
29

Trajectory Data Mining: An Overview

YU ZHENG, Microsoft Research

The advances in location-acquisition and mobile computing techniques have generated massive spatial
trajectory data, which represent the mobility of a diversity of moving objects, such as people, vehicles, and
animals. Many techniques have been proposed for processing, managing, and mining trajectory data in the
past decade, fostering a broad range of applications. In this article, we conduct a systematic survey on
the major research into trajectory data mining, providing a panorama of the field as well as the scope of its
research topics. Following a road map from the derivation of trajectory data, to trajectory data preprocessing,
to trajectory data management, and to a variety of mining tasks (such as trajectory pattern mining, outlier
detection, and trajectory classification), the survey explores the connections, correlations, and differences
among these existing techniques. This survey also introduces the methods that transform trajectories into
other data formats, such as graphs, matrices, and tensors, to which more data mining and machine learning
techniques can be applied. Finally, some public trajectory datasets are presented. This survey can help shape
the field of trajectory data mining, providing a quick understanding of this field to the community.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Data mining,
spatial databases and GIS; I.2.6 [Artificial Intelligence]: Learning—Knowledge acquisition

General Terms: Algorithms, Measurement, Experimentation

Additional Key Words and Phrases: Spatiotemporal data mining, trajectory data mining, trajectory com-
pression, trajectory indexing and retrieval, trajectory pattern mining, trajectory outlier detection, trajectory
uncertainty, trajectory classification, urban computing

ACM Reference Format:
Yu Zheng. 2015. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 6, 3, Article 29 (May
2015), 41 pages.
DOI: http://dx.doi.org/10.1145/2743025

1. INTRODUCTION

A spatial trajectory is a trace generated by a moving object in geographical spaces,
usually represented by a series of chronologically ordered points, for example, p1 →
p2 → · · · → pn, where each point consists of a geospatial coordinate set and a time
stamp such as p = (x, y, t).

The advance in location-acquisition technologies has generated a myriad of spatial
trajectories representing the mobility of various moving objects, such as people, vehi-
cles, and animals. Such trajectories offer us unprecedented information to understand
moving objects and locations, fostering a broad range of applications in location-based
social networks [Zheng 2011], intelligent transportation systems, and urban computing
[Zheng et al. 2014b]. The prevalence of these applications in turn calls for systematic
research on new computing technologies for discovering knowledge from trajectory
data. Under the circumstances, trajectory data mining has become an increasingly

Authors’ addresses: Y. Zheng, Microsoft Research, Building 2, No. 5 Danling Street, Haidian District, Beijing
100080, China; email: yuzheng@microsoft.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 2157-6904/2015/05-ART29 $15.00
DOI: http://dx.doi.org/10.1145/2743025

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

http://dx.doi.org/10.1145/2743025
http://dx.doi.org/10.1145/2743025

29:2 Y. Zheng

Trajectory Data Mining: An Overview 29:3

distance metric, for example, the distance between two trajectories. Additionally, there
are two types (historical and recent) of trajectories, which need different managing
methods. We will introduce trajectory indexing and retrieval in Section 4.

Fourthly, based on the first two steps, we can then conduct mining tasks, like trajec-
tory pattern mining, trajectory uncertainty, outlier detection, and classification.

—Trajectory Uncertainty: Objects move continuously while their locations can only
be updated at discrete times, leaving the location of a moving object between two
updates uncertain. To enhance the utility of trajectories, a series of research tried
to model and reduce the uncertainty of trajectories. On the contrary, a branch of
research aims to protect a user’s privacy when the user discloses her trajectories. We
review uncertainty of trajectory in Section 5.

—Trajectory Pattern Mining: The huge volume of spatial trajectories enables opportun-
ities for analyzing the mobility patterns of moving objects, which can be represented
by an individual trajectory containing a certain pattern or a group of trajectories sha-
ring similar patterns. In Section 6, we survey the literature that is concerned with
four categories of patterns: moving together patterns, trajectory clustering, periodic
patter-ns, and frequent sequential patterns.

—Trajectory Classification: Using supervised learning approaches, we can classify tra-
jectories or segments of a trajectory into some categories, which can be activities (like
hiking and dining) or different transportation modes, such as walking and driving.
We show examples of trajectory classification in Section 7.

—Trajectory Outlier Detection: Different from trajectory patterns that frequently occur
in trajectory data, trajectory outliers (a.k.a. anomalies) can be items (a trajectory or
a segment of trajectory) that are significantly different from other items in terms
of some similarity metric. It can also be events or observations (represented by a
collection of trajectories) that do not conform to an expected pattern (e.g., traffic
congestion caused by a car accident). Section 8 introduces outlier/anomaly detection
from trajectory data.

Finally, besides studying trajectories in its original form, we can transform trajec-
tories into other formats, such as graph, matrix, and tensor (see the right part of
Figure 1). The new representations of trajectories expand and diversify the approaches
for trajectory data mining, leveraging existing mining techniques (e.g., graph mining,
Collaborative Filtering (CF), Matrix Factorization (MF), and Tensor Decomposition
(TD). In Section 9, we present representative examples of the transformation.

The contribution of this article is fourfold. First, the article presents a framework for
trajectory data mining, defining the scope and road map for this field. The framework
provides a panorama with which people can quickly understand and step into this field.
Second, individual research works are well positioned, categorized, and connected in
each layer of this framework. Professionals can easily locate the methods they need
to solve a problem, or find the unsolved problems. Third, this article proposes a vision
to transfer trajectories into other formats, to which a diversity of existing mining
techniques can be applied. This expands the original scope of trajectory data mining,
advancing the methodologies and applications of this field. Fourth, we collect a list of
sources from which people can obtain various public trajectory datasets for research.
We also introduce the conferences and journals that are concerned with the research
on trajectory data.

2. TRAJECTORY DATA

In this section, we classify the derivation of trajectories into four major categories,
briefly introducing a few application scenarios in each category. Trajectory data repre-
senting human mobility can help build a better social network [Bao et al. 2015; Zheng

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:4 Y. Zheng

2011; Zheng et al. 2012b] and travel recommendation [Zheng and Xie 2011b; Zheng
et al. 2011c; Zheng et al. 2009b].

(1) Mobility of people: People have been recording their real-world movements in the
form of spatial trajectories, passively and actively, for a long time.
—Active Recording: Travelers log their travel routes with GPS trajectories for the

purpose of memorizing a journey and sharing experiences with friends. Bicyclers
and joggers record their trails for sports analysis. In Flickr, a series of geotagged
photos can formulate a spatial trajectory as each photo has a location tag and
a time stamp corresponding to where and when the photo was taken. Likewise,
the “check-ins” of a user in a location-based social network can be regarded as a
trajectory, when sorted chronologically.

—Passive Recording: A user carrying a mobile phone unintentionally generates
many spatial trajectories represented by a sequence of cell tower IDs with corre-
sponding transition times. Additionally, transaction records of a credit card also
indicate the spatial trajectory of the cardholder, as each transaction contains
a time stamp and a merchant ID denoting the location where the transaction
occurred.

(2) Mobility of transportation vehicles: A large number of GPS-equipped vehicles (such
as taxis, buses, vessels, and aircrafts) have appeared in our daily life. For instance,
many taxis in major cities have been equipped with a GPS sensor, which enables
them to report a time-stamped location with a certain frequency. Such reports
formulate a large amount of spatial trajectories that can be used for resource
allocation [Yuan et al. 2011b, 2013b], traffic analysis [Wang et al. 2014; Yuan et al.
2013a], and improving transportation networks [Zheng et al. 2011a].

(3) Mobility of animals: Biologists have been collecting the moving trajectories of an-
imals like tigers and birds, for the purpose of studying animals’ migratory traces,
behavior, and living situations [Lee et al. 2007; Li et al. 2010c].

(4) Mobility of natural phenomena: Meteorologists, environmentalists, climatologists,
and oceanographers are busy collecting the trajectories of some natural phenom-
ena, such as hurricanes, tornados, and ocean currents. These trajectories capture
the change of the environment and climate, helping scientists deal with natural
disasters and protect the natural environment we live in.

3. TRAJECTORY DATA PREPROCESSING

This section introduces a fourfold of basic techniques that we need to process a trajec-
tory before starting a mining task, consisting of noise filtering, stay point detection,
trajectory compression, and trajectory segmentation.

3.1. Noise Filtering

Spatial trajectories are never perfectly accurate, due to sensor noise and other factors,
such as receiving poor positioning signals in urban canyons. Sometimes, the error is
acceptable (e.g., a few GPS points of a vehicle fall out of the road the vehicle was actually
driven), which can be fixed by map-matching algorithms (introduced in Section 3.5). In
other situations, as shown in Figure 2, the error of a noise point like p5 is too big (e.g.,
several hundred meters away from its true location) to derive useful information, such
as travel speed. So, we need to filter such noise points from trajectories before starting
a mining task. Though this problem has not been completely solved, existing methods
fall into three major categories.

Mean (or Median) Filter. For a measured point zi, the estimate of the (unknown) true
value is the mean (or median) of zi and its n-1 predecessors in time. The mean (median)
filter can be thought of as a sliding window covering n temporally adjacent values of

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:5

Fig. 2. Noise points in a trajectory.

zi. In the example shown in Figure 2, p5 · z = ∑5
i=1 pi · z/5, if we use a mean filter

with a sliding window size of 5. The median filter is more robust than the mean filter
when handling extreme errors. The mean (median) filters are practical for handling
individual noise points like p5 in a trajectory with a dense representation. However,
when dealing with multiple consecutive noise points, for example, p10, p11, and p12,
a larger size of sliding window is needed. This results in a bigger error between the
calculated mean (or median) value and a point’s true position. When the sampling rate
of trajectory is very low (i.e., the distance between two consecutive points could be
longer than several hundred meters), the mean and median filters are not good choices
anymore.

Kalman and Particle Filters. The trajectory estimated from the Kalman filter is a
trade-off between the measurements and a motion model. Besides giving estimates that
obey the laws of physics, the Kalman filter gives principled estimates of higher order
motion states like speed. While the Kalman filter gains efficiency by assuming linear
models plus Gaussian noise, the particle filter relaxes these assumptions for a more
general, but less efficient, algorithm. A tutorial-like introduction to using the Kalman
and particle filters to fix noisy trajectory points can be found in Lee and Krumm [2011].

The initialization step of the particle filtering is to generate P particles x(j)
i , j =

1, 2, . . . , P from the initial distribution. For example, these particles would have zero
velocity and be clustered around the initial location measurement with a Gaussian
distribution. The second step is “importance sampling,” which uses the dynamic model
P(xi|xi−1) to probabilistically simulate how the particles change over one timestep. The
third step computes “importance weights” for all the particles using the measurement
model ω

(j)
i = P(zi|x̂i

(j)). Larger importance weights correspond to particles that are
better supported by the measurement. The important weights are then normalized
so they sum to one. The last step in the loop is the “selection step” when a new set
of P particles x(j)

i is selected from the x̂i
(j) proportional to the normalized importance

weights ω
(j)
i . Finally, we can compute a weight sum by x̂i = ∑P

i=1 ω
(j)
i x̂i

(j).
The Kalman and particle filters, model both the measurement noise and the dynamics

of the trajectory. However, they depend on the measurement of an initial location. If the
first point in a trajectory is noisy, the effectiveness of the two filters drops significantly.

Heuristics-Based Outlier Detection. While the previously mentioned filters replace
a noise measurement in a trajectory with an estimated value, the third category of
methods removes noise points directly from a trajectory by using outlier detection
algorithms. The noise filtering method, which has been used in T-Drive [Yuan et al.
2010a, 2011a, 2013a] and GeoLife [Zheng et al. 2009a; Zheng et al. 2010] projects, first
calculates the travel speed of each point in a trajectory based on the time interval and
distance between a point and its successor (we call this a segment). The segments, such
as p4 → p5, p5 → p6, and p9 → p10 (illustrated by the dotted lines in Figure 2), with
a speed larger than a threshold (e.g., 300km/h), are cut off. Given that the number of
noise points is much smaller than common points, the separated points like p5 and
p10 can be regarded as outliers. Some distance-based outlier detection can easily find

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:6 Y. Zheng

Fig. 3. Stay points in a trajectory.

the number of p5’s neighbors within a distance d is smaller than p proportion of the
points in the entire trajectory. Likewise, p10, p11, and p12 can be filtered. While such
algorithms can handle the initial error in a trajectory and data sparsity problems,
setting the threshold d and p is still based on heuristics.

3.2. Stay Point Detection

Spatial points are not equally important in a trajectory. Some points denote locations
where people have stayed for a while, such as shopping malls and tourist attractions, or
gas stations where a vehicle was refueled. We call this kind of points “Stay Points.” As
shown in Figure 3(a), there are two types of stay points occurring in a trajectory. One is
a single point location, for example, Stay Point 1, where a user remains stationary for a
while. This situation is very rare, because a user’s positioning device usually generates
different readings even in the same location. The second type, like Stay Points 2 shown
in Figure 3(a), is more generally observed in trajectories, representing the places where
people move around (e.g., as depicted in Figures 3(b) and 3(c)) or remain stationary but
with positioning readings shifting around.

With such stay points, we can turn a trajectory from a series of time-stamped spatial
points P into a sequence of meaningful places S,

P = p1 → p2 → · · · → pn,⇒ S = s1
�t1→ s2

�t2→, . . . ,
�tn−1→ sn,

therefore facilitating a diversity of applications, such as travel recommendations
[Zheng and Xie 2011b; Zheng et al. 2011c], destination prediction [Ye et al. 2009], taxi
recommendation [Yuan et al. 2011b, 2013b], and gas consumption estimation [Zhang
et al. 2013, 2015]. On the other hand, in some applications, for example, estimating the
travel time of a path [Wang et al. 2014] and driving direction suggestion [Yuan et al.
2013a], such stay points should be removed from a trajectory during the preprocessing.

Li et al. [2008] first proposed the stay point detection algorithm. This algorithm
first checks if the distance between an anchor point (e.g., p5) and its successors is in a
trajectory larger than a given threshold (e.g., 100 m). It then measures the time span
between the anchor point and the last successor (i.e., p8) that is within the distance
threshold. If the time span is larger than a given threshold, a stay point (characterized
by p5, p6, p7, and p8) is detected; the algorithm starts detection the next stay point
from p9. Yuan et al. [2011b, 2013b] improved this stay point detection algorithm based
on the idea of density clustering. After finding p5 to p8 is a candidate stay point (using
p5 as an anchor point), their algorithm further checks the successor points from p6. For
instance, if the distance from p9 to p6 is smaller than the threshold, p9 will be added
into the stay point.

