
Dynamic Scheduling of Network Updates
(Extended version)

Xin Jin† Hongqiang Harry Liu? Rohan Gandhi∧ Srikanth Kandula◦
Ratul Mahajan◦ Ming Zhang◦ Jennifer Rexford† Roger Wattenhofer×

Microsoft Research◦ Princeton University† Yale University? Purdue University∧ ETH Zurich×

Abstract— We present Dionysus, a system for fast, consistent
network updates in software-defined networks. Dionysus encodes
as a graph the consistency-related dependencies among updates at
individual switches, and it then dynamically schedules these up-
dates based on runtime differences in the update speeds of different
switches. This dynamic scheduling is the key to its speed; prior
update methods are slow because they pre-determine a schedule,
which does not adapt to runtime conditions. Testbed experiments
and data-driven simulations show that Dionysus improves the me-
dian update speed by 53–88% in both wide area and data center
networks compared to prior methods.

1. INTRODUCTION
Many researchers have shown the value of centrally controlling

networks. This approach can prevent oscillations due to distributed
route computation [1]; ensure that network paths are policy com-
pliant [2, 3]; reduce energy consumption [4]; and increase through-
put [5, 6, 7, 8, 9]. Independent of their goal, such systems operate
by frequently updating the data plane state of the network, either
periodically or based on triggers such as failures. This state con-
sists of a set of rules that determine how switches forward packets.

A common challenge faced in all centrally-controlled networks
is consistently and quickly updating the data plane. Consistency
implies that certain properties should not be violated during net-
work updates, for instance, packets should not loop (loop freedom)
and traffic arriving at a link should not exceed its capacity (conges-
tion freedom). Consistency requirements impose dependencies on
the order in which rules can be updated at switches. For instance,
for congestion freedom, a rule update that brings a new flow to a
link must occur after an update that removes an existing flow if the
link cannot support both flows simultaneously. Not obeying update
ordering requirements can lead to inconsistencies such as loops,
blackholes, and congestion.

Current methods for consistent network updates are slow be-
cause they are based on static ordering of rule updates [9, 10, 11,
12]. They pre-compute an order in which rules must be updated,
and this order does not adapt to runtime differences in the time
it takes for individual switches to apply updates. These differ-
ences inevitably arise because of disparities in switches’ hardware
and CPU load and the variabilities in the time it takes the central-
ized controller to make remote procedure calls (RPC) to switches.
In B4, a centrally-controlled wide area network, the ratio of the
99th percentile to the median delay to change a rule at a switch
was found to be over five (5 versus 1 second) [8]. Further, some
switches can “straggle,” taking substantially more time than aver-
age (e.g., 10-100x) to apply an update. Current methods can stall
in the face of straggling switches.

The speed of network updates is important because it determines
the agility of the control loop. If the network is being updated in

response to a failure, slower updates imply a longer period dur-
ing which congestion or packet loss occurs. Further, many systems
update the network based on current workload, both in the wide
area [8, 9] and the data center [5, 6, 7], and their effectiveness is
tied to how quickly they adapt to changing workloads. For exam-
ple, recent works [8, 9] argue for frequent traffic engineering (e.g.,
every 5 minutes) to achieve high network utilization; slower net-
work updates would lower network utilization.

We develop a new approach for consistent network updates. It
is based on the observations that i) there exist multiple valid rule
orderings that lead to consistent updates; and ii) dynamically se-
lecting an ordering based on update speeds of switches can lead to
fast network updates. Our approach is general and can be applied to
many consistency properties, including all the ones that have been
explored by prior work [9, 10, 11, 12, 13].

We face two main challenges in practically realizing our ap-
proach. The first is devising a compact way to represent multiple
valid orderings of rule updates; there can be exponentially many
such orderings. We address this challenge using a dependency
graph in which nodes correspond to rule updates and network re-
sources, such as link bandwidth and switch rule memory capacity,
and (directed) edges denote dependencies among rule updates and
network resources. Scheduling updates in any order, while respect-
ing dependencies, guarantees consistent updates.

The second challenge is scheduling updates based on dynamic
behavior of switches. This problem is NP-complete in the general
case, and making matters worse, the dependency graph can also
have cycles. To schedule efficiently, we develop greedy heuristics
based on preferring critical paths and strongly connected compo-
nents in the dependency graph [14].

We instantiate our approach in a system called Dionysus and
evaluate it using experiments on a modest-sized testbed and large-
scale simulations. Our simulations are based on topology and traf-
fic data from two real networks, one wide-area network and one
data center network. We show that Dionysus improves the median
network update speed by 53–88%. We also show that its faster
updates lower congestion and packet loss by over 40%.

2. MOTIVATION
Our work is motivated by the observations that the time to update

switch rules varies widely and that not accounting for this variation
leads to slow network updates. We illustrate these observations us-
ing measurements from commodity switches and simple examples.

2.1 Variability in update time
Several factors lead to variable end-to-end rule update times, in-

cluding switch hardware capabilities, control load on the switch,
the nature of the updates, RPC delays (which include network path
delays), etc. [7, 8, 15, 16]. To illustrate this variability, we perform

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600 700

T
im

e
 (

s
e

c
o

n
d

)

Number of Inserted Rules

Control
Data

(a)

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600 700

T
im

e
 (

s
e

c
o

n
d

)

Number of Inserted Rules

Control
Data

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700

T
im

e
 (

s
e

c
o

n
d

)

Number of Modified Rules

Control
Data

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Time (second)

Control
Data

(d)
Figure 1: Rule update times on a commodity switch. (a) Inserting single-priority rules. (b) Inserting random-priority rules. (c)
Modifying rules in a switch with 600 single-priority rules. (d) Modifying 100 rules in a switch with concurrent control plane load.

controlled experiments on commodity switches. In these exper-
iments, RPC delays are negligible and identical switch hardware
and software are used, yet significant variability is evident.

The experiments explore the impact of four factors: i) the num-
ber of rules to be updated; ii) the priorities of the rules; iii) the
types of rule updates (e.g., insertion vs. modification); and iv)
control load on the switch. We measure switches from two dif-
ferent vendors and observe similar results. Figure 1 shows results
for one switch vendor. We build a customized switch agent on the
switch and obtain confirmation of rule updates in both the control
and data planes. The control plane confirmation is based on the
switch agent verifying that the update is installed in the switch’s
TCAM (ternary content addressable memory), and the data plane
confirmation is based on observing the impact of the update in the
switch’s forwarding behavior (e.g., changes in which interface a
packet is sent out on).

Figure 1(a) shows the impact of the number of rules by plotting
the time to add different numbers of rules. Here, the switch has no
control load besides rule updates, the switch starts with an empty
TCAM, and all rule updates correspond to adding new rules with
the same priority. We see that, as one might expect, that the update
time grows linearly with the number of rules being updated, with
the per-rule update time being 3.3 ms.

Figure 1(b) shows the impact of priorities. As above, the switch
has no load and starts with an empty TCAM. The difference is that
the inserted rules are assigned random priorities. We see that the
per-rule update time is significantly higher than before. The slope
of the line increases as the number of rules increase, and the per-
rule update time reaches 18 ms when inserting 600 rules.

This variability stems from the fact that TCAM packing algo-
rithms do different amounts of work, depending on the TCAM’s
current content and the type of operation performed. For instance,
the TCAM itself does not encode any rule priority information. The
rules are stored from top to bottom in decreasing priority and when
multiple rules match a packet, the one with the highest place is
chosen. Thus, when a new rule is inserted, it may cause existing
rules to move in the table. Although the specific packing algo-
rithms are proprietary and vary across vendors, the intrinsic design
of a TCAM makes the update time variable.

Figure 1(c) shows the impact of the type of rule update. Rather
than inserting rules into an empty TCAM, we start with 600 rules
of the same priority and measure the time for rule modifications.
We modify only match fields or actions, not rule priorities. The
graph is nearly linear, with a per-rule modification latency of 11 ms.
This latency is larger than the per-rule insertion latency because a
rule modification requires two operations in the measured switch:
inserting the new rule and deleting the old rule.

Finally, Figure 1(d) shows the impact of control load, by en-
gaging the switch in different control activities while updates are
performed. Here, the switch starts with the 600 same-priority rules

S1

S5 S4

S3 S2
F2: 5 F3: 10

F4: 5 F1: 5

(a) Current State

S1

S5 S4

S3 S2

F1: 5
F4: 5

F2: 5 F3: 10

(b) Target State

Figure 2: A network update example. Each link has 10 units of
capacity; flows are labeled with their sizes.

and we modify 100 of them. Control activities performed include
reading packet and byte counters on rules with OpenFlow proto-
col, querying SNMP counters, reading switch information with CLI
commands, and running BGP protocol (which SDN systems use as
backup [8]). We see that despite the fact that update operations are
identical (100 new rules), the time to update highly varies, with the
99th percentile 10 times larger than the median. Significant rule
update time variations are also reported in [8, 16].

In summary, we find that even in controlled conditions, switch
update time varies significantly. While some sources of this vari-
ability can be accounted for statically by update algorithms (e.g.,
number of rule updates), others are inherently dynamic in nature
(e.g., control plane load and RPC delays). Accounting for these
dynamic factors ahead of time is difficult. Our work thus focuses
on adapting to them at runtime.

2.2 Consistent updates amid variability
We illustrate the downside of static ordering of rule updates with

the example of Figure 2. Each link has a capacity of 10 units and
each flow’s size is marked. The controller wants to update the net-
work configuration from Figure 2(a) to 2(b). Assume for simplicity
that the network uses tunnel-based routing and all necessary tunnels
have already been established. So, moving a flow requires updating
only the ingress switch.

