= ‖Â−1(PΩ3(S3 −M3 +M3)[ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

])− Â−1(Â(G̃))‖F

≤ ‖Â−1‖2
(
‖E‖F + ‖PΩ3(S3 −M3)[ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

] ‖F
)

≤ ‖A−1‖2
( 12µ3

1µr
3:5σ1(M2)3=2ε

n
√
wminσr(M2)3=2

+ ‖PΩ3(S3 −M3)[ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

] ‖F
)
.

This finishes the proof of the desired claim. �

A.3. Proof of Lemma 5

LetE = E(1)−E(2) whereE(1) ≡ S2−E[S2],E(2) ≡ PΩc
2
(S2−E[S2]), and Ωc

2 is the complement
of Ω2. We first note that ‖xt‖2 = n. Hence, applying Matrix Hoeffding bound (see Theorem 1.3 of
(Tropp, 2012)), we get with probability at least 1− δ:

‖E(1)‖2 =
∥∥∥ 2

|S|
∑

t∈{1;:::;|S|=2}

(xtx
T
t )− E

[ 2

|S|
∑

t∈{1;:::;|S|=2}

(xtx
T
t )
]∥∥∥

2
≤

√
32n2 log(n`/δ)

|S|
.

The second term E(2) is a diagonal matrix, with each diagonal entry E(2)
ii distributed as a binomial

distribution. Applying standard Hoeffding’s bound, we get that with probability at least 1− δ,

‖E(2)‖2 = max
i∈[‘n]

|E(2)
ii | ≤

√
2 log(2/δ)

|S|
.

This gives the desired bound on ‖E(1) + E(2)‖2.
Similarly, xt;i‖xt‖2 ≤

√
n,∀i. Hence, using standard Hoeffding Bound, we get with probability

at least 1− δ, ∥∥∥ 2

|S|
∑

t∈[|S|=2]

(xtxt)i − E[S2]i

∥∥∥
2
≤

√
16n log(2/δ)

|S|
.
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A.4. Proof of Lemma 7

The claim follows form the following lemma.

Lemma 19 Let H = PΩ3(M3)
[
ÛM2Σ̂

−1=2
M2

, ÛM2Σ̂
−1=2
M2

, ÛM2Σ̂
−1=2
M2

]
and Ĥ be as defined above.

Then, with probability larger than 1− δ, we have:

|Habc − Ĥabc| ≤ 2
( 2 r n

σr(M2)

)3=2
µ3

1

√
log(1/δ)

|S|
.

Proof Let Ĥabc = 1
|S|
∑

t∈S Y
t
a;b;c, where Y t

a;b;c =
∑

(i;j;k)∈Ω3
xt;ixt;jxt;kQ̂iaQ̂jbQ̂kc, where Q̂ =

ÛM2Σ̂
−1=2
M2

. Then E[Y t] = H . That is,

Y t
a;b;c = 〈Q̂a, xt〉 · 〈Q̂b, xt〉 · 〈Q̂c, xt〉 −

∑
m∈[n]

〈Q̂(m)
a , (xt)(m)〉〈Q̂(m)

b , (xt)(m)〉〈Q̂(m)
c , (xt)(m)〉

− 〈Q̂a, xt〉 ·
∑
m∈[n]

〈Q̂(m)
b , (xt)(m)〉〈Q̂(m)

c , (xt)(m)〉− 〈Q̂b, xt〉 ·
∑
m∈[n]

〈Q̂(m)
a , (xt)(m)〉〈Q̂(m)

c , (xt)(m)〉

− 〈Q̂c, xt〉 ·
∑
m∈[n]

〈Q̂(m)
a , (xt)(m)〉〈Q̂(m)

b , (xt)(m)〉. (34)

Note that, |〈Q̂(m)
b , x

(m)
t 〉| ≤

�1
√
r√

n(1−")�r(M2)
. Hence, for all a ∈ [r], |〈Q̂a, xt〉| ≤ �1

√
r n√

(1−")�r(M2)
.