3.3. Trajectory Compression

Basically, we can record a time-stamped geographical coordinate every second for
a moving object. But, this costs a lot of battery power and the overhead for
communication, computing, and data storage. In addition, many applications do not re-
ally need such a precision of location. To address this issue, two categories of trajectory

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:7

Fig. 4. Distance metric measuring the compression error.

Fig. 5. Illustration of Douglas-Peucker algorithm.

compression strategies (based on the shape of a trajectory) have been proposed, aim-
ing to reduce the size of a trajectory while not compromising much precision in its
new data representation [Lee and Krumm 2011]. One is the offline compression (a.k.a.
batch mode), which reduces the size of trajectory after the trajectory has been fully
generated. The other is online compression, compressing a trajectory instantly as an
object travels.

Distance Metric. Besides the two strategies, there are two distance metrics to mea-
sure the error of a compression: perpendicular Euclidean distance and time synchro-
nized Euclidean distance. As illustrated in Figure 4, supposing we compress a trajectory
with 12 points into a representation of three points (i.e., p1, p7, and p12), the two dis-
tance metrics are the summation of the lengths of the segments connecting pi and p′

i,
in Figures 4(a) and 4(b), respectively. The latter distance assumes a constant speed
traveling between p1 and p7, calculating the projection of each original point on p1 p7
by time intervals.

Offline Compression. Given a trajectory that consists of a full series of time-stamped
points, a batched compression algorithm aims to generate an approximated trajectory
by discarding some points with a negligible error from the original trajectory. This
is similar to the line simplification problem, which has been studied in the computer
graphics and cartography research communities [McMaster 1986].

A well-known algorithm, called Douglas-Peucker [Douglas and Peucker 1973], is
used to approximate the original trajectory. As demonstrated in Figure 5(a), the idea of
Douglas-Peucker is to replace the original trajectory by an approximate line segment,
for example, p1 p12. If the replacement does not meet the specified error requirement
(perpendicular Euclidean distance is used in this example), it recursively partitions the
original problem into two subproblems by selecting the point contributing the biggest
error as the splitting point (e.g., p4). This process continues until the error between the
approximation and the original trajectory is below a specified error. The complexity of
the original Douglas-Peucker algorithm is O(N2), where N is the number of points in
a trajectory. Its improvement achieves O(NlogN) [Hershberger and Snoeyink 1992].
To ensure that the approximated trajectory is optimal, Bellman’s algorithm [Bellman
1961] employs a dynamic programming technique with a complexity of O(N3).

Online Data Reduction. As many applications require one to transmit trajectory
data in a timely fashion, a series of online trajectory compression techniques have
been proposed to determine whether a newly acquired spatial point should be retained

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:8 Y. Zheng

in a trajectory. There are two major categories of online compression methods. One
is the window-based algorithms, such as the Sliding Window algorithm [Keogh et al.
2001] and Open Window algorithm [Maratnia and de By 2004]. The other is based on
the speed and direction of a moving object.

The idea of the Sliding Window algorithm is to fit the spatial points in a growing
sliding window with a valid line segment and continue to grow the sliding window
until the approximation error exceeds some error bound. As illustrated in Figure 5(b),
p5 will be first reserved as the error for p3 exceeds the threshold. Then, the algorithm
starts from p5 and reserve p8. Other points are negligible. Different from the Sliding
Window algorithm, the Open Window algorithm [Maratnia and de By 2004] applies
the heuristic of the Douglas-Peucker algorithm to choose the point with the maximum
error in the window (e.g., p3 in Figure 5(b)) to approximate the trajectory segment.
This point is then used as a new anchor point to approximate its successors.

Another category of algorithms consider speed and directions as key factors when
doing online trajectory compression. For instance, Potamias et al. [2006] use a safe
area, derived from the last two locations and a given threshold, to determine whether a
newly acquired point contains important information. If the new data point is located
within the safe area, then this location point is considered as redundant and thus can
be discarded; otherwise, it is included in the approximated trajectory.

Compression with Semantic Meaning. A series of research [Richter et al. 2012; Chen
et al. 2009] aims to keep the semantic meanings of a trajectory, when compressing the
trajectory. For instance, in a location-based social network [Zheng 2011], some special
points where a user stayed, took photos, or changed direction greatly, would be more
significant than other points in presenting semantic meanings of a trajectory. Chen
et al. [2009] proposed a Trajectory Simplification (TS) algorithm, which considers both
the shape skeleton and the aforementioned special points. TS first divides a trajectory
into walking and nonwalking segments using a trajectory segmentation algorithm
[Zheng et al. 2008a] (see Section 3.4). A point is weighted by its heading change degree
and the distance to its neighbors.

Another branch of research [Kellaris et al. 2009; Song et al. 2014] considers trajec-
tory compression with the constraints of transportation networks. For example, we can
reduce the redundant points on the same road segment. We can even discard all the
newly acquired points after an anchor point, as long as the moving object is travel-
ing on the shortest path from the anchor point to its current location. This branch of
work usually needs the support of map-matching algorithms (refer to Section 3.5). In
2014, PRESS [Song et al. 2014] was proposed to separate the spatial representation
of a trajectory from its temporal representation. PRESS consists of a hybrid spatial
compression algorithm and an error bounded temporal compression algorithm, com-
pressing the spatial and temporal information of trajectories, respectively. The spatial
compression combines frequent sequential pattern mining techniques with Huffman
Coding to reduce the size of a trajectory; that is, a frequently traveled path can be
represented by a shorter code, therefore saving storage.

3.4. Trajectory Segmentation

In many scenarios, such as trajectories clustering and classification, we need to divide
a trajectory into segments for a further process. The segmentation not only reduces
the computational complexity but also enables us to mine richer knowledge, such as
subtrajectory patterns, beyond what we can learn from an entire trajectory. In general,
there are three types of segmentation methods.

The first category is based on time interval. For example, as illustrated in Figure 6(a),
if the time interval between two consecutive sampling points is larger than a given

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:9

Fig. 6. Methods of trajectory segmentation.

threshold, a trajectory is divided into two parts at the two points, that is, p1 → p2 and
p3 → · · · → p9. Sometimes, we can divide a trajectory into segments of the same time
length.

The second category of methods is based on the shape of a trajectory. For example,
as demonstrated in Figure 6(b), we can partition a trajectory by the turning points
with heading direction changing over a threshold. Alternatively, we can employ the
line simplification algorithms, such as the Douglas-Peucker algorithm, to identify the
key points maintaining a trajectory’s shape, as depicted in Figure 6(c). The trajectory is
then partitioned into segments by these key points. Similarly, Lee et al. [2007] proposed
to partition a trajectory by using the concept of Minimal Description Language (MDL),
which is comprised of two components: L(H) and L(D|H). L(H) is the length, in bits, of
the description of the hypothesis H; and L(D|H) is the length, in bits, of the description
of the data when encoded with the help of the hypothesis. The best hypothesis H to
explain D is the one that minimizes the sum of L(H) and L(D|H). More specifically,
they use L(H) to denote the total length of partitioned segments (like p1 p7 and p1 p9),
while letting L(D|H) represent the total (perpendicular and angle) distance between
the original trajectory and the new partitioned segments. Using an approximation
algorithm, they find a list of characteristic points that minimize L (H) + L(D|H) from
a trajectory. The trajectory is partitioned into segments by these characteristic points.

The third category of methods is based on the semantic meanings of points in a
trajectory. As illustrated in Figure 6(d), a trajectory can be divided into segments, that
is, p1 → p2 → p3 and p8 → p9, based on the stay points it contains. Whether we should
keep the stay points in the divided results depends on applications. For example, in
a task of travel speed estimation, we should remove the stay points (from a taxi’s
trajectory) where a taxi was parked to wait for passengers [Yuan et al. 2013b]. On
the contrary, to estimate the similarity between two users [Lee et al. 2008], we can
only focus on the sequences of stay points, while skipping other raw trajectory points
between two consecutive stay points.

Another semantic meaning-based trajectory segmentation is to divide a trajectory
into segments of different transportation modes, such as driving, taking a bus, and
walking. For example, Zheng et al. [2008a, 2008b, 2010c] proposed a walk-based seg-
mentation method. The key insight is that people have to walk through the transition
between two different transportation modes. Consequently, we can first distinguish
walk points from non-walk points in a trajectory, based on a point’s speed (p · v) and
acceleration (p · a). The trajectory can then be divided into alternate Walk Segments
and non-Walk Segments, as illustrated in Figure 7(a). In reality, however, as shown in
Figure 7(b), a few points from non-Walk Segments may be detected as possible walk
points, for example, when a bus moves slowly in traffic congestion. On the other hand,
due to the locative error, a few points from walk segments might exceed the upper
bound of travel speed (vt), therefore being recognized as non-walk points. To address
this issue, a segment is merged into its backward segment, if the distance or time span

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:10 Y. Zheng

Fig. 7. Change point-based segmentation method.

of the segment is less than a threshold. After that, a segment is regarded as a Certain
Segment if its length exceeds a threshold, as presented in Figure 7(c). Otherwise, it
is deemed as an Uncertain Segment. As common users do not frequently change their
transportation modes within a short distance, uncertain segments are merged into one
non-walk segment if the number of consecutive uncertain segments exceeds a certain
threshold (three in this example). Later, features are extracted from each segment to
determine its exact mode.

3.5. Map Matching

Map matching is a process to convert a sequence of raw latitude/longitude coordinates
to a sequence of road segments. Knowledge of which road a vehicle was/is on is im-
portant for assessing traffic flow, guiding the vehicle’s navigation, predicting where
the vehicle is going, and detecting the most frequent travel path between an origin
and a destination, and so forth. Map matching is not an easy problem, given parallel
roads, overpasses, and spurs [Krumm 2011]. There are two approaches to classify map-
matching methods, based on the additional information used, or the range of sampling
points considered in a trajectory.

According to the additional information used, map-matching algorithms can be cate-
gorized into four groups: geometric [Greenfeld 2002], topological [Chen et al. 2003; Yin
and Wolfson 2004], probabilistic [Ochieng et al. 2004; Pink and Hummel 2008; Quddus
et al. 2006], and other advanced techniques [Lou et al. 2009; Newson and Krumm 2009;
Yuan et al. 2010b]. Geometric map-matching algorithms consider the shape of individ-
ual links in a road network, for example, matching a GPS point to the nearest road.
Topological algorithms pay attention to the connectivity of a road network. Represen-
tative algorithms are those that use the Fréchet distance to measure the fit between
a GPS sequence and candidate road sequence [Brakatsouls et al. 2005]. To deal with
noisy and low-sampling rate trajectories, probabilistic algorithms [Ochieng et al. 2004;
Pink and Hummel 2008; Quddus et al. 2006] make explicit provisions for GPS noise
and consider multiple possible paths through the road network to find the best one.
More advanced map-matching algorithms have emerged recently that embrace both
the topology of the road network and the noise in trajectory data, exemplified by Lou
et al. (2009), Newson and Krumm [2009], and Yuan et al. [2010b]. These algorithms
find a sequence of road segments that simultaneously come close to the noisy trajectory
data and form a reasonable route through the road network.

According to the range of sampling points considered, map-matching algorithms
can be classified into two categories: local/incremental and global methods. The local/
incremental algorithms [Civilis et al. 2005; Chawathe 2007] follow a greedy strategy of

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:11

Fig. 8. An advanced map-matching algorithm.

sequentially extending the solution from an already matched portion. These methods
try to find a local optimal point based on the distance and orientation similarity. Local/
incremental methods run very efficiently, often adopted in online applications. How-
ever, when the sampling rate of a trajectory is low, the matching accuracy degrades.
Instead, Global algorithms [Alt et al. 2003; Brakatsouls et al. 2005] aim to match an
entire trajectory with a road network, for example, considering the predecessors and
successors of a point. Global algorithms are more accurate, but less efficient, than local
methods, usually applied to offline tasks (e.g., mining frequent trajectory patterns),
where entire trajectories have already been generated.

Advanced algorithms [Lou et al. 2009; Newson and Krumm 2009; Yuan et al. 2010b]
embrace local and global information (or geometric, topological, and probability) to
deal with the mapping of a low-sampling-rate trajectory. As shown in Figure 8(a), the
algorithm proposed in Lou et al. [2009] first finds the local candidate road segments that
are within a circle distance to each point in a trajectory. For instance, road segments e1

i ,
e2

i , and e3
i are within the circle distance to pi, and c1

i , c2
i , and c3

i are the candidate points
on these road segments. The distance between pi and a candidate point dist(c j

i , pi)
indicates the probability N(c j

i) that pi can be matched to the candidate point. This
probability can be regarded as the local and geometric information, which is modeled
by a normal distribution:

N
(
c j

i

) = 1√
2πσ

e− dist(c j
i ,pi)2

2σ2 .

The algorithm also considers the transition probability between the candidate points
of each two consecutive trajectory points. For example, as depicted in Figure 8(b), c2

i is
more likely to be the true match of pi, considering pi−1 and pi+1. The transition prob-
ability between two candidate points is denoted by the ratio between their Euclidean
distance and the road network distance. The transition is actually based on the topo-
logic information of a road network. Finally, as shown in Figure 8(c), combining the
local and transition probabilities, the map-matching algorithm finds a path (on a can-
didate graph) that maximizes the global probability of matching. The idea is similar to
the hidden Markov model where emission and transition probabilities are considered
to find the most possible sequence of status given a sequence of observations [Newson
and Krumm 2009].

4. TRAJECTORY DATA MANAGEMENT

Mining massive trajectories is very time consuming, as we need to access different
samples of the trajectories or different parts of a trajectory many times. This calls
for effective data management techniques that can quickly retrieve the trajectories
(or parts of a trajectory) needed. Different from moving object databases that are
concerned with the current location of a moving object, the trajectory data management

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:12 Y. Zheng

Fig. 9. Two categories of queries for trajectory data.

Fig. 10. Three approaches answering range queries.

introduced in this section deals with the traveling history of a moving object. A more
comprehensive survey on trajectory data management can be found in Deng et al.
[2011].

4.1. Trajectory Indexing and Retrieval

There are two major types of queries: K-Nearest Neighbor (KNN) queries and Range
queries, as depicted in Figure 9.