If we want a congestion-free network update, we cannot update
all the switches in “one shot” (i.e., send all update commands si-
multaneously). Since different switches will apply the updates at
different times, such a strategy may cause congestion at some links.
For instance, if S1 applies the update for moving F1 before S2
moves F2 and S4 moves F4, link S1-S5 will be congested.

Ensuring that no link is congested requires us to carefully order
the updates. Two valid orderings are:

Plan A: [F3→ F2] [F4→ F1]
Plan B: [F4] [F3→ F2→ F1]

Plan A mandates that F2 be done after F3 and F1 be done after
F4. Plan B mandates that F1 be done after F2 and that F2 be
done after F3. In both plans, F3 and F4 have no pre-requisites
and can be done anytime and in parallel.1

1Some consistent update methods [9] use stages, a more rigid ver-
sion of static ordering. They divide updates into multiple stages,

S1

S5 S4

S3 S2

F1: 5 F4: 5

F2: 5

F3: 5

F5: 10

(a) Current State

S1

S5 S4

S3 S2

F1: 5
F4: 5

F2: 5

F3: 5

F5: 10

(b) Target State

Figure 3: An example in which a completely opportunistic ap-
proach to scheduling updates leads to a deadlock. Each link
has 10 units of capacity; flows are labeled with their sizes. If
F2 is moved first, F1 and F4 get stuck.

Which plan is faster? In the absence of update time variability,
if all updates take unit time, Plan A will take 2 time units and Plan
B will take 3. However, with update time variability, no plan is a
clear winner. For instance, if S4 takes 3 time units to move F4,
and other switches take 1, Plan A will take 4 time units and Plan B
will take 3. On the other hand, if S2 is slow and takes 3 time units
to move F2, while other switches take 1, Plan A will take 4 time
units and Plan B will take 5.

Now consider a dynamic plan that first issues updates for F3 and
F4, issues an update for F2 as soon as F3 finishes, and issues an
update for F1 as soon as F2 or F4 finishes. This plan dynami-
cally selects between the two static plans above and will thus equal
or beat those two plans regardless of which switches are slow to
update. Practically implementing such plans for arbitrary network
topologies and updates is the goal of our work.

3. DIONYSUS OVERVIEW
We achieve fast, consistent network updates through dynamic

scheduling of rule updates. As in the example above, there can be
multiple valid rule orderings that lead to consistent updates. Instead
of statically selecting an order, we implement on-the-fly ordering
based on the realtime behavior of the network and the switches.

Our focus is on flow-based traffic management applications for
the network core (e.g., ElasticTree, MicroTE, B4, SWAN [4, 6, 8,
9]). As is the case for these applications, we assume that any for-
warding rule at a switch matches at most one flow, where a flow is
(a subset of) traffic between ingress and egress switches that uses
either single or multiple paths. This assumption does not hold in
networks that use wild-card rules or longest prefix matching. In-
creasingly, such rules are being moved to the network edge or even
hosts [17, 18, 19], keeping the core simple with exact match rules.

The primary challenge is to tractably explore valid orderings.
One difficulty is that there are combinatorially many such order-
ings. Conceivably, one may formulate the problem as an ILP (In-
teger Linear Program). But this approach would be too slow and
does not scale to large networks with a lot of flows. Also it is static
and not incrementally computable; one has to rerun the ILP every
time the switch behaviors change. Another difficulty is that the ex-
treme approach of being completely opportunistic about rule order-
ing does not always work. In such an approach, the controller will
immediately issue any updates that are not gated (per consistency
requirements) on any other update. While this approach works for
the simple example in the previous section, in general, it can re-
sult in deadlocks (that are otherwise resolvable). Figure 3 shows
an example. Since F2 can be moved without waiting for any other
flow movement, an opportunistic approach might make that move.

and all updates in the previous stage must finish before any update
in the next stage can begin. In this terminology, Plan A is a two-
stage solution in which the first stage will update F3 and F4 and
the second will update F2 and F1. Plan B is a three-stage solution.
Since SWAN minimizes the number of stages, it will prefer Plan A.

Dependency	 Graph	 Generator	

Update	 Scheduler	

Consistency Property

Network

Target State

Current
State

Figure 4: Our approach.

S2-‐S5:	 0	

S1-‐S5:	 0	

Mv.
F3

Mv.
F4

Mv.
F2

Mv.
F1

10

5

5 5

5

(a) Dependency graph for
Figure 2

S4-‐S5:	 0	

S1-‐S5:	 5	

Mv.
F1

Mv.
F2

Mv.
F4

5

5

5 5

5

(b) Dependency graph for Figure 3

Figure 5: Example dependency graphs.

But at this point, we are stuck, because no flow can be moved to its
destination without overloading at least some link. This is avoid-
able if we move other flows first. It is because of such possibilities
that current approaches carefully plan transitions, but they err on
the side of not allowing any runtime flexibility in rule orderings.

We balance planning and opportunism using a two-stage approach,
shown in Figure 4. In the first stage, we generate a dependency
graph that compactly describes many valid orderings. In the second
stage, we schedule updates based on the constraints imposed by the
dependency graph. Our approach is general in that it can maintain
any consistency property that can be described using a dependency
graph, which includes all properties used in prior work [8, 9, 11].
The scheduler is independent of the consistency property.

Figure 5(a) shows a simplified view of the dependency graph for
the example of Figure 2. In the graph, circular nodes denote update
operations, and rectangular nodes represent link capacity resources.
The numbers within rectangles indicate the current free capacity
of resources. A label on an edge from an operation to a resource
node shows the amount of resource that will be released when the
operation completes. For example, link S2-S5 has 0 free capacity,
and moving F3 will release a capacity of 10 to it. Labels on edges
from resource to operation nodes show the amount of free resource
needed to conduct these operations. As moving F1 requires 5 free
capacity on link S1-S5, F1 cannot move until F2 or F4 finishes.

Given the dependency graph in Figure 5(a), we can dynamically
generate good schedules. First, we observe that F3 and F4 don’t
depend on other updates, so they can be scheduled immediately.
After F3 finishes, we can schedule F2. Finally, we schedule F1
once one of F2 or F4 finishes. From this example, we see that the
dependency graph captures dependencies but still leaves scheduling
flexibility, which we leverage at runtime to implement fast updates.

There are two challenges in dynamically scheduling updates.
The first is to resolve cycles in the dependency graph. These arise
due to complex dependencies between rules. For example, Fig-

Index Operation
A Add p3 at S1
B Add p3 at S4
C Add p3 at S5
D Change weight at S1
E Delete p2 at S1
F Delete p2 at S2
G Delete p2 at S5

Table 1: Operations to update f with tunnel-based rules.

Index Operation
X Add weights with new version at S2
Y Change weights, assign new version at S1
Z Delete weights with old version at S2

Table 2: Operations to update f in WCMP forwarding.

ure 5(b) shows that there are cycles in the dependency graph for
the example of Figure 3. Second, at any given time, multiple sub-
sets of rule updates can be issued, and we need to decide which
ones to issue first. As described later, the greedy heuristics we use
for these challenges are based on critical-path scheduling and the
concept of SCC (strongly connected component) in graph theory.

4. NETWORK STATE MODEL
This section describes the model of network forwarding state that

we use in Dionysus. The following sections describe dependency
graph generation and scheduling in detail.

The network G consists of a set of switches S and a set of
directed links L. A flow f is from an ingress switch si to an
egress switch sj with traffic volume tf , and its traffic is carried
over a set of paths Pf . The forwarding state of f is defined as
Rf = {rf,p|p ∈ Pf} where rf,p is the traffic load of f on path p.
The network state NS is then the combined state of all flows, i.e.,
NS = {Rf |f ∈ F}. For example, consider the network in Fig-
ure 6(a) that is forwarding a flow across two paths, with 5 units of
traffic along each. Here, tf = 10, Pf = {p1 = S1S2S3S5, p2 =
S1S2S5}, and Rf = {rf,p1 = 5, rf,p2 = 5}.

The state model above captures both tunnel-based forwarding
that is prevalent in WANs and also WCMP (weighted cost multi
path) forwarding that is prevalent in data center networks. In tunnel-
based forwarding, a flow is forwarded along one or more tunnels.
The ingress switch matches incoming traffic to the flow, based on
packet headers, and splits it across the tunnels based on configured
weights. Before forwarding a packet along a tunnel, the ingress
switch tags the packet with the tunnel identifier. Subsequent switches
only match on tunnel tags and forward packets, and the egress
switch removes the tunnel identifier. Representing tunnel-based
forwarding in our state model is straightforward. Pf is the set of
tunnels and the weight of a tunnel is rf,p/tf .

In WCMP forwarding, switches at every hop match on packet
headers and split flows over multiple next hops with configured
weights. Shortest-path and ECMP (equal cost multipath) forward-
ing are special cases of WCMP forwarding. To represent WCMP
routing in our state model, we first calculate the flow rate on link l
as rlf =

∑
l∈p,p∈Pf

rf,p. Then at switch si, the weight for next-

hop sj is: wi,j = r
lij
f /

∑
l∈Li

rlf where lij is the link from si to sj
and Li is the set of links starting at si. For instance, in Figure 6(a),
w1,2 = 1, w1,4 = 0, w2,3 = 0.5, w2,5 = 0.5.

5. DEPENDENCY GRAPH GENERATION

S1 S2 S5

S4

S3

p1: 5

p2: 5

(a) Current state

p3: 5

S1 S2 S5

S4

S3

p1: 5

(b) Target state

D	

S1-‐S4:10	

B	
5

S4-‐S5:10	

S1-‐S2:0	 S2-‐S5:5	

A	

E	
F	

S2:50	

5

5

5 5

1

1

1
1

5

p3

p2

C	

G	

1

1

S1:50 S4:50 S5:50

(c) Dependency graph using
tunnel-based rules (Table 1)

Y	

S1-‐S4:10	
5

S4-‐S5:10	

S1-‐S2:0	 S2-‐S5:5	

S2:50	

X	

Z	
5

5

5

5

1

1

p3

p2

5

(d) Dependency graph using
WCMP-based rules (Table 2)

Figure 6: Example of building dependency graph for updating
flow f from current state (a) to target state (b).