Using the above inequality with (34), we get: |Y t
a;b;c| ≤

(
r n/((1− ε)σr(M2))

)3=2
µ3

1. Lemma
now follows by using Hoeffding’s inequality. �

A.5. Proof of Theorem 1

We first observe that as UM2 = UR1, where R1 ∈ Rr×r is an orthonormal matrix. Also, ΣM2 =

RT1 ΣV TWV ΣR1. Hence, Σ
1=2
M2

= RT1 ΣV TW 1=2R3, where R3 is an orthonormal matrix. More-

over, Σ
−1=2
M2

= RT3 W
−1=2V Σ−1R1. Hence,

G = M3[UM2Σ
−1=2
M2

, UM2Σ
−1=2
M2

, UM2Σ
−1=2
M2

] =
k∑
q=1

wq(R
T
3 W

−1=2eq)⊗ (RT3 W
−1=2eq)⊗ (RT3 W

−1=2eq)

=

k∑
q=1

1
√
wq

(RT3 eq)⊗ (RT3 eq)(R
T
3 eq). (35)

Now, using orthogonal tensor decomposition method of (Anandkumar et al., 2012b), we get: ΛG =
W−1=2 as the eigenvalues and V G = RT3 as the eigenvectors. Theorem now follows by observing:

UM2 · Σ
1=2
M2
· V G · ΛG = UM2 ·RT1 ΣV TW 1=2R3 ·RT3 ·W−1=2 = UΣV T = Π.
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A.6. Proof of Theorem 2 and Theorem 3

Proof [Proof of Theorem 2] Recall that in this case, the number of samples are infinite, i.e., |S| =
∞. Hence, PΩ2(S2) = PΩ2(M2). That is, E = 0. Furthermore, T =∞. Hence, using Theorem 4,
Algorithm 2 exactly recovers M2, i.e., M̂ (T )

2 = M2.
Furthermore, using Theorem 6, we have Ĝ = G; as, ε = ‖M2 − M̂2‖2 = 0 and |S| = ∞.

Now, consider R3R
T
3 = Σ̂

−1=2
M2

ÛTM2
ΠW 1=2 ·W 1=2ΠT ÛM2Σ̂

−1=2
M2

= Σ̂
−1=2
M2

ÛTM2
M2ÛM2Σ̂

−1=2
M2

= I .
That is, R3 is orthonormal. Hence, using orthogonal decomposition method of (Anandkumar et al.,
2012b) (see Theorem 20), we get V G = R3 and ΛG = W−1=2. Now, using step 6 of Algorithm 1,
Π̂ = ÛM2Û

T
M2

Π. Theorem now follows as ÛM2Û
T
M2
U = U using Remark 13.

Also note that from Theorem 4, M̂2 is µ1 incoherent with µ1 = 6µσ1(M2)/σr(M2).
�

Proof [Proof of Theorem 3]
To simplify the notations, we will assume that the permutation that matches the output of our

algorithm to the actual types is the identity permutation. Let’s define

εM ≡ ‖M̂2 −M2‖2
σr(M2)

and εG ≡ ‖Ĝ− G̃‖2 , (36)

where Ĝ is the output of the TENSORLS and G̃ = M3[ÛM2Σ̂M2 , ÛM2Σ̂M2 , ÛM2Σ̂M2 ].
The spectral algorithm outputs Π̂ = ÛM2Σ̂

1=2
M2
V̂ GΛ̂G, and we know that Π = UM2Σ

1=2
M2
V GW−1=2.

In order to show that these two matrices are close, now might hope to prove that each of the terms
are close. For example we want ‖UM2 − ÛM2‖2 to be small. However, even if UM2 and ÛM2

span the same subspaces the distance might be quite large. Hence, we project P onto the subspace
spanned by ÛM2 to prove the bound we want. Define

Ṽ ≡ Σ̂
−1=2
M2

ÛTM2
ΠW 1=2 , (37)

such that

G̃ =

r∑
i=1

1
√
wi

(ṽi ⊗ ṽi ⊗ ṽi) , (38)

where Ṽ = [ṽ1, . . . , ṽr]. Then, we have ÛM2Π = Σ̂
1=2
M2
Ṽ Q−1=2. Then,

‖Π− Π̂‖2 ≤ ‖ÛM2Û
T
M2

Π−Π‖2 + ‖Π̂− ÛM2Û
T
M2

Π‖2
= ‖(ÛM2Û

T
M2
− I)Π‖2 + ‖ÛM2Σ̂

1=2
M2
V̂ GΛ̂G − ÛM2Σ̂

1=2
M2
Ṽ GW−1=2‖2

≤ ‖(ÛM2Û
T
M2
− I)Π‖2 + ‖ÛM2Σ̂

1=2
M2

(V̂ G − Ṽ )W−1=2‖2 + ‖ÛM2Σ̂
1=2
M2
V̂ G(Λ̂G −W−1=2)‖2 .(39)

To bound the first term, denote the SVD of Π as Π = UΣV T . Using Remark 13, ‖ÛM2Û
T
M2

Π−
Π‖2 ≤ ‖ÛM2Û

T
M2
U − U‖2‖Σ‖2 ≤ εMσ1(Π).