Range queries retrieve the trajectories falling into (or intersecting) a spatial (or
spatiotemporal) range. For example, as shown in Figure 9(a), a range query can help
us retrieve the trajectories of vehicles passing a given rectangular region R between
2pm and 4pm in the past month. The retrieved trajectories (or segments) can then be
used to derive features, such as the travel speed and traffic flow, for data mining tasks
like classification and prediction. There are three approaches to answering such kind
of spatiotemporal range queries.

The first approach regards the time as the third dimension besides the 2D geograph-
ical space, building a 3D-Rtree based on trajectories, as depicted in Figure 10(a). A
spaitotemporal range query is then formulated as a three-dimensional (3D) query box.
So, answering such a query means finding the nodes on a 3D-Rtree within the 3D query
box. The 3D-Rtree works well for indexing trajectories generated in the near recent
(e.g., in the past few hours). When the time span of the trajectories to be indexed lasts
for a long period (i.e., more segments of newly generated trajectories will be inserted
into a 3D-Rtree index), however, the overlap among 3D boxes bounding segments of
different trajectories occurs more often. This results in a frequent update of index-
ing structure and a significant increase of node accesses when retrieving a trajectory.
Though ST-R-tree and TB-tree [Pfoser et al. 2000] have been proposed to address this
issue, the overlap among different 3D boxes still keeps on increasing as time goes by.

The second approach divides a time period into multiple time intervals, building an
individual spatial index like R-tree for the trajectories generated in each interval. The
part of indexing structure that does not change over time is shared by two time slots.
Representative indexing structures are multiple version R-tree, such as Rt-Tree [Xu
et al. 1990], HR-Tree [Tao and Papadias 2001], and H+R-Tree [Tao and Papadias 2001],
as illustrated in Figure 10(b). Given a spatiotemporal range query, such an index first
finds the time slots falling in the temporal range, and then retrieves the trajectories
intersecting the spatial query range from each spatial index of these time slots.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:13

Fig. 11. Suffix-tree-like index for maintaining trajectories.

The third approach partitions a geographical space into grids, and then builds a
temporal index for the trajectories falling in each grid. As shown in Figure 10(c), CSE-
tree [Wang et al. 2008] divides a trajectory into several segments by the grids. Each
segment falling in a grid is represented by a 2D point whose coordinates are the starting
time and ending time of the segment. These points are then indexed by a hybrid B+tree.
When retrieving trajectories satisfying a spatiotemporal query, CSE-tree first finds the
grids intersecting the spatial range of the query, and then searches the hybrid B+tree
of these grids for the segments of trajectories falling in the temporal range of the query.
Finally, CSE-tree merges the IDs of trajectory segments (and their starting and ending
times) retrieved from different grids.

KNN queries retrieve the top-K trajectories with the minimum aggregate distance
to a few points (entitled the KNN point query [Chen et al. 2010; Tao et al. 2002; Tang
et al. 2011]) or a specific trajectory (entitled the KNN trajectory query [Yi et al. 1998;
Agrawal et al. 1993]).

As depicted in Figure 9(b), an example of the KNN point query is to retrieve the tra-
jectories of vehicles that are close to two given restaurants (e.g., q1 and q2). Sometimes,
the order between the query points is also considered [Chen et al. 2010], for example,
finding the top-k nearest trajectories first passing q1 and then q2. Without the order,
T r1 is the nearest trajectory to the two points. However, T r2 becomes the nearest after
considering the order. The KNN point queries concern more about whether a trajectory
provides a good connection to query locations rather than whether the trajectory is
similar to the query in shape. Additionally, the number of query points is usually very
small and can be far away from each other in applications. As a result, we cannot con-
nect these query points sequentially to formulate a trajectory and then call the solution
designed for the KNN trajectory query to solve it.

As illustrated in Figure 9(c), a KNN trajectory query can find the GPS logs of people
traveling through a specific route. To answer such a query, the first step is to define a
similarity/distance function between two trajectories. Then efficient query processing
algorithms are designed to address the problem of searching over a large set of candi-
date trajectories. Sometimes, we need to retrieve the trajectories of vehicles traversing
a specific path. There are two ways to achieve the goal.

One is to regard a path on a road network as a trajectory and use the KNN trajectory
query to detect the trajectories that are close to the path. The other way is first to
convert a trajectory into a sequence of road segments by using a map-matching algo-
rithm. Some indexing structures are then built to manage the relationship between
paths and the trajectories passing them. Figure 11 presents a suffix-tree-based index-
ing structure [Wang et al. 2014] that manages the four trajectories T r1, T r2, T r3, and
T r4 traversing a road network. Here, each node in the indexing tree stands for a road
segment; each path on the tree corresponds to a route on the road network. Each node
stores the IDs and travel times of the trajectories that traverse the path from the root

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:14 Y. Zheng

to the node. For example, tr1→r2→r3 stands for the time for traveling path r1 → r2 → r3.
By searching for the tree, we can easily get the IDs of trajectories passing a path and
retrieve the points of each trajectory through a hash table (as shown in the bottom-
right part of Figure 11). The detailed content of each trajectory can be stored on disk
if the memory is not big enough. Because the size of the index grows quickly as the
number of trajectories increases, such index is only suitable for managing trajectories
generated recently.

4.2. Distance/Similarity of Trajectories

When answering KNN queries or clustering trajectories, we need to calculate the
distance (alternatively, we can say similarity) between a trajectory and a few points,
or the distance between two trajectories.

The distance between a point q and a trajectory Ais usually measured by the distance
from q to its nearest point in A, denoted as D (q, A) = minp∈AD (p, q) ; for example, q1
and p2 shown in Figure 9(b). An approach extending the distance from a single point q
to multiple query points Q is D(Q, A) = ∑

q∈Q eD(q,A), or S(Q, A) = ∑
q∈Q e−D(q,A), written

in a similarity fashion. The intuition of using the exponential function is to assign a
larger contribution to a closer matched pair of points while giving much lower value
to those faraway pairs. Chen et al. [2010] define the best connect distance, which can
measure the distance between a trajectory and a few points with or without an order.

The distance between two trajectories is usually measured by some kind of aggre-
gation of distances between trajectory points. Closest-pair distance uses the minimal
distance between the points in two trajectories (A, B) to represent the similarity of
trajectories, that is, CPD(A, B) = minp∈A,p′∈BD(p, p′). Assuming that two trajectories
are of the same length, sum-of-pairs distance uses the sum of corresponding points
from the two trajectories to denote the distance, that is, SPD(A, B) = ∑n

i=1 D(pi, p′
i). As

the assumption may not hold in reality, Dynamic Time Wrapping (DTW) distance was
proposed to allow “repeating” some points as many times as needed in order to get the
best alignment [Agrawal et al. 1993]. As some noise points from a trajectory may cause
a big distance between trajectories, the concept of the Longest Common Subsequence
(LCSS) is employed to address this issue. The LCSS-based distance allows one to skip
some noise points when calculating the distance of trajectories, using a threshold δ
to control how far in time we can go in order to match one point from a trajectory to
a point in another trajectory. Another threshold ε is used to determine whether two
points (from two different trajectories) are matched. Chen and Ng [2004] proposed the
Edit Distance on Real Sequence (EDR) distance, which is similar to LCSS in using a
threshold ε to determine a match, while assigning penalties to the gaps between two
matched subtrajectories. Chen et al. [2005] also proposed the Edit Distance with Real
Penalty (ERP) distance aiming to combine the merits of DTW and EDR, by using a
constant reference point for computing distance. Note that DTW is not a metric, as it
does not satisfy the triangle inequality. EDR is metric, and thus can be used to prune
unnecessary trajectories.

Basically, LCSS and Edit Distance were proposed for matching strings. When used to
match two trajectories, there is a threshold ε need to set; this is not easy. K-BCT [Chen
et al. 2010] is a parameter-free similarity metric for trajectories, combining the merits
of DTW and LCSS. During the matching process, K-BCT can repeat some trajectory
points and skip unmatched trajectory points including outliers.

The Distance between Two Trajectory Segments: A distance measure for trajectory
segments is based on the Minimum Bounding Rectangles (MBR) of segments [Jeung
et al. 2011]. As demonstrated in Figure 12(a), the MBRs of two segments (L1, L2) are
(B1, B2), each of which is described by the coordinates of the low bound point (xl, yl)

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:15

Fig. 12. Distance metrics for trajectory segments.

and upper bound point (xu, yu). The MBR-based distance Dmin(B1, B2) is defined as the
minimum distance between any two points from (B1, B2), calculated as√(

�
(
[xl, xu] ,

[
x′

l, x′
u

]))2 + (
�

(
[yl, yu] ,

[
y′

l, y′
u

]))2
,

where the distance between two intervals is defined as

�
(
[xl, xu] ,

[
x′

l, x′
u

]) =
{ 0

x′
l − xu

xl − x′
u

[xl, xu] ∩ [
x′

l, x′
u

] �= ∅
x′

l > xu
xl > x′

u

.

In the two examples shown in Figure 12(a), the distance between L1 and L2 is 0 and
y′

l − yu, respectively.
As depicted in Figure 12(b), Lee et al. [2007] proposed a distance function, enti-

tled Trajectory-Hausdorff Distance (DHaus), which is a weighted sum of three terms:
(1) The aggregate perpendicular distance (d⊥) that measures the separation between
two trajectories, (2) the aggregate parallel distance (d‖) that captures the difference
in length between two trajectories, and (3) the angular distance (dθ) that reflects the
orientation difference between two trajectories. Formally,

DHaus = w1d⊥ + w2d‖ + w3dθ ,

where d⊥ = d2
⊥,a+d2

⊥,b
d⊥,a+d⊥,b

, d‖ = min(d‖,a, d‖,b), dθ = ||L2|| · sinθ , and w1, w2, and w3 are weights
depending on applications.

5. UNCERTAINTY IN A TRAJECTORY

As the location of a moving object is recorded at a certain time interval, the trajectory
data we obtain is usually a sample of the object’s true movement. On one hand, the
movement of an object between two consecutive sampling points becomes unknown (or
called uncertain). To this end, we expect to reduce the uncertainty of a trajectory. On
the other hand, in some applications, to protect a user’s privacy that could be leaked
from her trajectories, we need to make a trajectory even more uncertain.

5.1. Reducing Uncertainty from Trajectory Data

Many trajectories have been recorded with a very low sampling rate, leading to an
object’s movement between sampling points uncertain; we call them uncertain trajec-
tories. For instance, as shown in Figure 13(a), the GPS coordinates of a taxi (p1, p2, p3)
were recorded every few minutes to reduce communication loads, resulting in multiple
possible paths between two consecutive sampling points. As illustrated in Figure 13(b),
people’s check-in records in a location-based social networking service like FourSquare
can be regarded as trajectories if we connect them chronologically. As people do not
check in very often, the time interval (and distance) between two consecutive check-ins
may be hours (and several kilometers). Consequently, we have no idea how a user trav-
eled between two check-ins. As demonstrated in Figure 13(c), to save energy, the GPS

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:16 Y. Zheng

Fig. 13. Examples of uncertain trajectories.

logger installed on a migratory bird can only send a location record every half day. As
a result, the path that a bird flew over two particular locations is quite uncertain.

5.1.1. Modeling Uncertainty of a Trajectory for Queries. Several models of uncertainty paired
with appropriate query evaluation techniques [Pfoser and Jensen 1999; Cheng et al.
2008] have been proposed for moving object databases to answer queries, for example,
“is it possible for an object to intersect a query window.” As illustrated in Figure 13(b),
we do not know whether the trajectory formulated by the three blue check-ins should
be retrieved or not by the range query R, without modeling the uncertainty of the
trajectory. Many of these techniques aim at providing conservative bounds for the
positions of uncertain objects between two sampling points. This is usually achieved by
employing geometric objects, such as cylinders [Trajcevski et al. 2004, 2009] or beads
[Trajcevski et al. 2010], as trajectory approximations. These models concern little about
data mining, and therefore are not the focus of our article. Recent approaches use
independent probability density functions at each point of time [Cheng et al. 2004], or
stochastic processes [Qiao et al. 2010; Xu et al. 2013; Emrich et al. 2012; Niedermayer
et al. 2014] (e.g., Markov chains), to better model the uncertain positions of an object
and answer different queries.

5.1.2. Path Inference from Uncertain Trajectories. Different from the aforementioned mod-
els aiming at the retrieval of existing trajectories by different queries, a new series of
techniques infers (or say “constructs”) the most likely k route(s) that a moving object
could travel (i.e., the missing subtrajectory) between a few sample points based on
a bunch of uncertain trajectories. The major insight is that trajectories sharing (or
partially sharing) the same/similar routes can often supplement each other to make
themselves more complete. In other words, it is possible to interpolate an uncertain
trajectory by cross-referring other trajectories on (or partially on) the same/similar
route, that is, “uncertain + uncertain → certain.” For example, given the uncertain
trajectories of many taxicabs (marked by different colored points in Figure 13(a)), we
could infer that the blue path is the most likely route traversing (p1, p2, p3). Likewise,
based on the check-in data of many users, as depicted in Figure 13(b), we could find
the blue curve the most possible travel path between the three blue check-ins. Sim-
ilarly, given the uncertain GPS traces of many birds, we can identify the path that
birds fly over a few locations. Reducing the uncertainty of trajectories can support
scientific studies and enable many applications, such as travel recommendation and
traffic management. There are two categories of methods to complement an uncertain
trajectory.

One is designed for the trajectories generated in a road network setting [Zheng et al.
2012a]. What set this category of methods apart from map-matching algorithms lies
in two aspects. First, the methods for reducing the uncertainty of trajectories leverage
the data from many other trajectories, while map-matching algorithms only use the
geometric information from a single trajectory and the topological information of road
networks. Second, the sampling rate of trajectories handled by the uncertainty methods

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:17

Fig. 14. The most likely route based on uncertain trajectories.

can be very low, for example, more than 10 minutes. This seems nearly impossible for
a map-matching algorithm.

The other is for a free space, where moving objects (like flying birds or people hiking
a mountain) do not follow paths in road networks [Wei et al. 2012], as illustrated
in Figures 13(b) and 13(c). The major challenges are twofold. One is to determine
those trajectories that may be relevant to a series of query points. The other is to
construct a route that can approximate a bunch of relevant trajectories. As shown in
Figure 14(a), the method proposed in Wei et al. [2012] first partitions a geospace into
uniform grids (the size of a grid depends on the required inference accuracy), and then
maps trajectories onto these grids. Some grids can be connected to form a region if
the trajectories passing them satisfy one of the following two rules: (1) If the starting
points (p1

1, p2
1) of two trajectory segments are located in two grids (g1, g2) that are

geospatial neighbors, and the ending points (p1
2, p2

2) of the two segments are located in
the same grid, and the travel times (�t1, �t2) of the two segments are similar, then the
two grids (g1, g2) can be connected. (2) If the starting points (p1

2, p2
2) are located in the

same grid, and ending points (p1
3, p2

3) fall in the grids (g4, g5) that are neighbors, travel
times (�t′

1, �t′
2) of the two segments are similar, then grids (g4, g5) can be connected.