As shown in Figure 4, the dependency graph generator takes as
input the current state NSc, the target state NSt, and the consis-
tency property. The network states includes the flow rate, and as in
current systems [4, 6, 8, 9], we assume that flows obey this rate as a
result of rate limiting or robust estimation. A static input to Diony-
sus is the rule capacity of each switch, relevant in settings where
this resource is limited. Since Dionysus manages all rule additions
and removals, it then knows how much rule capacity is available on
each switch at any given time. This information is used such that
rule capacity is not exceeded at any switch.

Given NSc and NSt, it is straightforward to compute the set of
operations that would update the network from NSc to NSt. The
goal of dependency graph generation is to inter-link these opera-
tions based on the consistency property. Our dependency graph has
three types of nodes: operation nodes, resource nodes, and path
nodes. Operation nodes represent addition, deletion, or modifica-
tion of a forwarding rule at a switch, and resource nodes correspond
to resources such as link capacity and switch memory and are la-
beled with the amount of resource currently available. An edge be-
tween two operation nodes captures an operation dependency and
implies that the parent operation must be done before the child. An
edge between a resource and an operation node captures a resource
dependency. An edge from a resource to an operation node is la-
beled with the amount of resource that must be available before the
operation can occur. An edge from an operation to a resource node
is labeled with the amount of the resource that will be freed by that
operation. There are no edges between resource nodes.

Path nodes help group operations and link capacity resources on
a path. Path nodes can connect to operation nodes as well as to
resource nodes. An edge between an operation and a path node
can be either an operation dependency (un-weighted) or a resource
dependency (weighted). The various types of links connecting dif-
ferent types of nodes are detailed in Figure 7.

During scheduling, each path node that frees link resources has
a label committed that denotes the amount of traffic that is moving
away from the path; when the movement finishes, we use committed
to update the free resource of its child resource nodes. We do not

O

OD:	 P	 cannot	 be	 used	
un/l	 O	 is	 done	

RD:	 Amount	 of	
resource	 O	 frees	 on	 P	

O

OD:	 O	 cannot	 be	 scheduled	
un/l	 P	 is	 removed	

RD:	 Amount	 of	
resource	 O	 consumes	 on	 P	

Amount	 of	 R	 consumed	 by	 P	

Amount	 of	 R	 freed	 by	 P	
R	

O2	 cannot	 be	 scheduled	
un/l	 O1	 is	 done	

O1	 O2	

Amount	 of	 R	 consumed	 by	 O	

Amount	 of	 R	 freed	 by	 O	
R	

P	 P	

O	 P	

Figure 7: Links and relationships among path, operation, and
resource nodes; RD indicates a resource dependency and OD
indicates an operation dependency.

need to keep committed for path nodes that require resource, be-
cause we always reduce free capacity on its parent resource nodes
first before we move traffic into the path.

In this paper, we focus on four consistency properties from prior
work [13] and show how our dependency graphs capture them. The
properties are i) blackhole-freedom: no packet should be dropped
at a switch (e.g., due to a missing rule); ii) loop-freedom: no packet
should loop in the network; iii) packet coherence: no packet should
see a mix of old and new rules in the network; and iv) congestion-
freedom: traffic arriving at a link should be below its capacity. We
believe that our dependency graphs are general enough to describe
other properties as well, which may be proposed in the future.

We now describe dependency graph generation. We first focus
on tunnel-based forwarding without resource limits and then dis-
cuss WCMP forwarding and resource constraints.
Tunnel-based forwarding: Tunnel-based forwarding offers loop
freedom and packet coherence by design; it is not possible for pack-
ets to loop or to see a mix of old and new rules during updates. We
defer discussion of congestion freedom until we discuss resource
constraints. The remaining property, blackhole freedom, is guaran-
teed as long as we ensure that i) a tunnel is fully established before
the ingress switch puts any traffic on it, and ii) all traffic is removed
from the tunnel before the tunnel is deleted.

A dependency graph that encodes these constraints can be built
as follows. For each flow f , usingNSc andNSt, we first calculate
the tunnels to be added and deleted and generate a path node for
each. Then, we generate an operation node for every hop, adding
an edge from each of them to the path node (or from the path node
to each of them), denoting adding (or deleting) this tunnel at the
switch. Then, we generate an operation node that changes the tun-
nel weights to those in NSt at the ingress switch. To ensure black-
hole freedom, we add an edge from each path node that adds new
tunnels to the operation node that changes tunnel weights, and an
edge from the operation node that changes tunnel weights to each
path node that deletes old tunnels.

We use the example in Figure 6 to illustrate the steps above. Ini-
tially, we set the tunnel weights on p1 and p2 with 0.5 and 0.5
respectively. In the target state, we add tunnel p3, delete tunnel
p2, and change the tunnel weights to 0.5 on p1 and 0.5 on p3. To
generate the dependency graph for this transition, we first generate
path nodes for p2 and p3 and the related switch operations as in
Table 1. Then we add edges from the tunnel-addition operations
(A, B and C) to the corresponding path node (p3), and edges to
the tunnel-deletion operations (E, F and G) from the correspond-
ing path node (p2). Finally, we add an edge from the path node of
the added path (p3) to the weight-changing operation (D) and from
D to the path node for the path to be deleted (p2). The resulting
graph is shown in Figure 6(c). The resource nodes in this graph are
discussed later.
WCMP forwarding: With NSc and NSt, we calculate for each
flow the weight change operations that update the network from

Algorithm 1 Dependency graph for packet coherence in a WCMP
network

– v0: old version number
– v1: new version number

1: for each flow f do
2: s∗ = GetIngressSwitch(f)
3: o∗ = GenRuleModifyOp(s∗, v1)
4: for si ∈ GetAllSwitches(f)− s∗ do
5: if si has multiple next-hops then
6: o1 = GenRuleInsertOp(si, v1)
7: o2 = GenRuleDeleteOp(si, v0)
8: Add edge from o1 to o∗
9: Add edge from o∗ to o2

NSc to NSt. We then create dependency edges between these op-
erations based on the consistency property. Algorithm 1 shows how
to do that for packet-coherence, using version numbers [10, 11]. In
this approach, the ingress switch tags each packet with a version
number and downstream switches handle packets based on the em-
bedded version number. This tagging ensures that each packet ei-
ther uses the old configuration or the new configuration, and never a
mix of the two. The algorithm generates three types of operations:
i) the ingress switch tags packets with the new version number and
uses new weights (Line 3); ii) downstream switches have rules for
handling the packets with the new version number and new weights
(Line 6); and iii) downstream switches delete rules for the old ver-
sion number (Line 7). Packet coherence is guaranteed if Type i
operation occurs after Type ii (Line 8) and Type iii operations oc-
cur after Type i (Line 9). Line 5 is an optimization; no changes are
needed at switches that have only one next hop for the flow in both
the old and new configurations.

We use the example in Figure 6 again to illustrate the algorithm
above. For flow f , we need to update the flow weights at S1 from
[(S2, 1), (S4, 0)] to [(S2, 0.5), (S4, 0.5)], and weights at S2 from
[(S3, 0.5), (S5, 0.5)] to [(S3, 1), (S5, 0)]. This translates to three
operations (Table 2): add new weights with new version numbers
at S2 (X), change to new weights and new version numbers at S1
(Y), and delete old weights at S2 (Z). We connect X to Y and Y
to Z as shown in Figure 6(d).

Blackhole-freedom and loop-freedom do not require version num-
bers. For the former, we must ensure that every switch that may
receive a packet from a flows always has a rule for it. For the lat-
ter, we must ensure that downstream switches (per new configura-
tion) are updated before updating a switch to new rules [13]. These
conditions are easy to encode in a dependency graph. For space
constraints, we omit detailed description of graph construction.

Resource constraints: We introduce resource nodes to the graph
corresponding to resources of interest, including link bandwidth
and switch memory. These nodes are labeled with their current free
amount or with infinity if that resource can never be a bottleneck.

We connect link bandwidth nodes with other nodes as follows.
For each path node and bandwidth node for links along the path: if
the traffic on the path increases, we add an edge from the bandwidth
node to the path node with a label indicating the amount of traffic
increase; if the traffic decreases, we add edges in the other direc-
tion. For a tunnel-based network, we add an edge from each path
node on which traffic increases to the operation node that changes
weight at the ingress switch with a label indicating the amount of
traffic increase; similarly, we add an edge in the other direction
if the traffic decreases. For a WCMP network, we add an edge
from each path node on which traffic increases to each operation
node that adds weights with new versions with a label indicating
the amount of increase; similarly, we add an edge from the oper-

A	

R1:5	

C	 5

CPL=3

R2:0	

D	 B	

5

5

CPL=2

CPL=1

CPL=1

5 5

5

5 5
5

P1

P2

P3 P5

5
P4

Figure 8: Critical-path scheduling. C has larger CPL than B,
and is scheduled.

ation node that changes weight at the ingress switch to each path
node on which traffic decreases with a label indicating the amount
of decrease. This difference is due to that tunnels offer packet co-
herence by design, while WCMP networks need version numbers.

Connecting switch memory resource nodes with other nodes is
straightforward. We add an edge from a resource node to an oper-
ation node if the operation consumes that switch memory with an
weight indicating the amount of consumption; we add an edge from
an operation node to a resource node if the operation releases that
switch memory with an weight indicating the amount of release.