Note that ‖Σ̂M2‖2 ≤ ‖M̂2−M2‖+‖M2‖2 ≤ εMσr(M2)+‖M2‖2 ≤ 2‖M2‖2, when εM ≤ 1/2.
To prove that the second term is bounded by C

√
‖M2‖2rwmax/wmin(εG + (1/

√
wmin)εM ), we
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claim that

‖Ṽ − V̂ G‖2 ≤ C
√
rwmax

(
εG +

1
√
wmin

εM

)
, and

‖W−1=2 − Λ̂G‖2 ≤ C
(
εG +

1
√
wmin

εM

)
.

Now recall that, R3 = Σ̂
−1=2
M2

ÛTM2
ΠW 1=2. Let the SVD of Ṽ be Ṽ = U1Σ1V

T
1 . Define

an orthogonal matrix R = U1V
T

1 , such that RRT = RTR = I. Using Remark 14 we have
‖Ṽ −R‖2 ≤ 2εM . Moreover, G̃ =

∑
q∈[r]

1√
wq

(Req ⊗Req ⊗Req) + EG, where

‖EG‖2 ≤ 2
εM (1 + εM )2

√
wmin

≤ 8εM√
wmin

, (40)

where, last inequality follows by εM ≤ 1.
Hence, using (36), (40), we have (w.p. ≥ 1− 2δ):

‖Ĝ−
∑
q∈[r]

1
√
wq

(Req ⊗Req ⊗Req)‖2 ≤ εG + ‖EG‖2 ≤ εG + (8/
√
wmin)εM . (41)

Since R is orthogonal by construction, we can apply Theorem 20 to bound the distance between
V̂ G and R, i.e. ‖V̂ G − R‖2 ≤ 8

√
r wmax(εG + (8/

√
wmin)εM ). By triangular inequality, we get

that

‖V̂ G − Ṽ ‖2 ≤ ‖V̂ G −R‖2 + ‖R− Ṽ ‖2

≤ 8
√
r wmax

(
εG +

8
√
wmin

εM

)
+ 2εM

≤ C
√
r wmax

(
εG +

1
√
wmin

εM

)
.

Similarly,

‖W−1=2 − Λ̂G‖2 ≤ 5
(
εG +

8
√
wmin

εM

)
.

This implies that the third term in (39) is bounded by ‖ÛM2Σ̂
1=2
M2
V̂ G(Λ̂G−W−1=2)‖2 ≤ C

√
‖M2‖2(εG+

εM/
√
wmin), using the assumption on |S| such that (

√
rwmax)εG ≤ C and (

√
rwmax/wmin)εM ≤

C.
Putting these bounds together, we get that

‖Π̂−Π‖2 ≤ C

√
r wmax ‖M2‖2

wmin

(
εG +

1
√
wmin

εM

)
,

where we used the fact that ‖Π‖2 ≤ (1/
√
wmin)‖M2‖1=22 .

From Theorems 4 and 6 and Lemmas 5 and 7, we get that

εM ≤ C
n ‖M2‖F r1=2

σr(M2)2

√
log(n/δ)

|S|
, and

εG ≤ C
µ4r3:5

√
wmin

(σ1(M2)

σr(M2)

)4:5 1

n
εM + Cr3µ3σ1(M2)3 n1:5

σr(M2)4:5

√
log(n/δ)

|S|
,
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when |S| ≥ C ′(` + r)(n2/σr(M2)2) log(n/δ) and n ≥ C ′(r3 + r1:5µ2)(σ1(M2)/σr(M2))2. Fur-
ther, if n ≥ C ′µ4r3:5(σ1(M2)/σr(M2))4:5, then

εG ≤ C
1

√
wmin

εM + Cr3µ3σ1(M2)3 n1:5

σr(M2)4:5

√
log(n/δ)

|S|
.

�

Theorem 20 (Restatement of Theorem 5.1 by (Anandkumar et al., 2012b)) LetG =
∑

i∈[r] λi(vi⊗
vi ⊗ vi) + E, where ‖E‖2 ≤ C1

�min
r . Then the tensor power-method after N ≥ C2(log r +

log log
(
�max
‖E‖2

)
, generates vectors v̂i, 1 ≤ i ≤ r, and λ̂i, 1 ≤ i ≤ r, s.t.,

‖vi − v̂P (i)‖2 ≤ 8‖E‖2/λP (i), |λi − λ̂P (i)| ≤ 5‖E‖2. (42)

where P is some permutation on [r].

A.7. Proof of Corollary 3.1

Feldman et al. proved that if we have a good estimate of wi’s and πi’s in absolute difference, then
the thresholding and normalization defined in Section 3 gives a good estimate in KL-divergence.