After turning disjoint grids into connected region(s), as demonstrated in Figure 14(b),
we can build a routable graph where a node is a grid. The direction and travel time
between two adjacent grids in the graph is inferred based on the trajectories passing
the two grids. Finally, as depicted in Figure 14(c), given three query points, we can find
the most likely route on the graph based on a routing algorithm. To find a more detailed
path, a regression can be performed over the trajectories passing the identified route.

Su et al. [2013] proposed an anchor-based calibration system that aligns trajecto-
ries to a set of fixed anchor points. The approach considers the spatial relationship
between anchor points and trajectories. It also trains inference models from historical
trajectories to improve the calibration.

5.2. Privacy of Trajectory Data

Instead of making a trajectory more certain, a series of techniques aim to protect a user
from the privacy leak caused by the disclosure of the user’s trajectories [Abul et al. 2008;
Xue et al. 2013; Chow and Mokbel 2011]. This kind of technology tries to blur a user’s
location, while ensuring the quality of a service or the utility of the trajectory data.
There are two major scenarios that we need to protect a user’s trajectory data from the
privacy leak.

One is in real-time continuous location-based services for example, tell me the traffic
conditions that are 1 km around me. In this scenario, a user may not want to exactly
disclose her current location when using a service. Different from the simple location
privacy, the spatiotemporal correlation between consecutive samples in a trajectory
may help infer the exact location of a user. Techniques trying to protect the privacy
leak in this scenario include spatial cloaking [Mokbel et al. 2007], mix zones [Beresford

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:18 Y. Zheng

and Stajano 2003], path confusion [Hoh et al. 2010], Euler histogram based on short
IDs [Xie et al. 2010], dummy trajectories [Kido et al. 2005], and so on.

The second is the publication of historical trajectories. Collecting many trajectories
of an individual may allow attackers to infer her home and work places, therefore
identifying who the individual is. Major techniques for protecting users’ privacy in such
scenario include clustering-based [Abul et al. 2008], generalization-based [Nergiz et al.
2009], suppression-based [Terrovitis and Mamoulis 2008], and grid-based [Gid’ofalvi
et al. 2007] approaches. A comprehensive survey on trajectory privacy can be found in
[Chow and Mokbel 2011].

6. TRAJECTORY PATTERN MINING

In this section, we study four major categories of patterns that can be discovered
from a single trajectory or a group of trajectories. They are moving together patterns,
trajectory clustering, sequential patterns, and periodic patterns.

6.1. Moving Together Patterns

This branch of research is to discover a group of objects that move together for a certain
time period, such as flock [Gudmundsson and Kreveld 2006; Gudmundsson et al. 2004],
convoy [Jeung et al. 2008a, 2008b], swarm [Li et al. 2010a], traveling companion [Tang
et al. 2012a, 2012b], and gathering [Zheng et al. 2013; Zheng et al. 2014a]. These
patterns can help the study of species’ migration, military surveillance, and traffic
event detection, and so on. These patterns can be differentiated between each other
based on the following factors: the shape or density of a group, the number of objects
in a group, and the duration of a pattern.

Specifically, a flock is a group of objects that travel together within a disk of some
user-specified size for at least k consecutive time stamps. A major concern with flock
is the predefined circular shape, which may not well describe the shape of a group in
reality, and therefore may result in the so-called lossy-flock problem. To avoid rigid
restrictions on the size and shape of a moving group, the convoy is proposed to capture
generic trajectory pattern of any shape by employing the density-based clustering.
Instead of using a disk, a convoy requires a group of objects to be density connected
during k consecutive time points. While both flock and convoy have a strict requirement
on consecutive time period, Li et al. [2010a] proposed a more general type of trajectory
pattern, called swarm, which is a cluster of objects lasting for at least k (possibly
nonconsecutive) time stamps. While convoy and swarm need to load entire trajectories
into memory for a pattern mining, the traveling companion [Tang et al. 2012a] uses a
data structure (called traveling buddy) to continuously find convoy/swarmlike patterns
from trajectories that are being streamed into a system. So, the traveling companion
patterns can be regarded as an online (and incremental) detection fashion of convoy
and swarm.

To detect some incidents, such as celebrations and parades, in which objects join in
and leave an event frequently, the gathering pattern [Zheng et al. 2013a, 2014a] further
loses the constraints of the aforementioned patterns by allowing the membership of
a group to evolve gradually. Each cluster of a gathering should contain at least mp
participators, which are the objects appearing in at least kp clusters of this gathering.
As the gathering pattern is used to detect events, it also requires the geometric property
(like location and shape) of a detected pattern to be relatively stable.

Figure 15(a) illustrates these patterns. If the set requirement of time stamps is k = 2,
a group 〈o2, o3, o4〉 is a flock from t1 to t3. Though o5 is a companion of the group, it cannot
be included due to the fixed size of the disk employed by the flock definition. On the
other hand, a convoy can include o5 into the group, since 〈o2, o3, o4, o5〉 is density-based
connected from t1 to t3. The five objects also form a swarm during the nonconsecutive

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:19

Fig. 15. Examples of moving together patterns.

time period t1 and t3. As demonstrated in Figure 15(b), if we set kp = 2 and mp = 3, then
〈C1, C2, C4〉 is a gathering. 〈C1, C3, C5〉 is not a gathering as C5 is too far away from C2
and C3.

The aforementioned pattern mining algorithms usually use a density-based distance
metric (in a Euclidean space) to find a cluster of moving objects. Jensen et al. [2007]
extend the distance metric by considering semantic factors, such as heading directions
and speed, of a moving object.

6.2. Trajectory Clustering

To find representative paths or common trends shared by different moving objects, we
usually need to group similar trajectories into clusters. A general clustering approach
is to represent a trajectory with a feature vector, denoting the similarity between two
trajectories by the distance between their feature vectors. However, it is not easy to
generate a feature vector with a uniform length for different trajectories, as different
trajectories contain different and complex properties, such as length, shape, sampling
rate, number of points, and their orders. In addition, it is difficult to encode the sequen-
tial and spatial properties of points in a trajectory into its feature vector.

Given the challenges mentioned previously, a series of technique works have been
done. Since the distance metrics between trajectories have been introduced in Sec-
tion 4.2, we hereafter focus on the clustering methods proposed for trajectories. Note
that the clustering methods discussed in this section are dedicated for trajectories in
free spaces (i.e., without a road network constraint). Though there are a few publica-
tions (e.g., Kharrat et al. [2008]) discussing the trajectory clustering in a road network
setting, this problem can actually be solved by the combination of map-matching and
graph clustering algorithms. That is, we can first use map-matching algorithms to
project trajectories onto a road network and then employ graph clustering algorithms
to find a subgraph (i.e., a collection of roads) on the road network.

Gaffney and Smyth [1999] and Cadez et al. [2000] proposed to group similar tra-
jectories into clusters by using a regression mixture model and the Expectation-
Maximization (EM) algorithm. This algorithm clusters trajectories with respect to the
overall distance between two entire trajectories. However, moving objects rarely travel
together for an entire path in the real world. To this end, Lee et al. [2007] proposed to
partition trajectories into line segments and to build groups of close trajectory segments
using the Trajectory-Hausdorff Distance, as illustrated in Figure 16(a). A representa-
tive path is later found for each cluster of segments. Since trajectory data are often
received incrementally, Li et al. [2010b] further proposed an incremental clustering al-
gorithm, aiming to reduce the computational cost and storage of received trajectories.
Both Lee [2007] and Li [2010] adopted a Micro-and-Macroclustering framework, which
was proposed by Aggarwal et al. [2003] to cluster data streams. That is, their methods

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:20 Y. Zheng

Fig. 16. Trajectory clustering based on partial segments [Li et al. 2010b].

first find mircoclusters of trajectory segments (as demonstrated in Figure 16(b)), and
then group microclusters into macroclusters (as shown in Figure 16(c)). A major insight
of Li’s work [Li et al. 2010b] is that new data will only affect the local area where the
new data were received rather than the faraway areas.

6.3. Mining Sequential Patterns from Trajectories

A branch of research is to find the sequential patterns from a single trajectory or multi-
ple trajectories. Here, a sequential pattern means a certain number of moving objects
traveling a common sequence of locations in a similar time interval. The locations in a
travel sequence do not have to be consecutive. For instance, two trajectories A and B,

A : l1
1.5h→ l2

1h→ l7
1.2h→ l4, B : l1

1.2h→ l2
2h→ l4,

share a common sequence l1 → l2 → l4, as the visiting orders and travel times are sim-
ilar (though l2 and l4 is not consecutive in trajectory A). When the occurrence of such a
common sequence in a corpus, usually called support, exceeds a threshold, a sequential
trajectory pattern is detected. Finding such kind of patterns can benefit travel recom-
mendation [Zheng and Xie 2011b; Giannotti et al. 2007], life pattern understanding [Ye
et al. 2009], next location prediction [Monreale et al. 2009], estimating user similarity
[Xiao et al. 2014; Li et al. 2008], and trajectory compression [Song et al. 2014].

To detect the sequential patterns from trajectories, we first need to define a (common)
location in a sequence. Ideally, in trajectory data, like user check-in sequences from a
social networking service, each location is tagged with a unique identity (such as the
name of a restaurant). If two locations share the same identity, they are common. In
many GPS trajectories, however, each point is characterized by a pair of GPS coordi-
nates, which do not repeat themselves exactly in every pattern instance. This makes
the points from two different trajectories not directly comparable. In addition, a GPS
trajectory may consist of thousands of points. Without handled properly, these points
will result in a huge computational cost.

6.3.1. Sequential Pattern Mining in a Free Space.
Line-Simplification-Based Methods: An early solution aiming to deal with the afore-

mentioned issues was proposed in 2005 [Cao et al. 2005]. The solution first identifies
key points shaping a trajectory, by using a line simplification algorithm like DP [Dou-
glas and Peucker 1973]. It then groups the fragments of a trajectory that are close to
each simplified line segment so as to count the support of each line segment. The travel
time between two points in a trajectory is not considered.

Clustering-Based Methods: Recently, a more general way to solve the previously men-
tioned problems is to cluster points from different trajectories into regions of interest.
A point from a trajectory is then represented by the cluster ID the point belongs to.
As a consequence, a trajectory is re-formed as a sequence of cluster IDs, which are
comparable among different trajectories. For example, as shown in Figure 17(a), the

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:21

Fig. 17. Sequential pattern mining in trajectory data.

three trajectories can be represented as

T r1 : l1
�t3→ l3, T r2 : l1

�t1→ l2
�t2→ l3, T r3 : l1

�t′
1→ l2

�t′
2→ l3,

where l1, l2, and l3 are clusters of points. After the transformation, we can mine the
sequential patterns from these sequences by using existing sequential pattern mining
algorithms, such as PrefixSpan [Pei et al. 2011] and CloseSpan [Yan et al. 2003], with
time constraints. In this example, setting the support threshold to 3, we can find l1 → l3
is a sequential pattern if

|�t3 − (�t1 + �t2)|
max (�t3,�t1 + �t2)

< ρ and

∣∣�t3 − (
�t′

1 + �t′
2

)∣∣
max

(
�t3,�t′

1 + �t′
2

) < ρ,

where ρ is a ratio threshold guaranteeing that two travel times are similar. Likewise,
setting the threshold of support to 2, l1 → l2 → l3 is a sequential pattern, if �t1 is
similar to �t′

1 and �t2 is similar to �t′
2. Towards this direction, Giannotti et al. [2007]

divide a city into uniform grids, grouping these grids into regions of interest based
on the density of GPS points fallen in each grid. An a priori-like algorithm is then
proposed to detect the sequential patterns of the region of interest.

With respect to the applications caring more about the semantic meaning of a lo-
cation, we can first detect stay points from each trajectory, turning a trajectory into
a sequence of stay points (see Section 3.2). Later, we can cluster these stay points to
formulate regions of interest and use the cluster ID that a stay point belongs to repre-
sent a trajectory. Following this strategy, Ye et al. [2009] proposed to mine life patterns
from an individual’s GPS trajectories. Xiao et al. [2010, 2014] proposed a graph-based
sequence matching algorithm to find the sequential pattern shared by two users’ tra-
jectories. These patterns are then used to estimate the similarity between two users.

6.3.2. Sequential Pattern Mining in a Road Network. When the sequential pattern mining
problem is applied to a road network setting, we can first map each trajectory onto a
road network by using map-matching algorithms. A trajectory is then represented by
a sequence of road segment IDs, which can be regarded as strings. As a result, some
sequential pattern mining algorithms, such as LCSS and Suffix Tree, designed for
strings can be adapted to finding sequential trajectory patterns. Figure 17(b) presents
a suffix tree that represents the four trajectories depicted in Figure 11. Here, a node is a
road segment, and the path from the root to a node corresponds to a suffix of the string
representing a trajectory. For example, T r1 is represented by a string r1 → r2 → r6,
where r2 → r6 and r6 are suffixes of the string. The number associated with each
link denotes the number of trajectories traversing the path, that is, the support of the
string pattern. For instance, there are two trajectories (T r1 and T r2) traversing r1 → r2
and one trajectory traversing r1 → r2 → r6. After building such a suffix tree, we can
find the frequent patterns (i.e., the paths on the tree) with a support greater than a
given threshold, with a complexity of O(n). Note that the size of a suffix tree can be
much bigger than the original trajectories. So, when the size of a trajectory dataset is

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:22 Y. Zheng

very large, we need to set a constraint on the depth of its suffix tree. Additionally, the
sequential patterns derived from the suffix tree have to be consecutive. Though the
temporal constraint is not explicitly considered, two objects’ travel times on the same
path should be similar, given the speed constraint of a path.

Towards this direction, Song et al. [2014] use Suffix Tree to detect frequent trajec-
tory patterns, which are then leveraged to compress trajectories in conjunction with
Huffman Encoding. Wang et al. [2014] employ Suffix Tree to find frequent trajectory
patterns, which are used to reduce the candidates of a combination of subtrajectories
when estimating the travel time of a query path.

6.4. Mining Periodical Patterns from Trajectories

Moving objects usually have periodic activity patterns. For example, people go shopping
every month and animals migrate yearly from one place to another. Such periodic
behaviors provide an insightful and concise explanation over a long moving history,
helping compress trajectory data and predict the future movement of a moving object.