For example, in Figure 6(c) nodeD, which changes tunnel weights
at S1, increases 5 units of traffic on p3 which includes link S1-S4
and S4-S5, and decreases 5 units of traffic on p2 which includes
link S1-S2 and S2-S5. Node A that adds tunnel p3 consumes 1
rule at S1. In Figure 6(d), we link p3 toX and linkX to Y . X and
Y essentially takes the same effect as D in Figure 6(d).
Post-processing: After generating the dependency graph, we re-
duce it by deleting edges from non-bottlenecked resources. For
each resource node Ri, we check the edges to its child nodes Nj .
If the free resource Ri.free is no smaller than

∑
j lij where lij

is the edge weight, we delete all the edges from Ri to its children
and decrease the free capacity by

∑
j lij . The idea is that Ri has

enough free resource to accommodate all operations that need it, so
it’s not a bottleneck resource and the scheduling will not consider
it. For example, if S1-S4 has over 5 units of free capacity, we can
delete the edge from S1-S4 to p3 in Figures 6(c) and 6(d).

6. DIONYSUS SCHEDULING
We now describe how updates are scheduled in Dionysus. First,

we discuss the hardness of the scheduling problem, which guided
our approach. Then, we describe scheduling algorithm for the spe-
cial case where the dependency graph is a DAG (directed acyclic
graph). Finally, we extend this algorithm to handle cycles.

6.1 The hardness of the scheduling problem
Scheduling is a resource allocation problem, that is, how to allo-

cate available resources to operations to minimize the update time.
For example, resource node R1 in Figure 8 has 5 units of free re-
source. It cannot cover both B and C. We must decide to schedule
i)B, ii)C, or iii) part ofB andC. Every time we make a schedul-
ing decision, we decide how to allocate a resource to its child oper-
ations and which parent operation to execute to obtain a resource.
Additional constraints on scheduling are placed by dependencies
between operations.

We can prove the following about network update scheduling.
THEOREM 1. In the presence of both link capacity and switch

memory constraints, finding a feasible update schedule is NP-complete.

PROOF. See Appendix A.

The hardness stems from the fact that memory constraints in-
volve integers and memory cannot be allocated fractionally. Schedul-
ing is simpler if we only have link capacity constraints, but finding
the fastest schedule is still hard because of the huge search space.

Symbol Description
Oi Operation node i
Rj Resource node j
Rj .free Free capacity of Rj

Pk Path node k
Pk.committed Traffic that is moving away from path k
lij Edge weight from node i to j

Table 3: Key notation in our algorithms.

Algorithm 2 ScheduleGraph(G)
1: while true do
2: UpdateGraph(G)
3: Calculate CPL for every node
4: Sort nodes by CPL in decreasing order
5: for unscheduled operation node Oi ∈ G do
6: if CanScheduleOperation(Oi) then
7: Schedule Oi

8: Wait for time t or for all scheduled operations to finish

THEOREM 2. In the presence of link capacity constraints, but
no switch memory constraints, finding the fastest update schedule
is NP-complete.

PROOF. See Appendix A.

6.2 Scheduling DAGs
We first consider the special case of a DAG. Scheduling a DAG

is, expectedly, simpler:

LEMMA 1. If the dependency graph is a DAG, finding a feasi-
ble update schedule is in P.

While it is easy to find a feasible solution for a DAG, we want to
find a fast one. Different scheduling orders lead to different finish-
ing times. For example, if all operations take the same amount of
time Figure 8, scheduling C before B will be faster.

We use critical-path scheduling. The intuition is that the critical
path decides the completion time, and we thus want to schedule
operations on the critical path first. Since resource nodes and path
nodes in the dependency graph are only used to express constraints,
we assign weight w=0 to them when calculating critical paths; for
operation nodes, we assign weight w=1. With this, we calculate a
critical-path length CPL for each node i as:

CPLi = wi + max
j∈children(i)

CPLj (1)

To calculate CPL for all the nodes in the graph, we first topologi-
cally sort all the nodes and then iterate over them to calculateCPL
with Equation 1 in the reverse topological order. In Figure 8, for
example, CPLD=1, CPLC=2, CPLB=1, CPLA=3. The CPL
for each node can be computed efficiently in linear time.

Algorithm 2 shows how Dionysus uses CPL to schedule updates,
with key notations summarized in Table 3. Each time we enter the
scheduling phase, we first update the graph with finished operations
and delete edges from unbottlenecked resources (line 2). Then, we
calculate CPL for every node (Line 3) and sort nodes in decreas-
ing order of CPL (Line 4). Then, we iterate over operation nodes
and schedule them if their operation dependency and resource de-
pendency are satisfied (Lines 6, 7). Finally, the scheduler waits for
some time for all scheduled operations to finish before starting the
next round (Line 10).

To simplify presentation, we first show the related pseudo code
ofCanScheduleOperation(Oi) andUpdateGraph(G) for tunnel-
based networks and describe them below. Then, we briefly describe
how the WCMP case differs.

Algorithm 3 CanScheduleOperation(Oi)
// Add tunnel operation node

1: if Oi.isAddTunnelOp() then
2: if Oi.hasNoParents() then
3: return true
4: Rj ← parent(Oi) // AddTunnelOp only has 1 parent
5: if Rj .free ≥ lji then
6: Rj .free← Rj .free− lji
7: Delete edge Rj → Oi

8: return true
9: return false

// Delete tunnel operation node
10: if Oi.isDelTunnelOp() then
11: if Oi.hasNoParents() then
12: return true
13: return false

// Change weight operation node
14: total← 0
15: canSchedule← false
16: for path node Pj ∈ parents(Oi) do
17: available← lji
18: if Pj .hasOpParents() then
19: available← 0
20: else
21: for resource node Rk ∈ parents(Pj) do
22: available← min(available, lkj , Rk.free)

23: for resource node Rk ∈ parents(Pj) do
24: lkj ← lkj − available
25: Rk.free← Rk.free− available

26: total← total + available
27: lji ← lji − available

28: if total > 0 then
29: canSchedule← true
30: for path node Pj ∈ children(Oi) do
31: Pj .committed← min(lij , total)
32: lij ← lij − Pj .committed
33: total← total − Pj .committed

34: return canSchedule

CanScheduleOperation (Algorithm 3): This function decides if
an operation Oi is ready to be scheduled and updates the resource
levels for resource and path nodes accordingly. If Oi is a tunnel
addition operation, we can schedule it either if it has no parents
(Lines 2, 3) or its parent resource node has enough free resource
(Lines 4–8). If Oi is a tunnel deletion operation, we can sched-
ule it if it has no parents (Lines 11–12); tunnel deletion operations
do not have resource nodes as parents because they always release
(memory) resources. If Oi is a weight change operation, we gather
all free capacities on the paths where traffic increases and moves
traffic to them (line 14-34). We iterate over each parent path node
and obtain the available capacity (available) of the path (Lines 16–
27). This capacity limits the amount of traffic that we can move to
this path. We sum them up to total, which is the total traffic we
can move for this flow (Line 26). Then, we iterate over child path
nodes (Lines 30–33). Finally, we decrease Pj .committed traffic
on path represented by Pj (Line 31).

UpdateGraph (Algorithm 4): This function updates the graph be-
fore scheduling based on operations that successfully finished in
the last round. We get all such operations and update related nodes
in the graph (Lines 1–22). If the operation node adds a tunnel,
we delete the node and its edges (Lines 2, 3). If the operation node
deletes a tunnel, it frees rule space. So, we update the resource node
(Lines 5, 6) and delete it (Line 7). If the operation node changes
weight, for each child path node, we release resources to links on
it (Lines 11–12) and delete the edge if all resources are released
(Lines 13, 14). We reset the amount of traffic that is moving away

Algorithm 4 UpdateGraph(G)
1: for finished operation node Oi ∈ G do

// Finish add tunnel operation node
2: if Oi.isAddTunneOp() then
3: Delete Oi and all its edges

// Finish delete tunnel operation node
4: else if Oi.isDelTunnelOp() then
5: Rj ← child(Oi)
6: Rj .free← Rj .free+ lij
7: Delete Oi and all its edges // DelTunnelOp only has 1 child

// Finish change weight operation node
8: else
9: for path node Pj ∈ children(Oi) do

10: for resource node Rk ∈ children(Pj) do
11: ljk ← ljk − Pj .committed
12: Rk.free← Rk.free+ Pj .committed
13: if ljk = 0 then
14: Delete edge Pj → Rk

15: Pj .committed← 0
16: if lij = 0 then
17: Delete Pj and its edges
18: for path node Pj ∈ parents(Oi) do
19: if lji = 0 then
20: Delete Pj and its edges
21: if Oi.hasNoParents() then
22: Delete Oi and its edges
23: for resource node Ri ∈ G do
24: if Ri.free ≥

∑
j lij then

25: Ri.free← Ri.free−
∑

j lij
26: Delete all edges from Ri

from this path, Pj .committed, to 0 (Line 15). If we have moved
all the traffic away from this path, we delete this path node (Lines
16, 17). Similarly, we check all the parent path nodes (Lines 18–
20). If we have moved all the traffic into a path, we delete the path
node (Lines 19, 20). Finally, if all parent path nodes are removed,
the weight change for this flow finishes; we remove it from the
graph (Line 22). After updating the graph with finished operations,
we check all resource nodes (Lines 23–26). We delete edges from
unbottlenecked resources (Lines 24–26).

WCMP network: Algorithms 3 and 4 for WCMP-based networks
differ in two respects. First, WCMP networks do not have tun-
nel add or delete operations. Second, unlike tunnel-based networks
that can simply change the weights at the ingress switches, WCMP
networks perform a two-phase commit using version numbers to
maintain packet coherence (node X and Y in Figure 6(d)). The
code related to the weight change operation in the two algorithms
has minor difference accordingly. The details can be found in Ap-
pendix B.