Theorem A.1 ((Feldman et al., 2008, Theorem 12)) Assume Z is a mixture of r product distribu-
tions on {1, . . . , `}n with mixing weights w1 . . . , wr and probabilities πji;a, and the following are
satisfied:

• for all i ∈ [r] we have |wi − ŵi| ≤ εw, and

• for all i ∈ [r] such that wi ≥ εmin we have |π(j)
i;a − π̂

(j)
i;a | ≤ ε� for all j ∈ [n] and a ∈ [`].

Then, for sufficiently small εw and ε�, the mixture Ẑ satisfies

DKL(Z||Ẑ) ≤ 12n`3ε1=2
� + nkεmin log(`/ε�) + ε1=3

w . (43)

For the right-hand-side of (43) to be less than η, it suffices to have εw = O(η3), ε� = O(η2/n2`6),
and εmin = O(η/nk log(`/ε�)).

From Theorem 3, |ŵi − wi| = O(εM ). Then εM ≤ Cη3 for some positive constant C ensures
that the condition is satisfied with εw = O(η3). From Theorem 3, we know that that |π̂(j)

i;a −
π

(j)
i;a | = O(εM

√
σ1(M2)wmaxr/wmin). Then εM ≤ C(η2w

1=2
min / (n2`6(σ1(M2)wmaxr)

1=2)) for
some positive constant C ensures that the condition is satisfied with ε� = O(η2/n2`6).

These results are true for any values of wmin, as long as it is positive. Hence, we have εmin = 0.
It follows that for a choice of

εM ≤ C η2 min
{ w

1=2
min

n2`6(σ1(M2)wmax r)1=2
, η
}
,

we have the desired bound on the KL-divergence.
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A.8. Proof of Corollary 3.2

We use a technique similar to those used to analyze distance based clustering algorithms in (Arora
and Kannan, 2001; Achlioptas and McSherry, 2005; McSherry, 2001). The clustering algorithm of
(Arora and Kannan, 2001) uses Π̂ obtained in Algorithm 1 to reduce the dimension of the samples
and apply distance based clustering algorithm of (Arora and Kannan, 2001).

Following the analysis of (Arora and Kannan, 2001), we want to identify the conditions such
that two samples from the same type are closer than the distance between two samples from two
different types. In order to get a large enough gap, we apply Π̂ and show that

‖Π̂T (xi − xj)‖ < ‖Π̂T (xi − xk)‖ ,

for all xi and xj that belong to the same type and for all xk with a different type. Then, it is
sufficient to show that ‖Π̂T (πa−πb)‖ ≥ 4 maxi∈S ‖xi−E[xi]‖ for all a 6= b ∈ [r]. From Theorem
3, we know that for |S| ≥ Cµ6r7n3σ1(M2)7wmax log(n/δ)/(w2

minσr(M2)9ε̃2), ‖πa − π̂a‖ ≤
εM
√
rwmaxσ1(M2)/wmin ≤ ε̃ for all a ∈ [r]. Then,

‖Π̂T (πa − πb)‖ ≥ ‖ΠT (πa − πb)‖ − ‖(Π− Π̂)T (πa − πb)‖

≥
√

(πTa (πa − πb))2 + (πTb (πa − πb))2 − ‖Π− Π̂‖2 ‖πa − πb‖

≥ ‖πa − πb‖2 −
√
rε̃‖πa − πb‖

On the other hand, applying a concentration of measure inequality gives

P
(
|π̂Ta (xi − E[xi])| ≥ ‖π̂a‖

√
2 log(r/δ)

)
≤ δ

r
.

Applying union bound, ‖Π̂T (xi−E[xi])‖ ≤ ‖Π̂‖F
√

2 log(r/δ) ≤ (
√

2 ‖Π‖F+
√

2rε̃)
√

4 log(r/δ)

with probability at least 1−δ, where we used the fact that ‖Π̂‖2F ≤
∑

a(‖πa‖+ε̃)2 ≤ 2
∑

a(‖πa‖2+
ε̃2) ≤ 2(‖Π‖F +

√
r ε̃)2.

For ε̃ ≥ (‖πa − πb‖2 − ‖Π‖F
√

8 log(r/δ))/(
√
r‖πa − πb‖ +

√
8r log(r/δ)), it follows that

‖Π̂T (πa − πb)‖ ≥ 4 maxi∈S ‖xi − E[xi]‖, and this proves that the distance based algorithm of
(Arora and Kannan, 2001) will succeed in finding the right clusters for all samples.
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