Periodic pattern mining has been studied extensively for time series data. For exam-
ple, Yang et al. tried to discover asynchronous patterns [Yang et al. 2003], surprising
periodic patterns [Yang et al. 2001], and patterns with gap penalties [Yang et al. 2002],
from (categorical) time series. Due to the fuzziness of spatial locations, existing meth-
ods designed for time series data are not directly applicable to trajectories. To this
end, Cao et al. [2007] proposed an efficient algorithm for retrieving maximal periodic
patterns from trajectories. This algorithm follows a paradigm that is similar to fre-
quent pattern mining, where a (global) minimum support threshold is needed. In the
real world, however, periodic behaviors could be more complicated, involving multiple
interleaving periods, partial time span, and spatiotemporal noises and outliers.

To deal with these issues, Li et al. [2010c] proposed a two-stage detection method
for trajectory data. In the first stage, the method detects a few reference spots, where
a moving object has visited frequently, by using a density-based clustering algorithm,
such as KDE. The trajectory of a moving object is then transformed into several binary
time series, each of which indicates the “in” (1) and “out” (0) status of the moving object
at a reference spot. Through applying Fourier transform and autocorrelation methods
to each time series, the values of periods at each reference spot can be calculated. The
second stage summarizes the periodic behaviors from partial movement sequences by
using a hierarchical clustering algorithm. In 2012, Li et al. [2012] further extend the
research [Li et al. 2010c] to mining periodic patterns from incomplete and sparse data
sources.

7. TRAJECTORY CLASSIFICATION

Trajectory classification aims to differentiate between trajectories (or its segments) of
different status, such as motions, transportation modes, and human activities. Tagging
a raw trajectory (or its segment) with a semantic label raises the value of trajectories
to the next level, which can facilitate many applications, such as trip recommendation,
life experiences sharing, and context-aware computing.

In general, trajectory classification is comprised of three major steps: (1) Divide a
trajectory into segments using segmentation methods. Sometimes, each single point
is regarded as a minimum inference unit. (2) Extract features from each segment (or
point). (3) Build a model to classify each segment (or point). As a trajectory is essen-
tially a sequence, we can leverage existing sequence inference models, such as Dynamic
Bayesian Network (DBN), HMM, and Conditional Random Field (CRF), which incor-
porate the information from local points (or segments) and the sequential patterns
between adjacent points (or segments).

Using a sequence of 802.11 radio signals, LOCADIO [Krumm and Horvitz 2004] em-
ploys a hidden Markov model to classify the motion of a device into two statuses: Still

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:23

Fig. 18. Trajectory classification for activity recognition.

and Moving. Based on a trajectory of GSM signals, Timothy et al. [2006] attempted
to classify the mobility of a user into three statuses, consisting of stationary, walking,
and driving. Zhu et al. [2011] aim to infer the status of a taxi, consisting of Occupied,
Nonoccupied, and Parked, according to its GPS trajectories. They first seek the possible
Parked places in a trajectory, using a stay point-based detection method. A taxi trajec-
tory is then partitioned into segments by these Parked places (refer to Figure 6(d) for an
example). For each segment, they extract a set of features incorporating the knowledge
of a single trajectory, historical trajectories of multiple taxis, and geographic data like
road networks and Points of Interest (POIs). After that, a two-phase inference method
is proposed to classify the status of a segment into either Occupied or Nonoccupied.
The method first uses the identified features to train a local probabilistic classifier and
then globally considers travel patterns via a hidden semi-Markov model.

Zheng et al. [2008a, 2008b] classify a user’s trajectory by transportation modes,
which is comprised of Driving, Biking, Bus, and Walking. As people usually change
transportation modes in a single trip, a trajectory is first partitioned into segments
based on the Walk-based segmentation method (refer to Figure 7 for details). A set
of features, such as the heading change rate, stop rate, and velocity change rate, are
extracted, being fed into a Decision Tree Classifier. Based on the inference results, a
graph-based postprocessing step is conducted to fix the possibly wrong inference, con-
sidering the transition probability between different transportation modes at different
places.

Liao et al. [2004] and Patterson et al. [2003] proposed a hierarchical inference model
for location-based activity recognition and significant place discovery, as shown in
Figure 18(a). A GPS trajectory is first divided into 10-m segments, each of which is
then projected onto corresponding street patches by using a CRF-based map-matching
algorithm. Based on the features extracted from these street patches, the model clas-
sifies a sequence of GPS points into a sequence of activities like a1, a2, . . . , an (such as
Walk, Driving, and Sleep) and identifies a person’s significant places like P1 and P2
(e.g., home, work, and bus stops), simultaneously. Yin et al. [2004] proposed a DBN-
based inference model to infer a user’s activities as well as high-level goals, according
to a sequence of WiFi signals. Figure 18(b) presents the structure of the DBN, where
the bottom layer contains the input of raw WiFi signals; the second layer is a list of
locations where these signals are received; the top level corresponds to user activities.
Finally, the high-level goal is inferred based on the sequence of inferred activities.

8. ANOMALIES DETECTION FROM TRAJECTORIES

Trajectory outliers (a.k.a. anomalies) can be items (e.g., a trajectory or a segment of
trajectory) that are significantly different from other items in terms of some similarity
metric. It can also be events or observations (represented by a collection of trajectories)
that do not conform to an expected pattern (e.g., a traffic congestion caused by a car
accident). A survey on general anomaly detection methods can be found in Chandola
et al. [2009].

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:24 Y. Zheng

8.1. Detecting Outlier Trajectories

An outlier trajectory is a trajectory or a part of a trajectory that is significantly different
from others in a corpus in terms of a distance metric, such as shape and travel time.
The outlier trajectories could be a taxi driver’s malicious detour [Liu et al. 2014; Zhang
et al. 2011] or unexpected road changes (due to traffic accidents or construction). It can
also remind people when traveling on a wrong path.

A general idea is to leverage existing trajectory clustering or frequent pattern mining
methods. If a trajectory (or a segment) cannot be accommodated in any (density-based)
clusters, or not frequent, it may be an outlier. Lee et al. [2008] proposed a partition-
and-detection framework to find anomalous segments of trajectories from a trajectory
dataset. This method can be an extension of the trajectory clustering proposed in Lee
et al. [2007].

8.2. Identifying Anomalous Events by Trajectories

Another direction is to detect traffic anomalies (rather than trajectory itself) by using
many trajectories. The traffic anomalies could be caused by accidents, controls, protests,
sports, celebrations, disasters, and other events.

Liu et al. [2011] partition a city into disjointed regions with major roads and glean the
anomalous links between two regions according to the trajectories of vehicles traveling
between the two regions. They divide a day into time bins and identify for each link
three features: the number of vehicles traveling a link in a time bin, the proportion of
these vehicles among all vehicles entering the destination region, and that departing
from the origin region. The three features of a time bin were respectively compared with
those in the equivalent time bins of previous days to calculate the minimum distortion
of each feature. Then, the link of the time bin can be represented in a 3D space, with
each dimension denoting the minimum distort of a feature. Later, the Mahalanobis
distance is used to measure the extreme points (in the 3D space), which are regarded
as outliers. Following the aforementioned research, Chawla et al. [2012] proposed a
two-step mining and optimization framework to detect traffic anomalies between two
regions and explain an anomaly with the traffic flows passing the two regions (see
Section 10 for details).

Pan et al. [2013] identify traffic anomalies according to drivers’ routing behavior on
an urban road network. Here, a detected anomaly is represented by a subgraph of a
road network where drivers’ routing behaviors significantly differ from their original
patterns. They then tried to describe the detected anomaly by mining representative
terms from the social media that people have posted when the anomaly was happening.

Pang et al. [2011, 2013] adapt likelihood ratio tests, which have previously been
used in epidemiological studies, to describe traffic patterns. They partitioned a city
into uniform grids and counted the number of vehicles arriving in a grid over a time
period. The objective is to identify contiguous set of cells and time intervals that have
the largest statistically significant departure from expected behavior (i.e., the number
of vehicles). The regions whose log-likelihood ratio statistic value drops in the tail of
χ2 distribution are likely to be anomalous [Chandola et al. 2009].

9. TRANSFER TRAJECTORY TO OTHER REPRESENTATIONS

9.1. From Trajectory to Graph

Trajectories can be transformed into other data structures, besides being processed
in its original form. This enriches the methodologies that can be used to discover
knowledge from trajectories. Turning trajectories into graphs is one of the representa-
tive types of transformation. When conducting such a transformation, the main effort
is to define what a node and an edge is in the transformed graph. The methods for

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:25

Fig. 19. Transforming trajectories into graphs.

transforming trajectories into a graph differentiate between one another, depending
on whether a road network is involved in the transformation.

9.1.1. In a Road Network Setting. A road network is essentially a directed graph, where
a node is an intersection and an edge denotes a road segment. Consequently, the most
intuitive approach to turning trajectories into a graph is to project trajectories onto a
road network. We can then calculate some weights, such as speed and traffic volume,
for the edges based on the projected trajectories. Later, given the weighted graph, we
can find the most likely route (traveled by people) between a few query points [Zheng
et al. 2012a], identify the most popular route between a source and a destination [Luo
et al. 2013], detect traffic anomalies [Pan et al. 2013], and update maps automatically.

The second approach is to build a landmark graph. For example, Yuan et al. [2013a,
2011a] proposed an intelligent driving direction system, entitled T-Drive, based on the
GPS trajectories generated by a large number of taxicabs. After the map-matching pro-
cess, T-Drive regards the top-k road segments frequently traversed by taxicabs as land-
mark nodes (i.e., the red points shown in Figure 19(a)). The trajectories traversing two
landmarks consecutively are aggregated into a landmark edge (denoted by a blue line),
being used to estimate the travel time between two landmarks. A two-stage routing
algorithm is proposed to find the fastest driving path. The algorithm first searches the
landmark graph for a rough route (represented by a sequence of landmarks), and then
finds a detailed route connecting consecutive landmarks on the original road network.

The third approach is to build a region graph, where a node denotes a region and an
edge stands for the aggregation of commutes between the two regions. For instance, as
illustrated in Figure 19(b), using an image segmentation-based algorithm, Yuan et al.
[2012] and Zheng et al. [2011a] partition a city into regions by major roads so as to detect
the underlying problems in a city’s road network. A region bounded by major roads is
then represented by a node, and two regions are connected with an edge if there are a
certain number of commutes between them. After the transformation, they glean the
region pairs (i.e., edges) that are not well connected, that is, with a huge traffic volume,
a slow travel speed, and a long detour between them, using a skyline algorithm. The
region graphs are also employed to detect traffic anomalies [Liu et al. 2011; Chawla
et al. 2012] and urban functional regions [Yuan et al. 2012; Yuan et al. 2015].

9.1.2. In Free Spaces. Another branch of research transfers trajectories into a graph
without using a road network, according to two major steps: (1) Identify key locations
as vertexes from raw trajectories by using clustering methods. (2) Connect the vertexes
to formulate a routable graph based on trajectories passing two locations.

Travel Recommendation: Zheng et al. [2009b] and Zheng and Xie [2011b] proposed
to find the interesting locations and travel sequences from trajectories generated by
many people. In the method, they first detect stay points from each trajectory and then
cluster the stay points from different people into locations, as shown in Figure 20(a).

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:26 Y. Zheng

(c)

Fig. 20. Mining interesting locations and travel sequences.

Based on these locations and raw trajectories, they build a user-location bipartite graph
as illustrated in Figure 20(b), as well as a routable graph between locations, as depicted
in Figure 20(c).

In the bipartite graph, a user and a location are regarded as two different types of
nodes. An edge is built between a user node and a location node if the user has visited
the location. A HITS (Hypertext Induced Topic Search)-based model is then employed to
infer the interest level of a location (i.e., the authority score) and the travel knowledge
of a user (i.e., the hub score). According to the inferred scores, we can identify the
top-k most interesting locations and travel experts in a city. Bao et al. [2012] apply the
similar idea in a CF framework to conduct the travel recommendation, concerned with
a user’s preferences, social environment, and current location.

In the location graph, as shown in Figure 20(c), an edge denotes the aggrega-
tion of raw trajectories traveling through two locations. To calculate the importance
(or the representativeness) of an edge in this graph, three factors are considered:
(1) the authority score of the source location (of the edge) weighted by the probability
of people’s moving out by this edge, (2) the authority score of a destination location (in
the edge) weighted by the probability of people’s moving in by this edge, and (3) the
hub scores of the users who have traveled this edge. The score of a path is calculated
by summing up the score of the edges the path contains.

Inspired by Zheng and Xie [2011b], a series of research was conducted to identify
the popular routes from massive trajectories since 2010. Specifically, Yoon et al. [2012,
2011] suggest the best travel route, consisting of a sequence of locations with a typical
stay time interval at each location, to a user, given the user’s source and destination
as well as the time period the user has. Chen et al. [2011] identify turning points from
each raw trajectory, clustering these turning points into groups. These clusters are then
used as vertexes to build a transfer network. Afterwards, the probability that people
would travel from one vertex to another is calculated based on the counts of trajectories
passing the two vertexes. Finally, given a source and a destination, the path with the
maximum production of probabilities is found in the transfer network as the most
popular route. However, the proposed method is not applicable to low-sampling-rate
trajectories. To this end, Wei et al. [2012] divide a geographical space into uniform grids
and then construct a routable graph based on the grids and raw trajectories. Refer to
Section 5.1.2 for details.

Another branch of research is to detect the community of places based on the graph
that is learned from trajectories, using some community discovery methods. A com-
munity of places is a cluster of locations with denser connections between locations
in the cluster than between clusters. For example, Rinzivillo et al. [2012] aim to
find the borders of human mobility at the lower spatial resolution of municipalities
or counties. They mapped vehicle GPS tracks onto regions to formulate a complex
network in Pisa. A community discovery algorithm, namely, Infomap, was then used

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:27

Fig. 21. Hierarchical graph-based user similarity estimation.

to partition the network into nonoverlapped subgraphs. More semantic meanings of a
trajectory, such as a user’s travel speed and experiences, have been considered in Liu
et al. [2013] and Zheng et al. [2009c] to estimate the strength of interaction between two
locations.

Estimating User Similarity: Another series of research transfers users’ trajectories
into hierarchical graphs so as to compute the similarity between different users. This
is a foundation of many social applications, such as friend recommendation and com-
munity discovery.