6.3 Handling cycles
Cycles in the dependency graph pose a challenge because inap-

propriate scheduling can lead to deadlocks where no progress can
be made, as we saw for Figure 5(b) if F2 is moved first. Further,
many cycles may intertwine together, which makes the problem
even more complicated. For instance, A, B and C are involved in
several cycles in Figure 9.

We handle dependency graphs with cycles by first transforming
them into a virtual DAG and then using the DAG scheduling algo-
rithm above. We use the concept of a strongly connected compo-
nent (SCC), a subgraph where every node has a path to every other
node [14]. One can think of an SCC as a set of intertwined cycles.
If we view each SCC as a virtual node in the graph, then the graph
becomes a virtual DAG, which is called the component graph in

C	 D	

A	

R2:	 0	

R1:	 0	
4

B	

R3:	 0	
4

8 8

8

8

8 8

4

4

4 4

4

4

P5

P3

P4

P2

P6

P7 P1

Figure 9: A deadlock example where the target state is valid
but no feasible solution exists.

Algorithm 5 RateLimit(SCC, k∗)
1: O∗ ← weight change nodes ∈ SCC
2: for i=0 ; i<k∗ && O∗ 6=∅ ; i++ do
3: Oi ← O∗.pop()
4: for path node Pj ∈ children(Oi) do

// fi is the corresponding flow of Oi

5: Rate limit flow fi by lij on path Pj

6: for resource node Rk ∈ children(Pj) do
7: Rk.free← Rk.free+ lij

8: Delete Pj and its edges

graph theory. We use Tarjan’s algorithm [20] to efficiently find all
SCCs in the dependency graph. Its time complexity isO(|V |+|E|)
where |V | and |E| are the number of nodes and edges.

With each SCC being a virtual node, we can use critical-path
scheduling on the component graph. While calculating CPLs, we
use the number of operation nodes in an SCC as the weight of the
corresponding virtual node, which makes the scheduler prefer paths
with larger SCCs.

We make two modifications to the scheduling algorithm to incor-
porate SCCs. The first is that the for loop at Line 5 in Algorithm 2
iterates over all nodes in the virtual graph. When a node is selected,
if it is a single node, we directly callCanScheduleOperation(Oi).
If it is a virtual node, we iterate over the operation nodes in its SCC
and call the functions accordingly. We use centrality [21] to decide
the order of the iteration; the intuition is that a central node of an
SCC is on many cycles, and if we can schedule this node early,
many cycles will disappear and we can finish the SCC quickly.
We use the popular outdegree-based definition of centrality, but
other definitions may also be used. The second modification is that
when path nodes consume link resources or tunnel add operations
consume switch resources, they can only consume resources from
nodes that either are in the same SCC or are independent nodes (not
in any SCC). This heuristic prevents deadlocks caused by allocat-
ing resources to nodes outside the SCC (“Mv. F2”) before nodes in
the SCC are satisfied as in Figure 5(b).

Deadlocks: The scheduling algorithm resolves most cycles with-
out deadlocks (§9). However, we may still encounter deadlocks in
which no operations in the SCC can make any progress even if the
SCC have obtained all resources from outside nodes. This can hap-
pen because (1) given the hardness of the problem, our scheduling
algorithm, which is basically an informed heuristic, doesn’t find the
feasible solution among the combinatorially many orderings and
gets stuck, or (2) there does not exist a feasible solution even if the
target state is valid, like the example in Figure 9. One should note
that deadlocks stem from the need for consistent network updates.
Previous solutions face the same challenge but are much slower and
cause more congestion than Dionysus (§9.4).

Our strategy for resolving deadlocks is to reduce flow rates (e.g.,
by informing rate limiters). Reducing flow rate frees up link ca-
pacity; and reducing it to zero on a path allows removal of the
tunnel, which in turn frees up switch memory. Freeing up these
resources allows some of the operations that were earlier blocked
on resources to go through. In the extreme case, if we rate limit
all the flows involved in the deadlocked SCC, the deadlock can be
resolved in one step. However, this extreme remedy leads to ex-
cessive throughput loss. It is also unnecessary because often rate
limiting a few strategically selected flows suffices.

We thus rate limit a few flows to begin with, which enables some
operations in the SCC to be scheduled. If that does not fully resolve
the SCC, we rate limit a few more, until the SCC is fully resolved.
The parameter k∗ determines the maximum number of flows that
we rate limit each time, and it controls the tradeoff between the
time to resolve the deadlock and the amount of throughput loss.
Algorithm 5 shows the procedure to resolve deadlocks for tunnel-
based networks. It iterates over up to k∗ weight change nodes in
the SCC, each of which corresponds to a flow (Lines 2–8). The
order of iteration is based on centrality value as above.

We use Figure 9 to illustrate deadlock resolution. Let k∗=1. The
procedure first selects node A. It reduces 4 units of traffic on path
P6 and 4 units on P7, which releases 4 units of free capacity to
R1 and 4 units to R2, and deletes P6 and P7. At this point, node
A has no children and thus does not belong to the SCC any more.
After this, we call ScheduleGraph(G) to continue the update. It
schedulesC, and partially schedulesB (i.e., moves 4 units of traffic
from path P3 to P4). After C finishes, it schedules the remainded
of operation B and finishes the update. Finally, for node A and its
corresponding flow fA, we increase its rate on P5 as long as R3
receives free capacity released by P4.

We have the following theorem to prove that as long as the tar-
get state is valid (i.e., no resource is oversubscribed), we can fully
resolve a deadlock using the procedure above.

THEOREM 3. If the target state is valid, a deadlock can be al-
ways resolved by calling RateLimit a finite number of steps.

PROOF. Each time we call RateLimit(SCC, k∗), the dead-
lock reduces by at least k∗ number of operations. Let O∗ be the
number of operations in the deadlock. We can resolve the deadlock
by at most dO∗/k∗e iterations of RateLimit.

We find experimentally that often the number of steps needed is
a lot fewer than the bound above.

7. IMPLEMENTATION
We have implemented a prototype of Dionysus with 5,000+ lines

of C# code. It receives current state from the network and target
state from applications as input, generates a dependency graph,
and schedules rule updates. We implemented dependency graph
generators for both tunnel-based and WCMP networks and all the
scheduling algorithms discussed above. For accurate control plane
confirmations of rule updates (not available in most OpenFlow agents
today), we run a custom software agent on our switches.

8. TESTBED EVALUATION
We evaluate Dionysus using testbed experiments in this section

and using large-scale simulations in the next section. We use two
update cases, a WAN TE case and a WAN failure recovery case. To
show its benefits, we compare Dionysus against SWAN [9], a static
solution.
Methodology: Our testbed consists of 8 Arista 7050T switches as
shown in Figure 10(a). It emulates a WAN scenario. The switches

S1

S8 S7

S6 S5

S4 S3

S2

(a) Testbed topology

S8-‐S6:	 0	

S3-‐S6:	 5	 S4-‐S5:	 0	

5

5

5

S6-‐S5:	 0	 S4-‐S7:	 0	

5
5 5

5

5

5

5

5

5

S1

S5

S4

S3 S2

S8

S5

S7

S7

S8

S6

(b) Dependency graph for WAN traffic engineering case

S4-‐S5:	 0	 5

5
S6-‐S5:	 0	

S4-‐S7:	 0	

5

5

5
S3-‐S4:	 0	

5

S1-‐S8:	 -‐5	

5

5
S1 S3

S4 S2

S8 5

S6 S5

S5 S7
5

(c) Dependency graph for WAN failure recovery case
Figure 10: Testbed setup. Path nodes are removed from the
dependency graphs ((b) and (c)) for brevity.

are connected by 10 Gbps links. With the help of our switch agents,
we log the time of sending updates and receiving confirmation. We
use VLAN tags to implement tunnels and use prefix-splitting to
implement weights when a flow uses multiple tunnels. We let S2
and S4 be straggler switches and inject 500 ms latency for rule
updates on them. The remaining switches update at their own pace.

WAN TE case: In this experiment, the update is triggered by a
traffic matrix change. TE calculates a new allocation for the new
matrix, and we update the network accordingly. A simplified de-
pendency graph for this update is shown in Figure 10(b). Numbers
in the circles correspond to the switch to which the rule update is
sent. For example, the operation node with annotation “S8” means
a rule update at switch S8. The graph contains a cycle that includes
nodes “S8”, “S3-S6”, “S1” and “S8-S6”. Careless scheduling, e.g.,
one that schedules node “S3” before “S1” may cause a deadlock.
There are also operation dependencies for this update: to move a
flow at S6, we have to install a new tunnel at S8 and S7; after the
movement finishes, we delete an old tunnel at S5 and S7.

Figure 11 shows the time series of this experiment. The x-axis is
the time, and the y-axis is the switch index. A rectangle represents a
rule update on a switch (y-axis) for some period (x-axis). Different
rectangular patterns show different rule update operations (add rule,
change rule, or delete rule). Rule updates on straggler switches, S2
and S4, take longer than those on other switches. But even on non-
straggler switches, the rule update time varies—the lengths of the
rectangles are not identical—between 20 and 100 ms.

Dionysus dynamically performs the update as shown in Figure
11(a). First it finds the SCC and schedules node “S1”. It also
schedules “S2”, “S8” and “S7” as they don’t have any parents. Af-
ter they finish, Dionysus schedules “S6” and “S8”, then “S3”, “S5”
and “S7”. Rather than waiting for “S2,” which is a straggler, Diony-
sus schedules “S4” after “S3” finishes—“S3” releases enough ca-
pacity for it. Finally Dionysus schedules “S5”. The update finishes
in 842 ms.