As illustrated in Figure 21, Zheng et al. [2011c] deposit together the stay points
detected from different users’ trajectories, clustering them divisively by using a density-
based clustering algorithm iteratively. As a result, a tree-based hierarchy is built, where
a node on a higher level is a coarse-grained cluster (of stay points) and the nodes on
a lower level are fine-grained clusters. The hierarchy is shared by different users as
it is derived from all users’ stay points. By projecting a user’s trajectories onto this
shared hierarchy, an individual hierarchical graph can be constructed for a user. As
demonstrated in the bottom-left and bottom-right parts of Figure 21, two users’ location
histories are transformed from a collection of trajectories (which are not comparable
between one another) to two individual graphs with common nodes. By matching the
two graphs, common sequences of clusters are found on each level of the graphs. For
example, c32 → c31 → c34 is a common sequence shared by the two users on the third
level. Considering the popularity of a cluster in a common sequence, the length and
the level (on the hierarchy) of the common sequences, a similarity score is calculated
for a pair of users.

Xiao et al. [2014] extend the similarity computing from physical locations to a se-
mantic space, aiming to facilitate the similarity estimation between users living in
different cities or countries. A stay point detected from a trajectory is represented
by the distribution of POIs (across different categories) within the scope of the stay
point. The stay points from different users are then clustered into a hierarchy ac-
cording to their distributions on different POI categories, in a similar way to that of
Figure 21.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:28 Y. Zheng

Fig. 22. Matrix factorization for recommendation.

9.2. From Trajectory to Matrix

Another form that we can transform trajectories into is a matrix. Using existing tech-
niques, such as CF and MF, a matrix can help complement missing observations. A
matrix can also be used as an input to identify anomalies. The key of the transforma-
tion lies in three aspects: (1) what does a row mean, (2) what is a column, and (3) what
does an entry denote?

Travel Recommendation. Zheng et al. [2009b] and Zheng and Xie [2011b] transform
users’ GPS trajectory into a user-location matrix, where a row stands for a user and a
column denotes a location (such as a cluster shown in Figure 21). The value of an entry
means the number of visits of a user to a location. The matrix is very sparse, as a user
can visit a very few locations. A CF model is then applied to the matrix to predict a
user’s interests in an unvisited location.

Zheng et al. [2010b] proposed a coupled-MF method to enable location-activity rec-
ommendation, using activity-tagged GPS trajectories. As illustrated in Figure 22, a
location-activity matrix X is built, where a row stands for a venue (e.g., a cluster of
GPS points) and a column represents a user-labeled activity (like shopping and din-
ning). An entry in matrix X denotes the frequency of an activity that has been observed
in users’ labels in a particular location. Intuitively, this is a sparse matrix. A simple
method to fill the missing entries is to decompose a matrix into the production of two
low-rank matrices (U and V) based on nonzero entries. After that, the missing entries
can be filled by X = U V T . Once this location-activity matrix is completely filled, given
an activity, the top-k locations, with a relatively high frequency from the column that
corresponds to that activity, can be recommended. So does the activity recommendation
for a location. To make a better recommendation, two context matrices, consisting of
a location-feature matrix Y and an activity-activity matrix Z, are built based on addi-
tional data sources. The main idea is to propagate the information among X, Y , and Z
by requiring them to share low-rank matrices U and V in a collective MF model.

Traffic Condition Estimation. Shang et al. [2014] proposed a coupled-MF method
to instantly estimate the travel speed on each road segment throughout an entire
city, based on the GPS trajectory of a sample of vehicles (such as taxicabs). As shown
in Figure 23(a), after map matching the GPS trajectories onto a road network, they
formulate a matrix M′

r with a row denoting a time slot (e.g., 2pm–2:10pm) and a column
standing for a road segment. Each entry in M′

r contains the travel speed on a particular
road segment and in a particular time slot, calculated based on the recently received
GPS trajectories. The goal is to fill the missing values in row tj , which corresponds to
the current time slot. Though we can achieve the goal by solely applying MF to M′

r,
the accuracy of the inference is not very high as the majority of road segments are not
covered by trajectories.

To address this issue, four context matrices (Mr, MG, M′
G, and Z) are built. Specifically,

Mr stands for the historical traffic patterns on road segments. While the rows and
columns of Mr have the same meaning as M′

r, an entry of Mr denotes the average travel
speed derived from the historical data over a long period. The difference between the
two corresponding entries from M′

r and Mr indicates the deviation of current traffic
situation (on a road segment) from its average patterns. As depicted in Figure 23(b),
Z contains the physical features of a road segment, such as the shape of a road,

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:29

Fig. 23. Estimate traffic conditions based on trajectories.

number of lanes, speed constraint, and the distribution of surrounding POIs. The
general assumption is that two road segments with similar geographical properties
could have similar traffic conditions at the same time of day. To capture the high-level
traffic conditions, as demonstrated in Figure 23(c), a city is divided into uniform grids.
By projecting the recently received GPS trajectories into these grids, a matrix M′

G is
built, with a column standing for a grid and a row denoting a time slot; an entry of M′

G
means the number of vehicles traveling in a particular grid and at a particular time
slot. Likewise, by projecting the historical trajectories over a long period into the grids,
a similar MG is built, where each entry means the average number of vehicles traveling
in a particular grid and at a particular time slot. So, M′

G denotes the real-time high-level
traffic conditions in a city and MG indicates the historical high-level traffic patterns.
The difference between the same entries of the two matrices suggests the deviation of
current high-level traffic conditions from their historical averages. By combining these
matrices, that is, X = M′

r||Mr and Y = M′
G||MG, a coupled-MF is applied to X, Y , and

Z, with the objective function as follows:

L(T , R, G, F) = 1
2

||Y − T (G; G)T ||2 + λ1

2
||X − T (R; R)T ||2

+λ2

2
||Z − RFT ||2 + λ3

2
(||T ||2 + ||R||2 + ||G||2 + ||F||2),

where ‖ · ‖ denotes the Frobenius norm. The first three terms in the objective function
control the loss in MF, and the last term is a regularization of penalty to prevent
overfitting.

Diagnosing Traffic Anomalies. Chawla et al. [2012] aim to identify the traffic flows
that cause an anomaly between two regions. In the methodology, they first partition
a city into regions by major roads, building a region graph based on trajectories of
taxicabs, as illustrated in Figure 24(a). A trajectory is then represented by a path on
the graph, that is, a sequence of links between regions, as shown in Figure 24(b). Two
matrices are built based on the trajectories and graph. One is a link-traffic matrix L,
as shown in Figure 24(c), where a row is a link and a column corresponds to a time
interval. An entry of L denotes the number of vehicles traversing a particular link at
a specific time interval. The other is a link-path matrix A, with a row standing for
a link and column denoting a path. An entry of A is set to 1 if a particular link is
contained in a particular path. Given matrix L, they first use a Principal Component
Analysis (PCA) algorithm to detect some anomalous links, which were represented
by a column vectorb with 1 denoting an anomaly detected on the link. Then, the

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:30 Y. Zheng

Fig. 24. From trajectories to matrices for detecting anomalies.

Fig. 25. Recommendation based on trajectories and tensors.

relationship between anomalous links and paths was captured by solving the equation
Ax = b, where x is a column vector denoting which paths contribute to the emergency
of these anomalies shown in b. Using L1 optimization techniques, x can be inferred.

9.3. From Trajectory to Tensor

A nature extension of the matrix-based transformation is turning trajectories into a
(3D) tensor, where the third dimension is added to a matrix so as to accommodate
additional information. The goal of the transformation is usually to fill the missing
entries (in a tensor) or find the correlation between two objects, like two road segments
or gas stations. A common approach to solving this problem is to decompose a tensor
into the multiplication of a few (low-rank) matrices and a core tensor (or just a few
vectors), based on the tensor’s nonzero entries. When a tensor is very sparse, in order
to achieve a better performance, the tensor is usually decomposed with other (context)
matrices in a framework of CF.

Zheng et al. [2012b, 2010a] extend the generic location-activity research [Zheng et al.
2010b] into a personalized one, by adding a user dimension into the original location-
activity matrix. As shown in Figure 25, a user-location-activity tensor A is built, with
an entry denoting the times that a particular user has performed a particular activity
in a particular location. If we can infer the value of every entry, personalized recom-
mendation can be enabled. However, tensor A is very sparse as a user usually visits
a few places. Thus, a simple tensor completion method cannot fill its missing entries
very well. To address this issue, four context matrices are built based on additional
data sources, such as road network and POI datasets, which are not sparse. In addi-
tion, these matrices share some dimension with tensor A. For instance, tensor Ashares
the user dimension with matrix B and the location dimension with matrix E. Conse-
quently, the knowledge from these matrices can be transferred into the tensor to help
in completing tensor A.

Wang et al. [2014] proposed a coupled tensor-decomposition-based method to in-
stantly estimate the travel time of a path, based on a sample of vehicles’ GPS trajec-
tories. To model the traffic conditions of the current time slot, they construct a tensor
Ar ∈ R

N×M×L, with the three dimensions standing for road segments, drivers, and time

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:31

Fig. 26. Travel time estimation using tensor decomposition.

slots, respectively, based on the GPS trajectories received in the most recent L time
slots and the road network data. As shown in Figure 26, an entry Ar (i, j, k) = c denotes
the ith road segment is traveled by the jth driver with a time cost c in time slot k (e.g.,
2–2:30pm). The last time slot denotes the present time slot, combined with the L-1 time
slots right before it formulates the tensor. Clearly, the tensor is very sparse as a driver
can only travel a few road segments in a short time period. If the missing entries can
be inferred based on the values of nonzero entries, we can obtain the travel time of any
driver on any road segment in the present time slot.

To this end, another tensor Ah is built based on the historical trajectories over a
long period of time (e.g., 1 month). Ah has the same structure as Ar, while an entry
Ah (i, j, k) = c′ denotes the jth driver’s average travel time on the ith road segment
in time slot k in the history. Intrinsically, Ah is much denser than Ar, denoting the
historical traffic patterns and drivers’ behavior on an entire road network. Besides,
two context matrices (X and Y) are built to help supplement the missing entries of Ar.
Matrix X (consisting of Xr and Xh) represents the correlation between different time
slots in terms of the coarse-grained traffic conditions. This is similar to its correspon-
dence shown in Figure 23(c). An entry of Xr denotes the number of vehicles traversing
a particular grid in a particular time slot. A row of Xr represents coarse-grained traffic
conditions in a city at a particular time slot. Consequently, the similarity of two differ-
ent rows indicates the correlation of traffic flows between two time slots. Xh has the
same structure as Xr, storing the historical average number of vehicles traversing a
grid from ti to tj . Matrix Y stores each road segment’s geographical features, which are
similar to that of Matrix Z shown in Figure 23(a). Later, they decompose A = Ar||Ah
with matrices X and Y collaboratively, by optimizing the following objective function:

L (S, R,U, T , F, G) = 1
2
A − S ×R R ×U U ×T T 2 + λ1

2
X − T G2

+λ2

2
Y − RF2 + λ3

2
(S2 + R2 + U 2 + T 2 + F2 + G2).

A similar idea was employed by Zhang et al. [2013, 2015] to estimate the queuing
time in each gas station throughout a city. The queuing time is further used to estimate
the number of vehicles that are being refueled. Specifically, the refueling events are
first detected from a taxicab’s GPS trajectories based on a stay point-based inference
method. Then, as shown in Figure 27, a three dimension tensor F is built, with the
first dimension denoting gas stations, the second one standing for time of day, and
the third for the day of the week. An entry means the average waiting time (detected
from taxi trajectories) at a station in a particular day of the week and at a particular
time interval. This tensor is intrinsically sparse as we cannot guarantee to have a
taxicab being refueled in each station anytime. A context matrix is built, incorporating
the geographical features of a station. Intuitively, two gas stations with the similar

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:32 Y. Zheng

Fig. 27. Estimate the refueling behavior in a gas station.

surrounding environment (including road networks and POIs) and traffic flow could
have the similar refueling pattern. The coupled TD method mentioned in pervious
examples is then applied to the tensor and matrix, filling the missing value in F.

10. MISCELLANEOUS

10.1. Public Trajectory Datasets

Collecting data is always the first priority of trajectory data mining. Thanks to re-
searchers in this field, there are quite a few real trajectory datasets that are publicly
available:

—GeoLife Trajectory Dataset [GeoLife Data]: a GPS trajectory dataset from Microsoft
Research GeoLife project [Zheng et al. 2010d], collected by 182 users from April 2007
to August 2012. The dataset has been used to estimate the similarity between users
[Li et al. 2008], which enables friend and location recommendations [Zheng and Xie
2011b; Zheng et al. 2009c]. It was also used by Chen et al. [2010] for studying the
problem of finding the nearest trajectory to a sequence of query points.

—T-Drive Taxi Trajectories [T-Drive Data]: A sample of trajectories from Microsoft
Research T-Drive project [Yuan et al. 2010a], generated by over 10,000 taxicabs
in a week of 2008 in Beijing. The full dataset was used to suggest the practically
fastest driving directions to normal drivers [Yuan et al. 2011a, 2013a], recommend
passenger-pickup location for taxi drivers [Yuan et al. 2011a; Yuan et al. 2015], enable
dynamic taxi ride-sharing [Ma et al. 2013; Ma et al. 2015], glean the problematic
design in a city’s transportation network [Zheng et al. 2011a], and identify urban
functional regions [Yuan et al. 2012].

—GPS Trajectory with Transportation Labels [Trajectory with transportation modes]:
Each trajectory has a set of transportation mode labels, such as driving, taking
a bus, riding a bike, and walking. The dataset can be used to evaluate trajectory
classification and activity recognition [Zheng et al. 2008a, 2008b].

—Check-in Data from Location-based Social Networks [User check-in data]: The
dataset consists of the check-in data generated by over 49,000 users in New York
City and 31,000 users in Los Angeles as well as the social structure of the users. Each
check-in includes a venue ID, the category of the venue, a time stamp, and a user
ID. As the check-in data of a user can be regarded as a low-sampling-rate trajectory,
this dataset has been used to study the uncertainty of trajectories [Wei et al. 2012]
and evaluate location recommendation [Bao et al. 2012].

—Hurricane Trajectories [Hurricane trajectory (HURDAT)]: This dataset is provided
by the National Hurricane Service (NHS), containing 1,740 trajectories of Atlantic
Hurricanes (formally defined as tropical cyclone) from 1851 to 2012. NHS also pro-
vides annotations of typical hurricane tracks for each month throughout the annual
hurricane season that spans from June to November. The dataset can be used to test
trajectory clustering and uncertainty.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:33

—The Greek Truck Trajectories [The Greek Trucks Dataset]: This dataset contains
1,100 trajectories from 50 different trucks delivering concrete around Athens, Greece.
It was used to evaluate trajectory pattern mining task in Giannotti et al. [2007].

—Movebank Animal Tracking Data [Movebank data]: Movebank is a free, online
database of animal tracking data, helping animal tracking researchers to manage,
share, protect, analyze, and archive their data.

When needing massive trajectories to test the efficiency of a method, we can generate
synthetic trajectories based on traffic generators, for example, BerlinMod [Duntgen
et al. 2009] and Thomas-Brinkhoff [Brinkhoff and Str 2002]. There is also a web-
based interface, called MNTG [Mokbel et al. 2014], which supports the two traffic
generators to work on any arbitrary road networks. Ma et al. [2015] build a taxi ride
request simulator based on the pickup and drop-off points of the real taxi trajectories
generated in Beijing. The simulator is used to test the efficiency of a taxi ride-sharing
service.

10.2. Conferences and Journals Concerning Trajectories

Research about trajectory data mining has a wide presence at the following venues:

—General data mining conferences: KDD, ICDM, SDM, PAKDD, and ICML-PKDD.
—General database conferences: ICDE, VLDB, SIGMOD, EDBT, and DASFAA.
—General artificial intelligence conferences: IJCAI and AAAI.
—Spatial-data-focusing conferences: ACM SIGSPATIAL GIS, SSTD, and MDM.
—Application-driven conferences and workshops: International Conference on Ubiqui-

tous Computing, and the International Workshop on Urban Computing [Zheng et al.
2013].

—Journals and Transactions: IEEE TKDE, ACM TKDD, ACM TIST, VLDB, Data Min-
ing and Knowledge Discovery, KAIS, DKE, and Journal on Personal and Ubiquitous
Computing. Besides the journals in the computer science area, there are many jour-
nals in other disciplinaries, such as Transportation Research Part C, IEEE Transac-
tion on Intelligent Transportation Systems, and Transportation Record.

10.3. Potential Future Direction

In the big data era, a data mining task needs to harness a diversity of data. This is
calling for new technology that can unlock the power of knowledge from multiple data
sources. Under such a circumstance, how to mine trajectory data together with other
data sources is a new challenge. There two approaches towards this goal.

One is to combine trajectories with other data sources to fulfill a data mining task. For
example, Zheng et al. [2014c, 2013] infer the fine-grained air quality, using trajectories
of vehicles, POIs, and meteorological data. Fu et al. [2014a, 2014b] combine human
mobility data represented by trajectories with social media and geographical data to
rank the potential value of real estates. Yuan et al. [2012, 2015] aim to identify the
functional regions in a city based on taxi trajectories, road network data, and POIs.
Zheng et al. [2014c] diagnoses the urban noise, using check-in data, traffic, and 311
complaints. The other approach is to use other sources to enrich a trajectory. For
instance, leveraging POIs and road network data, Wang et al. [2014] better estimates
the travel time of a path based on sparse trajectories.

The new challenge calls for (1) data management techniques that can organize multi-
modal data for an efficient retrieval and mining, (2) the cross-domain machine learning
methods that can unlock the power of knowledge that cannot be discovered from a sin-
gle data source, and (3) advanced visualization techniques that can suggest the insights
across different sources.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:34 Y. Zheng

11. CONCLUSION

The wide availability of trajectory data has fostered a diversity of applications, calling
for algorithms that can discover knowledge from the data effectively and efficiently.
This article surveys the techniques concerned with different stages of trajectory data
mining, recapping them by categories and exploring the differences between one an-
other. This article also suggests the approaches of transforming raw trajectories into
other data structures, to which more existing data mining techniques can be applied.
This article provides an overview on how to unlock the power of knowledge from tra-
jectories, for researchers and professionals from not only computer sciences but also
a broader range of communities dealing with trajectories. At the end of this article, a
list of public trajectory datasets has been given and a few future directions have been
suggested.

ACKNOWLEDGMENTS

A small portion of the content of this article is derived from a few chapters of a book, entitled Computing with
Spatial Trajectories [Zheng and Zhou 2011], which was co-edited by Xiaofang Zhou and myself. I appreciate
the chapter authors of this book: C.-Y. Chow, K. Deng, C. S. Jensen, H. Jeung, J. Krumm, W.-C. Lee, M. F.
Mokbel, K. Xie, K. Zheng, G. Trajcevski, Q. Yang, M. L. Yiu, V. W. Zheng, and Y. Zhu.

REFERENCES

O. Abul, F. Bonchi, and M. Nanni. 2008. Never walk alone: Uncertainty for anonymity in moving objects
databases. In Proceedings of the 24th IEEE International Conference on Data Engineering. IEEE, 376–
385.

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. 2003. A framework for clustering evolving data streams.
In Proceedings of the 29th International Conference on Very Large Data Bases. VLDB Endowment 29,
81–92.

R. Agrawal, C. Faloutsos, and A. Swami. 1993. Efficient similarity search in sequence databases. Springer,
69–84.

H. Alt, A. Efrat, G. Rote, and C. Wenk. 2003. Matching planar maps. Journal of Algorithms 49, 2 (2003),
262–283.

J. Bao, Y. Zheng, and M. F. Mokbel. 2012. Location-based and preference-aware recommendation using sparse
geo-social networking data. In Proceedings of the 20th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. ACM, 199–208.

J. Bao, Y. Zheng, D. Wilkie, and M. F. Mokbel. 2015. A survey on recommendations in location-based social
networks. GeoInformatica, 19, 3, 525–565.

R. Bellman. 1961. On the approximation of curves by line segments using dynamic programming. Commu-
nications of the ACM 4, 6 (1961), 284.

A. R. Beresford and F. Stajano. 2003. Location privacy in pervasive computing. IEEE Pervasive Computing
2, 1 (2003), 46–55.

S. Brakatsouls, D. Pfoser, R. Salas, and C. Wenk. 2005. On map-matching vehicle tracking data. In Proceed-
ings of the 31st International Conference on Very Large Data Bases. VLDB Endowment, 853–864.

T. Brinkhoff and O. Str, 2002. A framework for generating network-based moving objects. Geoinformatica,
6, 2 (2002), 153–180.

H. Cao, N. Mamoulis, and D. W. Cheung. 2005. Mining frequent spatio-temporal sequential patterns. In
Proceedings of the 5th IEEE International Conference on Data Mining. IEEE, 82–89.

H. Cao, N. Mamoulis, and D. W. Cheung. 2007. Discovery of periodic patterns in spatiotemporal sequences.
IEEE Transactions on Knowledge and Data Engineering 19, 4 (2007), 453–467.

I. V. Cadez, S. Gaffney, and P. Smyth. 2000. A general probabilistic framework for clustering individuals and
objects. In Proceedings of the 6th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
ACM, 140–149.

V. Chandola, A. Banerjee, and V. Kumar. 2009. Anomaly detection: A survey. ACM Computing Surveys 41, 3
(2009), 1–58.

S. Chawla, Y. Zheng, and J. Hu. 2012. Inferring the root cause in road traffic anomalies. In Proceedings of
the 12th IEEE International Conference on Data Mining. IEEE, 141–150.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:35

S. S. Chawathe. 2007. Segment-based map matching. 2007 IEEE Intelligent Vehicles Symposium. IEEE,
1190–1197.

Y. Chen, K. Jiang, Y. Zheng, C. Li, and N. Yu. 2009. Trajectory simplification method for location-based
social networking services. In Proceedings of the ACM SIGSPATIAL Workshop on Location-Based Social
Networking Services. ACM, 33–40.

L. Chen and R. Ng. 2004. On the marriage of lp-norms and edit distance. In Proceedings of the 30th Interna-
tional Conference on Very Large Data Bases. VLDB Endowment, 792–803.

L. Chen, M. T. Ozsu, and V. Oria. 2005. Robust and fast similarity search for moving object trajectories. In
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data. ACM, 491–502.

Z. Chen, H. T. Shen, and X. Zhou. 2011. Discovering popular routes from trajectories. In Proceedings of the
27th IEEE International Conference on Data Engineering. IEEE, 900–911.

Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. 2010. Searching trajectories by locations—An efficient
study. In Proceedings of the 29th ACM SIGMOD International Conference on Management of Data. ACM,
255–266.

W. Chen, M. Yu, Z. Li, and Y. Chen. 2003. Integrated vehicle navigation system for urban applications. In
Proceedings of the International Conference Global Navigation Satellite System. CGNS, 15–22.

R. Cheng, J. Chen, M. F. Mokbel, and C. Y. Chow. 2008. Probabilistic verifiers: Evaluating constrained
nearest-neighbor queries over uncertain data. In Proceedings of the IEEE 24th Conference on Data
Engineering. IEEE, 973–982.

R. Cheng, D. V. Kalashnikov, and S. Prabhakar. 2004. Querying imprecise data in moving objects environ-
ments. IEEE Transactions on Knowledge and Data Engineering 16, 9 (2004).

C. Y. Chow and M. F. Mokbel. 2011. Privacy of spatial trajectories. Computing with Spatial Trajectories,
Y. Zheng and X. Zhou (Eds.). Springer, 109–141.

A. Civilis, C. S. Jensen, J. Nenortaite, and S. Pakalnis. 2005. Techniques for efficient road-network-based
tracking of moving objects. IEEE Transactions on Knowledge and Date Engineering 17, 5 (2005), 698–
711.

K. Deng, K. Xie, K. Zheng, and X. Zhou. 2011. Trajectory indexing and retrieval. Computing with Spatial
Trajectories. Y. Zheng and X. Zhou (Eds.). Springer, 35–60.

D. Douglas and T. Peucker. 1973. Algorithms for the reduction of the number of points required to repre-
sent a line or its caricature. Cartographica: The International Journal for Geographic Information and
Geovisualization 10, 2 (1973), 112–122.

C. Duntgen, T. Behr, and R. H. Guting. 2009. BerlinMOD: A benchmark for moving object databases. The
VLDB Journal 18, 6 (2009), 1335–1368.

T. Emrich, H. P. Kriegel, N. Mamoulis, M. Renz, and A. Züfle. 2012. Querying uncertain spatio-temporal
data. In Proceedings of the 28th IEEE International Conference on Data Engineering. IEEE, 354–365.

Y. Fu, Y. Ge, Y. Zheng, Z. Yao, Y. Liu, H. Xiong, and N. J. Yuan. 2014a. Sparse real estate ranking with online
user reviews and offline moving behaviors. In Proceedings of the 14th IEEE International Conference on
Data Mining. IEEE, 120–129.

Y. Fu, H. Xiong, Y. Ge, Z. Yao, and Y. Zheng. 2014b. Exploiting geographic dependencies for real estate ap-
praisal: A mutual perspective of ranking and clustering. In Proceedings of the 20th SIGKDD Conference
on Knowledge Discovery and Data Mining. ACM, 1047–1056.

S. Gaffney and P. Smyth. 1999. Trajectory clustering with mixtures of regression models. In Proceedings of
the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 63–67.

F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. 2007. Trajectory pattern mining. In Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 330–339.

G. Gid’ofalvi, X. Huang, and T. B. Pedersen. 2007. Privacy-preserving data mining on moving object tra-
jectories. In Proceedings of the 8th IEEE International Conference on Mobile Data Management. IEEE,
60–68.

J. S. Greenfeld. 2002. Matching GPS observations to locations on a digital map. In Proceedings of the 81st
Annual Meeting of the Transportaion Research Board. 576–582.

J. Gudmundsson and M. V. Kreveld. 2006. Computing longest duration flocks in trajectory data. In Proceed-
ings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems.
ACM, 35–42.

J. Gudmundsson, M. V. Kreveld, and B. Speckmann. 2004. Efficient detection of motion patterns in spatio-
temporal data sets. In Proceedings of the 12th Annual ACM International Symposium on Advances in
Geographic Information Systems. ACM, 250–257.

J. Hershberger and J. Snoeyink. 1992. Speeding up the Douglas-Peucker line simplification algorithm. In
Proceedings of the International Symposium on Spatial Data Handling. 134–143.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:36 Y. Zheng

B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. 2010. Achieving guaranteed anonymity in GPS traces via
uncertainty-aware path cloaking. IEEE Transactions on Mobile Computing 9, 8 (2010), 1089–1107.

C. S. Jensen, D. Lin, and B. C. Ooi. 2007. Continuous clustering of moving objects. IEEE Transaction on
Knowledge and Data Engineering 19, 9 (2007), 1161–1174.

H. Jeung, H. Shen, and X. Zhou. 2008a. Convoy queries in spatio-temporal databases. In Proceedings of the
24th IEEE International Conference on Data Engineering. IEEE, 1457–1459.

H. Jeung, M. L. Yiu, and C. S. Jensen. 2011. Trajectory pattern mining. Computing with Spatial Trajectories.
Y. Zheng and X. Zhou (Eds.). Springer, 143–177.

H. Jeung, M. Yiu, X. Zhou, C. Jensen, and H. Shen. 2008b. Discovery of convoys in trajectory databases.
Proceedings of the VLDB Endowment 1, 1 (2008), 1068–1080.

G. Kellaris, N. Pelekis, and Y. Theodoridis. 2009. Trajectory compression under network constraints. In
Proceedings of the International Symposium on Advances in Spatial and Temporal Databases. 392–398.

E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. 2001. An on-line algorithm for segmenting time series. In
Proceedings of the IEEE International Conference on Data Engineering. IEEE, 289–296.

A. Kharrat, I. S. Popa, K. Zeitouni, and S. Faiz. 2008. Clustering algorithm for network constraint trajectories.
Headway in Spatial Data Handling. 631–647.

H. Kido, Y. Yanagisawa, and T. Satoh. 2005. An anonymous communication technique using dummies for
location-based services. In Proceedings of the 3rd International Conference on Pervasive Services. IEEE,
88–97.

J. Krumm. 2011. Trajectory analysis for driving. Computing with Spatial Trajectories, Y. Zheng and X. Zhou
(Eds.). Springer, 213–241.

J. Krumm and E. Horvitz. 2004. LOCADIO: Inferring motion and location from Wi-Fi signal strengths. In
Proceedings of the International Conference on Mobile and Ubiquitous Systems. IEEE, 4–13.

J. G. Lee, J. Han, and K. Y. Whang. 2007. Trajectory clustering: A partition-and-group framework. In
Proceedings of the ACM SIGMOD Conference on Management of Data. ACM, 593–604.