SWAN uses a static, multi-step solution to perform the update
(Figure 11(b)). It first installs the new tunnel (node “S8” and “S7”).
Then, it adjusts tunnel weights with a congestion-free plan with the
minimal number of steps, as follows:

 1

 2

 3

 4

 5

 6

 7

 8

 0 300 600 900 1200 1500

S
w

itc
h

 I
n

d
e

x

Time (millisecond)

Add
Change
Delete

(a) Dionysus

 1

 2

 3

 4

 5

 6

 7

 8

 0 300 600 900 1200 1500

S
w

itc
h

 I
n

d
e

x

Time (millisecond)

Add
Change
Delete

(b) SWAN
Figure 11: Time series for testbed experiment of WAN TE.

Step 1: “S1”, “S6”, “S2”
Step 2: “S4”, “S8”
Step 3: “S3”, “S5”

Due to stragglers S2 and S4, SWAN takes a long time on both
Steps 1 and 2. Finally, SWAN deletes the old tunnel (node “S5”
and “S7”). It does not start the tunnel addition and deletion steps
with the weight change steps. The whole update takes 1241 ms,
47% longer than Dionysus.

WAN failure recovery case: In this experiment, the network up-
date is triggered by a topology change. Link S3-S8 fails; flows
that use this link rescale their traffic to other tunnels. This causes
link S1-S8 to get overloaded by 50%. To address this problem, TE
calculates a new traffic allocation that eliminates the link overload.
The simplified dependency graph for this network update is shown
in Figure 10(c). To eliminate the overload on link S1-S8, a flow
at S1 is to be moved away, which depends on several other rule
updates. Doing all the rule updates in one shot is undesirable as it
may cause more link overloads and affect more flows. For example,
if “S1” finishes faster than “S3” and “S4”, then it causes 50% link
overload on link S3-S4 and S4-S7 and unnecessarily brings conges-
tions to flows on these links. We present extensive results in §9.3
to show that one-shot updates can cause excessive congestion.

Figure 12(a) shows the time series of the update performed by
Dionysus. It first schedules nodes “S7”, “S5” and “S2”. After “S7”
and “S5” finish, a new tunnel is established and it safely schedules
“S8”. Then it schedules “S3”, “S5” and “S6”. Although “S2” is on
a straggler switch and is delayed, Dionysus dynamically schedules
“S4” once “S3” finishes. Finally, it schedules “S1”. It finishes
the update in 808 ms, which eliminates the overload on S1-S8, as
shown in Figure 12(c).

Figure 12(b) shows the time series of the update performed by
SWAN. It first installs the new tunnel (node “S7” and “S5”), then
calculates an update plan with minimal steps as follows.

Step 1: node “S2”, node “S8”
Step 2: node “S3”, node “S4”
Step 3: node “S1”

This static plan does not adapt, and it is delayed by straggler switches
at both Steps 1 and 2. It misses the opportunity to dynamically re-
order rule updates. It takes 1299 ms to finish the update and elimi-
nate the link overload, 61% longer than Dionysus.

9. LARGE-SCALE SIMULATIONS
We now conduct large-scale simulations to show that Dionysus

can significantly improve update speed, reduce congestion, and ef-
fectively handle cycles in dependency graphs. We focus on conges-
tion freedom as the consistency property, a particularly challenging
property and most relevant for the networks we study.

 1
 2
 3
 4
 5
 6
 7
 8

 0 200 400 600 800 1000 1200 1400

S
w

itc
h

 I
n

d
e

x

Time (millisecond)

Add
Change
Delete

(a) Dionysus

 1
 2
 3
 4
 5
 6
 7
 8

 0 200 400 600 800 1000 1200 1400

S
w

itc
h

 I
n

d
e

x

Time (millisecond)

Add
Change
Delete

(b) SWAN

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200 1400

L
in

k
 U

til
iz

a
tio

n

Time (millisecond)

Dionysus
SWAN

(c) Link Utilization on Link S1-S8

Figure 12: Time series for testbed experiment of WAN failure recovery.

9.1 Datasets and methodology
Wide area network: This dataset is from a large WAN that inter-
connectsO(50) sites. Inter-site links have tens to hundreds of Gbps
capacity. We collect traffic logs on routers and aggregate them into
site-to-site flows over 5-minute intervals. The flows are classified
into 3 priorities: interactive, elastic and background [9]. We obtain
288 traffic matrices on a typical working day, where each traffic
matrix consists of all the site-to-site flows in one interval.

The network uses tunnel-based routing, and we implement the
TE algorithm of SWAN [9] which maximizes network throughput
and approximates max-min fairness among flows of the same pri-
orities. The TE algorithm produces the network configuration for
successive intervals and we compute the time to update the network
from one interval to the next.

Data center network: This dataset is from a large data center net-
work with several hundred switches. The topoogy has 3 layers:
ToR (Top-of-Rack), Agg (Aggeration), and Core. Links between
switches are 10 Gbps. We collect traffic traces by logging the
socket events on all servers and aggregate them into ToR-to-ToR
flows over 5-minute intervals. As for the WAN, we obtain 288 traf-
fic matrices for a typical working day.

Due to the large scale, we do elephant-flow routing [5, 6, 7]. We
choose the 1500 largest flows, which account for 40–60% of all
traffic. We use an LP to calculate their traffic allocation and use
ECMP for other flows. This method improves the total throughput
by up to 30% as compared to using ECMP for all flows. We run TE
and update WCMP weights for elephant flows every interval. Since
mice flows use default ECMP entries, nothing is updated for them.

For both settings, we leave 10% scratch capacity on links to aid
transitions [9], and we use 1500 as switch rule memory size. This
memory size means that the memory slack (i.e., unused capacity) is
at least 50% in our experiments in §9.2 and §9.3. In §9.4, we study
the impact of memory limitation by reducing memory size.

Alternative approaches: We compare Dionysus with two alterna-
tive approaches. First, OneShot sends all updates in one shot. It
does not maintain any consistency, but serves as the lower bound
for update time. Second, SWAN is the state-of-the-art approach in
maintaining congestion freedom [9]. It uses a heuristic to divide
the update into multiple phases based on memory constraints so
that each intermediate phase can fit all rules in switches. SWAN
may rate limit flows in intermediate phase as the paths in the net-
work cannot carry all the traffic. Between consecutive phases, it
uses a linear program to calculate a congestion-free multi-step plan
based on capacity constraints.

Rule update time: The rule update time at switches is based on
switch measurement results (§2). We show results in both normal
setting and straggler setting. In the former case, we use the median

 0

 1

 2

 3

 4

 5

 6

Normal Straggler

T
im

e
 (

s
e

c
o

n
d

)

OneShot [50,90,99 perc.]
Dionysus [50,90,99 perc.]

SWAN [50,90,99 perc.]

(a) WAN TE

 0

 1

 2

 3

 4

 5

Normal Straggler

T
im

e
 (

s
e

c
o

n
d

)

OneShot [50,90,99 perc.]
Dionysus [50,90,99 perc.]

SWAN [50,90,99 perc.]

(b) Data center TE
Figure 13: Dionysus is faster than SWAN and close to OneShot.

 0

 1

 2

 3

 4

 5

Normal Straggler

O
v
e

rs
u

b
s
c
ri

p
tio

n
 (

G
B

)

OneShot [50,90,99 perc.]
Dionysus [50,90,99 perc.]

SWAN [50,90,99 perc.]

(a) Link Oversubscription

 0

 0.5

 1

 1.5

 2

 2.5

 3

Normal Straggler

T
im

e
 (

s
e

c
o

n
d

)

OneShot [50,90,99 perc.]
Dionysus [50,90,99 perc.]

SWAN [50,90,99 perc.]

(b) Update time
Figure 14: In WAN failure recovery, Dionysus significantly re-
duces oversubscription and update time as compared to SWAN.
OneShot, while fast, incurs huge oversubscription.

rule update time in §2; in the latter case, we draw rule update time
from the CDF in §2. We use 50 ms as RTT in WAN scenario.

9.2 Update time
WAN TE: Figure 13(a) shows the 50th, 90th, 99th percentile up-
date time across all intervals for the WAN TE scenario. Dionysus
outperforms SWAN in both normal and straggler settings. In the
normal setting, Dionysus is 57%, 49%, and 52% faster than SWAN
in the 50th, 90th, 99th percentile, respectively. The gain is mainly
from pipelining: in every step, different switches receive different
number of rules to update and thus takes different amount of time
to finish. While SWAN has to wait for the switch with the most
number of rules to finish, Dionysus begins to issue new operations
as soon as some switches finish.

In the straggler setting, Dionysus reduces update time even more.
It is 88%, 84%, and 81% faster than SWAN in the 50th, 90th, 99th

percentile, respectively. This advantage is because stragglers pro-
vide more opportunities for dynamic scheduling which SWAN can-
not leverage. Dionysus also performs close to OneShot. It is only
25% and 13% slower than OneShot in the 90th percentile in normal
and straggler settings, respectively.

 0
 20
 40
 60
 80

 100

WAN TE DC TE

D
e

a
d

lo
c
k
s
 (

%
)

Opportunistic Dionysus SWAN

Figure 15: Opportunistic scheduling frequently deadlocks.
Dionysus and SWAN have no deadlocks.

Data center TE: Figure 13(b) shows results for the data center TE
scenario. Again, Dionysus significantly outperforms SWAN. In the
normal setting, it is 53%, 48%, and 40% faster than SWAN in the
50th, 90th, and 99th percentile; in the straggler setting, it is 81%,
74%, and 67% faster. Data center TE takes more time because
it involves a two-phase commit across multiple switches for each
flow; WAN TE only needs to update the ingress switch if all tunnels
are established.

9.3 Link oversubscription
We use a WAN failure recovery scenario to show that Dionysus

can reduce link oversubscription and shorten recovery time. We use
the same topology and traffic matrices as in the WAN TE case. For
each traffic matrix, we first use TE to calculate a state NS0. Then
we fail a randomly selected link, which causes the ingress switches
to move traffic away from the failed tunnels to the remaining ones.
For example, if flow f originally uses tunnels T1, T2 and T3 with
weights w1, w2 and w3 and the failed link causes T1 to break, then
f carries its traffic using T2 and T3 with weights w2/(w2 + w3)
and w3/(w2+w3). We denote the network state that emerges after
the failure and rescaling as NS1. Since rescaling is a local action,
NS1 may have overloaded links. The TE calculates a new state
NS2 to eliminate congestion. The network update that we study is
the update from NS1 to NS2.

If the initial state NS1 already has congestion, there will be no
congestion-free update plan. For Dionysus and SWAN, we gener-
ate plans in which, during updates, no oversubscribed link carries
more load than its current load. In such plans, the capacity of con-
gested links is virtually increased to its current load, to make each
link appear non-congested. For Dionysus, we increase the weight
of overloaded links to the overloaded amount in CPL calculation
(Equation 1). Then, Dionysus will prefer operations that move traf-
fic away from overloaded links. For SWAN, we use the linear pro-
gram to compute the plan such that total oversubscription across all
links is minimized at each step. Of all possible static plans, this
modification makes SWAN prefer one that minimizes congestion
quickly. OneShot operates as before because it does not care about
congestion.

Figure 14 shows the update time and link oversubscription—the
amount of data above capacity arriving at a link. Dionysus has the
least oversubscription among the three. OneShot, while quick, has
huge oversubscription. SWAN incurs 1.49 GB and 2.04 GB over-
subscription in the 99th percentile in normal and straggler settings,
respectively. As even high-end switches today only have hundreds
of MB buffer [22], such oversubscription will cause heavy packet
loss. Dionysus reduces oversubscription to 0.88 GB and 1.19 GB,
which are 41% and 42% less than SWAN. For update time, Diony-
sus is 45% and 82% faster than SWAN in the 99th percentile in
normal and straggler setting, respectively.

9.4 Deadlocks
We now study the effectiveness of Dionysus in handling circu-

lar dependencies, which can lead to deadlocks. First, we show

that, as mentioned in §3, completely opportunistic scheduling can
lead to frequent deadlocks even in a setting that is not resource-
constrained. Then, we show the effectiveness of Dionysus in han-
dling resource-constrained settings.

Figure 15 shows the percentage of network updates finished by
Dionysus, SWAN, and an opportunistic approach without dead-
locks, that is, without having to reduce flow rates during updates.
The opportunistic approach immediately issues any updates that do
not violate consistency (§3), instead of planning using a depen-
dency graph. The data in the figure corresponds to the WAN and
data center TE scenarios in §9.2, where the memory slack was over
50%. We do not show results for OneShot; it does not deadlock by
design as it does not worry about consistency.

We see that planning-based approaches, Dionysus and SWAN,
lead to no deadlocks, but the opportunistic approach deadlocks
90% of the time for WAN TE and 70% of the time for data cen-
ter TE. It performs worse for WAN TE because the WAN topology
is less regular than the data center topology, which leads to more
complex dependencies.

We now evaluate Dionysus and SWAN in resource-constrained
settings. To emulate such a setting, instead of using 1500 as mem-
ory size, we vary switch memory slack; 10% memory slack means
we set the memory size as 1100 when the switch is loaded with
1000 rules. We show three metrics in the WAN TE setup: (1) the
percentage of cases that deadlock and use rate limiting to finish
the update, (2) the throughput loss caused by rate limiting (i.e., the
product of the limited rate and the rate limited time), and (3) the
update time. We set k∗=5 in Algorithm 5 for Dionysus.

Figure 16 shows the results for the straggler setting. The re-
sults with the normal setting are similar. Figure 16(a) shows the
percentage of cases that use rate limiting under different levels of
memory slack. Dionysus only occasionally runs into deadlocks and
uses resorts to rate limiting more sparingly than SWAN. Even with
only 2% memory slack, Dionysus uses rate limiting in fewer than
10% cases. SWAN, on the other hand, uses rate limiting in more
than 80% of the cases. This difference is because the heuristics in
Dionysus strategically account for dependencies during scheduling.
SWAN uses simplistic metrics, such as the amount of traffic that a
tunnel carries and the number of hops of the tunnel, to decide which
tunnel to add or delete.

Figure 16(b) shows the throughput loss. The throughput loss
with SWAN can be as high as 20 GB, while that with Dionysus is
only tens of MB. Finally 16(c) shows the update time. Dionysus
is 60%, 145%, and 84% faster than SWAN in the 90th percentile
under 2%, 6% and 10% memory slack respectively.

10. RELATED WORK
In the domain of distributed protocols, there is a lot of work on

avoiding transient misbehavior during network updates. Much fo-
cuses on maintain properties like loop-freedom for specific proto-
cols or scenarios. For example, Francois et al. [23], John et al. [24]
and Kushman et al. [25] focus on BGP, Francois et al. [26, 27]
and Raza et al. [28] focus on link-state protocols, and Vanbever et
al. [29] focus on migration from one routing protocol to another.

With the advent of SDN, many recent works propose solutions to
maintain different consistency properties during network updates.
Reitblatt et al. [11] provide a theoretical foundation and propose
a two-phase commit protocol to maintain packet coherence. Katta
et al. [12] and McGeer et al. [30] propose solutions to reduce the
memory requirements to maintain packet coherence. SWAN [9],
zUpdate [10] and Ghorbani and Caesar [31] provide solutions for
congestion-free updates. Noyes et al. [32] propose a model check-
ing based approach to generate update orderings that maintain in-

 0

 20

 40

 60

 80

 100

2% 4% 6% 8% 10%

D
e

a
d

lo
c
k
s
 (

%
)

Memory Slack

Dionysus
SWAN

(a) Percentage of rate limited cases

 0

 5

 10

 15

 20

2% 4% 6% 8% 10%

T
h

ro
u

g
h

p
u

t
L

o
s
s
 (

G
B

)

Memory Slack

Dionysus [50,90,99 perc.]
SWAN [50,90,99 perc.]

(b) Throughput Loss

 0

 1

 2

 3

 4

 5

2% 4% 6% 8% 10%

T
im

e
 (

s
e

c
o

n
d

)

Memory Slack

Dionysus [50,90,99 perc.]
SWAN [50,90,99 perc.]

(c) Update Time

Figure 16: Dionysus only occasionally runs into deadlocks and uses rate limiting, and experiences little throughput loss. It also
consistently outperforms SWAN in update time.

variants specified by the operator. Mahajan and Wattenhofer [13]
present an efficient solution for maintaining loop freedom. As men-
tioned earlier, unlike these works, the key characteristic of our ap-
proach is dynamic scheduling, which leads to faster updates.

Mahajan and Wattenhofer [13] also analyze the nature of depen-
dencies among switches induced by different consistency proper-
ties and outline a general architecture for consistent updates. We
build on their work by developing a concrete system.

Some works develop approaches that spread traffic such that the
network stays congestion-free after a class of common failures [33,
34], and thus no network-wide updates are needed to react to these
failures. These approaches are complementary to our work. They
help reduce the number of network updates needed. But network
updates are still be needed to adjust to changing traffic demands
and reacting to failures that are not handled by these approaches.
Dionysus ensures that these updates will be fast and consistent.

11. CONCLUSION
Dionysus enables fast, consistent network updates in SDNs. The

key to its speed is dynamic scheduling of updates at individual
switches based on runtime differences in their update speeds. We
showed using testbed experiments and data-driven simulations that
Dionysus improves the median network update speed by 53%-88%
over static scheduling. These faster updates translates to a more
nimble network that reacts faster to events like failures and changes
in traffic demand.

Acknowledgements We thank Srinivas Narayana, Meg Walraed-
Sullivan, our shepherd Brighten Godfrey, and the anonymous SIG-
COMM reviewers for their feedback on earlier versions of this pa-
per. Xin Jin and Jennifer Rexford were partially supported by NSF
grant TC-1111520 and DARPA grant MRC-007692-001.

12. REFERENCES
[1] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and

J. van der Merwe, “Design and implementation of a routing control
platform,” in USENIX NSDI, 2005.

[2] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach to
network control and management,” SIGCOMM CCR, 2005.

[3] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude, N. McKeown,
and S. Shenker, “Rethinking enterprise network control,” IEEE/ACM
Trans. Networking, vol. 17, no. 4, 2009.

[4] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving energy in data
center networks.,” in USENIX NSDI, 2010.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data center
networks.,” in USENIX NSDI, 2010.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
grained traffic engineering for data centers,” in ACM CoNEXT, 2011.

[7] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for
high-performance networks,” in ACM SIGCOMM, 2011.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al., “B4: Experience
with a globally-deployed software defined WAN,” in ACM
SIGCOMM, 2013.

[9] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in ACM SIGCOMM, 2013.

[10] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A.
Maltz, “zUpdate: Updating data center networks with zero loss,” in
ACM SIGCOMM, 2013.

[11] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in ACM SIGCOMM, 2012.

[12] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent
updates,” in ACM SIGCOMM HotSDN Workshop, 2013.

[13] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in ACM SIGCOMM HotNets Workshop, 2013.

[14] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen,
Introduction to Algorithms. The MIT press, 2001.

[15] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for OpenFlow switch evaluation,” in
Passive and Active Measurement Conference, 2012.

[16] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An API for application control of SDNs,”
in ACM SIGCOMM, 2013.

[17] Nicira, “Network virtualization for cloud data centers.”
http://tinyurl.com/c9jbkuu.

[18] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric:
A retrospective on evolving SDN,” in ACM SIGCOMM HotSDN
Workshop, 2012.

[19] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and
S. Shenker, “Software-defined Internet architecture: Decoupling
architecture from infrastructure,” in ACM SIGCOMM HotNets
Workshop, 2012.

[20] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, no. 2, 1972.

[21] M. Newman, Networks: An Introduction. Oxford University Press,
2009.

[22] Arista, “Arista 7500 series technical specifications.”
http://tinyurl.com/lene8sw.

[23] P. Francois, O. Bonaventure, B. Decraene, and P.-A. Coste,
“Avoiding disruptions during maintenance operations on BGP
sessions,” Network and Service Management, IEEE Transactions on,
vol. 4, no. 3, 2007.

[24] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and
A. Venkataramani, “Consensus routing: The Internet as a distributed
system,” in USENIX NSDI, 2008.

[25] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs, “R-BGP:
Staying connected in a connected world,” in USENIX NSDI, 2007.

[26] P. Francois, M. Shand, and O. Bonaventure, “Disruption free
topology reconfiguration in OSPF networks,” in INFOCOM, 2007.

[27] P. Francois and O. Bonaventure, “Avoiding transient loops during the
convergence of link-state routing protocols,” IEEE/ACM Trans.
Networking, vol. 15, no. 6, 2007.

[28] S. Raza, Y. Zhu, and C.-N. Chuah, “Graceful network state
migrations,” IEEE/ACM Trans. Networking, vol. 19, no. 4, 2011.

[29] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and
O. Bonaventure, “Lossless migrations of link-state IGPs,”
IEEE/ACM Trans. Networking, vol. 20, no. 6, 2012.

[30] R. McGeer, “A safe, efficient update protocol for OpenFlow
networks,” in ACM SIGCOMM HotSDN Workshop, 2012.

[31] S. Ghorbani and M. Caesar, “Walk the line: Consistent network
updates with bandwidth guarantees,” in ACM SIGCOMM HotSDN
Workshop, 2012.

[32] A. Noyes, T. Warszawski, and N. Foster, “Toward synthesis of
network updates,” in Workshop on Synthesis (SYNT), 2013.

[33] Y. Wang, H. Wang, A. Mahimkar, R. Alimi, Y. Zhang, L. Qiu, and
Y. R. Yang, “R3:resilient routing reconfiguration,” in ACM
SIGCOMM, 2010.

[34] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter,
“Traffic engineering with forward fault correction,” in ACM
SIGCOMM, 2014.

APPENDIX
A. PROOFS OF THEOREMS
Proof of Theorem 1: Given a network, where all flow demands
from a set of sources to a set of destinations must go through either
switch u or v. Each switch has a memory limit for k rules (flows),
and each switch has a bandwidth capacity limit of c. We have 2k−1
flows, one big flow with capacity c/2, k − 1 flows with capacity
ε (think of ε = 0), plus a set S of k − 1 flows, all with integer
capacity, in total c. Currently, the set S goes through switch v, all
other flows (the big one and the tiny ones) go through switch u.
The target state is to swap the switches of all flows, i.e. the big
and the tiny flows should go through switch v, the set S through
switch u. Note that both current and target solution are feasible
regarding both capacity and memory. Initially, we cannot move
any flow from v to u, not even partially, because the rule limit on
switch u is already maxed out. So we can only (partially) move a
single flow from u to v. If we move the big flow, we need a new
rule on switch v, which will also max out the rule limit on switch
v, at which point we are stuck as both memory limits are maxed
out. However, we can move an ε flow from u to v, first creating
an additional rule at v, then moving the flow, then removing one
rule at u. At this stage have used all rules on v, but we have one
spare rule at u, which gives us the possibility to (partially) move a
flow from v to u. Again, partially moving a flow is not a good idea
as we are maxing out regarding rules on both switches. However,
there is enough spare capacity on switch u to completely move one
of the flows in S. We do that, as it is the only thing we can do. We
continuing moving ε-flows from u to v and then S S-flows from v
to u. However, since we cannot move flows partially, we always
must move complete flows, and at some point, capacity on u will
become a problem. In order to be able to move the big flow from
u to v, we must have moved a subset S′ of S from v to u such that
this subset has exactly a total capacity c/2. In order to figure out
the set S′, we need to partition the flows into two equal-capacity
sets. This is equivalent to the so-called partition problem, an NP-
complete problem that must partition of set of n integers into two
sets with the same sum.
Proof of Theorem 2: We use the same network as above, i.e. all
flow demands from a set of sources to a set of destinations must go
through either switch u or v. Each switch has a bandwidth capacity
limit of c. We have k flows, one with capacity c/2, plus a set S
of k − 1 flows, all with integer capacity, in total c. The big flow

Algorithm 6 CanScheduleOperation(Oi) — WCMP Network
1: if !Oi.isChangeWeightOp() then
2: return false
3: canSchedule← false

// Check link capacity resource
4: total← 0
5: Oi0 ← parents(Oi)[0]
6: for path node Pj ∈ parents(Oi0) do
7: Pj .available← lji0
8: for resource node Rk ∈ parents(Pj) do
9: Pj .available← min(available, lkj , Rk.free)

10: total← total + Pj .available

11: if total > 0 then
12: canSchedule← true

// Check switch memory resource
13: for operation node Oj ∈ parents(Oi) do
14: Rk ← resourceParent(Oj)
15: if Rk 6= null && Rk.free < lkj then
16: canSchedule← false

17: if canSchedule then
// Update link capacity resource

18: Oi0 ← parents(Oi)[0]
19: for path node Pj ∈ parents(Oi0) do
20: for resource node Rk ∈ parents(Pj) do
21: lkj ← lkj − Pj .available
22: Rk.free← Rk.free− Pj .available

23: for operation node Ok ∈ children(Pj) do
24: ljk ← ljk − Pj .available

// Update switch memory resource
25: for operation node Oj ∈ parents(Oi) do
26: Rk ← resourceParent(Oj)
27: if Rk 6= null then
28: Rk.free← Rk.free− lkj

29: return canSchedule

initially goes through switch u, the set S through switch v. Again,
as above, we want to swap all flows. If we could solve partition, we
would in a first step move a set S′, subset of S with total capacity
of c/2 from v to u, then the big flow from u to v, and finally all the
other flows (S \ S′) from v to u. All flows are properly moved and
touched only once. If we cannot solve partition, at least one flow
must first be split (some part of the flow going through switch u
while the other part going through switch v). Eventually this flow
is properly moved as well, but in addition to touching each flow
once, we need to touch at least one flow at least twice, which costs
time.

B. SCHEDULING ALGORITHMS FOR WCMP
NETWORK

Algorithm 6 and 7 show the pseudo code ofCanScheduleOperation(Oi)
and UpdateGraph(G) for WCMP networks.

CanScheduleOperation (Algorithm 6): Different from tunnel-
based networks, WCMP networks don’t have tunnel add or delete
operation. Instead, every hop have weights to split a flow among
multiple next-hops. To update a flow, all switches of this flow
have to be touched to implement a two-phase update. Therefore,
this function checks on a per-flow basis by examining the change
weight operation at the ingress switch for every flow, e.g., Y in
Figure 2 (Lines 1, 2). Similar to tunnel-based networks, it gath-
ers all free capacities on the paths where traffic increases (Lines
4-12). It iterates over path nodes and obtain the available capacity
(Pj .available) of the path (Lines 6-10). This capacity limits the
amount of traffic that we can move to this path. Note that these
path nodes are the parents of Oi’s parents (e.g., parents of X rather

Algorithm 7 UpdateGraph(G) — WCMP Network
1: for finished operation node Oi ∈ G do
2: if Oi.isDelOldV erOp() then
3: Rj ← child(Oi)
4: Rj .free← Rj .free+ lij
5: else if Oi.isChangeWeightOp() then
6: for path node Pj ∈ children(Oi) do
7: for resource node Rk ∈ children(Pj) do
8: ljk ← ljk − Pj .committed
9: Rk.free← Rk.free+ Pj .committed

10: if ljk = 0 then
11: Delete edge Pj → Rk

12: Pj .committed← 0
13: if lij = 0 then
14: Delete Pj and its edges
15: if Oi.hasNoChildren() then
16: Delete Oi, related nodes and edges
17: for resource node Ri ∈ G do
18: if Ri.free ≥

∑
j lij then

19: Ri.free← Ri.free−
∑

j lij
20: Delete all edges from Ri

than parents of Y in Figure 2) since Oi is the change weight oper-
ation at the ingress switch (e.g., Y in Figure 2). This flow can only
be scheduled if there is any free capacity on these paths (Lines 11,
12). Then we check all the switches to see if they have free memory
to accommodate the operations that add weights with new version,
e.g., S2 in Figure 2 (Lines 13-16). If we have both link and switch
resource, we can schedule update to this flow (Lines 17-28). We
update link resource (Lines 18-24) and switch resource (Lines 25-
28) accordingly.

The function finally returns canSchedule denoting whether the
flow can be scheduled. In the schedule part (Line 7 in Algorithm 2),
different from tunnel-based networks, we do a two-phase update,
where we first add weights with new version (e.g., X in Figure 2),
change weights and assign new version at ingress switch (e.g., Y in
Figure 2) then delete weights with old version (e.g., Z in Figure 2).
UpdateGraph (Algorithm 7): This function updates the depen-
dency graph based on finished operations in the last round. We
iterate over all finished operations (Lines 1-15). If the operation
deletes weights with old version, we free rule space (Lines 2-4).
If the operation changes weights with new version, for each child
path node, we release resources to links on the path (Lines 8, 9) and
delete the edge if all resources are released (Lines 10, 11). We reset
Pj .committed to 0 (Line 12) and delete it if all traffic to be moved
has been moved (Lines 13-14). After this, we check whetherOi has
any children left. If so, we keep these nodes in order to move the
remaining traffic. Otherwise, it means all traffic has been moved,
and we delete Oi and all the related two-phase commit nodes and
edges (e.g., X, Y, Z , the related path nodes and edges in Figure 2).
Finally, we iterate over all resource nodes and remove edges from
unbottlenecked resources (Lines 17-20).