J. Lee, J. Han, and X. Li. 2008. Trajectory outlier detection: A partition-and-detect framework. In Proceedings
of the 24th IEEE International Conference on Data Engineering. IEEE, 140–149.

W.-C. Lee and J. Krumm. 2011. Trajectory preprocessing. Computing with Spatial Trajectories, Y. Zheng and
X. Zhou (Eds.). Springer, 1–31.

Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and M. Ma. 2008. Mining user similarity based on location history. In
Proceedings of the 16th Annual ACM International Conference on Advances in Geographic Information
Systems. ACM, 34.

Z. Li, B. Ding, J. Han, and R. Kays. 2010a. Swarm: Mining relaxed temporal moving object clusters. Proceed-
ings of the VLDB Endowment 3, 1–2 (2010), 723–734.

Z. Li, J. Lee, X. Li, and J. Han. 2010b. Incremental clustering for trajectories. Database Systems for Advanced
Applications. 32–46.

Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. 2010c. Mining periodic behaviors for moving objects. In Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
1099–1108.

Z. Li, J. Wang, and J. Han. 2012. Mining event periodicity from incomplete observations. In Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
444–452.

L. Liao, D. Fox, and H. Kautz. 2004. Learning and inferring transportation routines. In Proceedings of the
National Conference on Artificial Intelligence. 348–353.

S. Liu, K. Jayarajah, A. Misra, and R. Krishnan. 2013. TODMIS: Mining communities from trajectories. In
Proceedings of the 22nd ACM CIKM International Conference on Information and Knowledge Manage-
ment. ACM, 2109–2118.

S. Liu, L. Ni, and R. Krishnan. 2014. Fraud detection from Taxis’ driving behaviors. IEEE Transactions on
Vehicular Technology 63, 1 (2014), 464–472.

W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xie. 2011. Discovering spatio-temporal causal interactions in
traffic data streams. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 1010–1018.

Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. 2009. Map-matching for low-sampling-rate GPS
trajectories. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Geographical
Information Systems. ACM, 352–361.

W. Luo, H. Tan, L. Chen, and M. N. Lionel. 2013. Finding time period-based most frequent path in big
trajectory data. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
ACM, 713–724.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:37

S. Ma, Y. Zheng, and O. Wolfson. 2013. T-Share: A large-scale dynamic taxi ridesharing service. In Proceedings
of the 29th IEEE International Conference on Data Engineering. IEEE, 410–421.

S. Ma, Y. Zheng, and O. Wolfson. 2015. Real-time city-scale taxi ridesharing. IEEE Transactions on Knowledge
and Data Engineering 99. DOI: http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2334313

N. Maratnia and R. A. de By. 2004. Spatio-temporal compression techniques for moving point objects. In
Proceedings of the 9th International Conference on Extending Database Technology. 765–782.

R. B. McMaster. 1986. A statistical analysis of mathematical measures of linear simplification. The American
Cartographer 13, 2 (1986), 103–116.

M. F. Mokbel, C. Y. Chow, and W. G. Aref. 2007. The new Casper: Query processing for location services without
compromising privacy. In Proceedings of the 23rd IEEE International Conference on Data Engineering.
IEEE, 1499–1500.

M. Mokbel, L. Alarabi, J. Bao, A. Eldawy, A. Magdy, M. Sarwat, E. Waytas, and S. Yackel. 2014. A demon-
stration of MNTG —A Web-based road network traffic generator. In Proceedings of the 30th IEEE
International Conference on Data Engineering, IEEE, 1246–1249.

A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. 2009. WhereNext: A location predictor on trajectory pat-
tern mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 637–646.

M. E. Nergiz, M. Atzori, Y. Saygin, and B. Guc. 2009. Towards trajectory anonymization: A generalization-
based approach. Transactions on Data Privacy 2, 1 (2009), 47–75.

P. Newson, J. Krumm. 2009. Hidden Markov map matching through noise and sparseness. In Proceedings
of the 17th ACM SIGSPATIAL International Conference on Geographical Information Systems. ACM,
336–343.

J. Niedermayer, A. Zufle, T. Emrich, M. Renz, N. Mamouliso, L. Chen, and H. Kriegel. 2014. Probabilistic
nearest neighbor queries on uncertain moving object trajectories. Proceedings of the VLDB Endowment
7, 3 (2014), 205–216.

W. Y. Ochieng, M. A. Quddus, and R. B. Noland. 2004. Map-matching in complex urban road networks.
Brazilian Journal of Cartography 55, 2 (2004), 1–18.

B. Pan, Y. Zheng, D. Wilkie, and C. Shahabi. 2013. Crowd sensing of traffic anomalies based on human
mobility and social media. In Proceedings of the 21st Annual ACM International Conference on Advances
in Geographic Information Systems. ACM, 334–343.

L. X. Pang, S. Chawla, W. Liu, and Y. Zheng. 2011. On mining anomalous patterns in road traffic streams.
In Proceedings of the International Conference on Advanced Data Mining and Applications. 237–251.

L. X. Pang, S. Chawla, W. Liu, and Y. Zheng. 2013. On detection of emerging anomalous traffic patterns using
GPS data. Data & Knowledge Engineering, 87 (2013), 357–373.

D. J. Patterson, L. Liao, D. Fox, and H. Kaut. 2003. Inferring high-level behavior from low-level sensors. In
Proceedings of the 5th International Conference on Ubiquitous Computing. ACM, 73–89.

J. Pei, J. Han, B. Mortazavi-Asl, and H. Pinto. 2011. PrefixSpan: Mining sequential patterns efficiently
by prefix-projected pattern growth. In Proceedings of the 29th IEEE International Conference on Data
Engineering. IEEE, 215.

D. Pfoser and C. S. Jensen. 1999. Capturing the uncertainty of moving objects representation. In Proceedings
of the International Symposium on Advances in Spatial Databases. 111–131.

D. Pfoser, C. S. Jensen, and Y. Theodoridis. 2000. Novel approaches to the indexing of moving object trajecto-
ries. In Proceedings of the 26th International Conference on Very Large Data Bases. VLDB Endowment,
395–406.

O. Pink and B. Hummel. 2008. A statistical approach to map matching using road network geometry,
topology and vehicular motion constraints. In Proceedings of the 11th International IEEE Conference on
Intelligent Transportation Systems. IEEE, 862–867.

M. Potamias, K. Patroumpas, and T. Sellis. 2006. Sampling trajectory streams with spatio-temporal criteria.
In Proceedings of the 18th International Conference on Scientific and Statistical Database Management.
IEEE, 275–284.

S. Qiao, C. Tang, H. Jin, T. Long, S. Dai, Y. Ku, and M. Chau. 2010. Putmode: Prediction of uncertain
trajectories in moving objects databases. Applied Intelligence 33, 3 (2010), 370–386.

M. A. Quddus, W. Y. Ochieng, and R. B. Noland. 2006. A high accuracy fuzzy logic-based map-matching
algorithm for road transport. Journal of Intelligent Transportation Systems: Technology, Planning, and
Operations 10, 3 (2006), 103–115.

K. Richter, F. Schmid, and P. Laube. 2012. Semantic trajectory compression: Representing urban movement
in a nutshell. Journal of Spatial Information Science, 4 (2012), 3–30.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:38 Y. Zheng

S. Rinzivillo, S. Mainardi, F. Pezzoni, M. Coscia, D. Pedreschi, and F. Giannotti. 2012. Discovering the
geographical borders of human mobility. Künstl Intell. 26, 3 (2012), 253–260.

J. Shang, Y. Zheng, W. Tong, E. Chang, and Y. Yu. 2014. Inferring gas consumption and pollution emission
of vehicles throughout a city. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 1027–1036.

R. Song, W. Sun, B. Zheng, and Y. Zheng. 2014. PRESS: A novel framework of trajectory compression in road
networks. Proceedings of the VLDB Endowment 7, 9 (2014), 661–672.

H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou. 2013. Calibrating trajectory data for similarity-based anal-
ysis. In Proceedings of the 39th International Conference on Very Large Data Bases. VLDB Endowment,
833–844.

Y. Tao and D. Papadias. 2001a. Efficient historical R-trees. In Proceedings of the 13th International Conference
on Scientific and Statistical Database Management, 223–232.

Y. Tao and D. Papadias. 2001b. Mv3r-tree: A spatio-temporal access method for timestamp and interval
queries. In Proceedings of the 27th International Conference on Very Large Data Bases. VLDB Endow-
ment, 431–440.

Y. Tao, D. Papadias, and Q. Shen. 2002. Continuous nearest neighbour search. In Proceedings of the 28th
International Conference on Very Large Data Bases. VLDB Endowment, 287–298.

L. A. Tang, Y. Zheng, X. Xie, J. Yuan, X. Yu, and J. Han. 2011. Retrieving k-nearest neighboring trajectories
by a set of point locations. In Proceedings of the 12th Symposium on Spatial and Temporal Databases.
Springer, 223–241.

L. A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C. Hung, and W. Peng. 2012a. Discovery of traveling
companions from streaming trajectories. In Proceedings of the 28th IEEE International Conference on
Data Engineering. IEEE, 186–197.

L. A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, W. Peng, and T. L. Porta. 2012b. A framework of trav-
eling companion discovery on trajectory data streams. ACM Transactions on Intelligent Systems and
Technology 5, 1 (2012).

M. Terrovitis and N. Mamoulis. 2008. Privacy preservation in the publication of trajectories. In Proceedings
the 9th IEEE International Conference on Mobile Data Management. IEEE, 65–72.

G. Trajcevski, A. N. Choudhary, O. Wolfson, L. Ye, and G. Li. 2010. Uncertain range queries for necklaces. In
Proceedings of the 11th IEEE International Conference on Mobile Data Management. IEEE, 199–208.

G. Trajcevski, R. Tamassia, H. Ding, P. Scheuermann, and I. F. Cruz. 2009. Continuous probabilistic nearest-
neighbor queries for uncertain trajectories. In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology. ACM, 874–885.

G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. 2004. Managing uncertainty in moving objects
databases. ACM Transactions on Database Systems 29, 3(04), 463–507.

S. Timothy, A. Varshavsky, A. Lamarca, M. Y. Chen, and T. Chounhury. 2006. Mobility detection using
everyday GSM traces. In Proceedings of the 8th International Conference on Ubiquitous Computing.
ACM, 212–224.

L. Wang, Y. Zheng, X. Xie, and W. Ma. 2008. A flexible spatio-temporal indexing scheme for large-scale GPS
track retrieval. In Proceedings of the 8th IEEE International Conference on Mobile Data Management.
IEEE, 1–8.

Y. Wang, Y. Zheng, and Y. Xue. 2014. Travel time estimation of a path using sparse trajectories. In Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
25–34.

L. Wei, Y. Zheng, and W. Peng. 2012. Constructing popular routes from uncertain trajectories. In Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
195–203.

X. Xiao, Y. Zheng, Q. Luo, and X. Xie. 2010. Finding similar users using category-based location history. In
Proceedings of the 18th Annual ACM International Conference on Advances in Geographic Information
Systems. ACM, 442–445.

X. Xiao, Y. Zheng, Q. Luo, and X. Xie. 2014. Inferring social ties between users with human location history.
Journal of Ambient Intelligence and Humanized Computing 5, 1 (2014), 3–19.

H. Xie, L. Kulik, and E. Tanin. 2010. Privacy-aware traffic monitoring. IEEE Transactions on Intelligent
Transportation Systems 11, 1 (2010), 61–70.

C. Xu, Y. Gu, L. Chen, J. Qiao, and G. Yu. 2013. Interval reverse nearest neighbor queries on uncertain data
with Markov correlations. In Proceedings of the 29th IEEE International Conference on Data Minning.
IEEE, 170–181.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

Trajectory Data Mining: An Overview 29:39

X. Xu, J. Han, and W. Lu. 1990. RT-tree: An improved R-Tree indexing structure for temporal spatial
databases. In Proceedings of International Symposium on Spatial Data Handling. 1040–1049.

A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu. 2013. Destination prediction by sub-trajectory
synthesis and privacy protection against such prediction. In Proceedings of the 29th IEEE International
Conference on Data Engineering. IEEE, 254–265.

X. Yan, J. Han, and R. Afshar. 2003. CloSpan: Mining closed sequential patterns in large datasets. In
Proceedings of the 3rd SIAM International Conference on Data Mining. IEEE, 166–177.

J. Yang, W. Wang, and P. S. Yu. 2003. Mining asynchronous periodic patterns in time series data. IEEE
Transactions on Knowledge and Data Engineering 15, 3 (2003), 613–628.

J. Yang, W. Wang, and S. Y. Philip. 2001. Infominer: Mining surprising periodic patterns. In Proceedings of the
7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 395–400.

J. Yang, W. Wang, and P. S. Yu. 2002. Infominer+: Mining partial periodic patterns with gap penalties. In
Proceedings of the IEEE International Conference on Data Mining. IEEE, 725–728.

Y. Ye, Y. Zheng, Y. Chen, J. Feng, and X. Xie. 2009. Mining individual life pattern based on location history.
In Proceedings of the 10th IEEE International Conference on Mobile Data Management. IEEE, 1–10.

B. K. Yi, H. Jagadish, and C. Faloutsos. 1998. Efficient retrieval of similar time sequences under time warping.
In Proceedings of the 14th IEEE International Conference on Data Engineering. IEEE, 201–208.

H. B. Yin and O. Wolfson. 2004. A weight-based map matching method in moving objects databases1. In
Proceedings of the 16th International Conference on Scientific and Statistical Database Management.
IEEE, 437–410.

J. Yin, X. Chai, and Q. Yang. 2004. High-level goal recognition in a wireless Lan. In Proceedings of the
National Conference on Artificial Intelligence. AAAI, 578–584.

H. Yoon, Y. Zheng, X. Xie, and W. Woo. 2012. Social itinerary recommendation from user-generated digital
trails. Journal on Personal and Ubiquitous Computing 16, 5 (2012), 469–484.

H. Yoon, Y. Zheng, X. Xie, and W. Woo. 2011. Smart itinerary recommendation based on user-generated GPS
trajectories. In Proceedings of the 8th IEEE International Conference on Ubiquitous Intelligence and
Computing. IEEE, 19–34.

J. Yuan, Y. Zheng, and X. Xie. 2012. Discovering regions of different functions in a city using human mobility
and POIs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 186–194.

J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. 2010a. T-Drive: Driving directions based
on taxi trajectories. In Proceedings of the 18th Annual ACM International Conference on Advances in
Geographic Information Systems. ACM, 99–108.

J. Yuan, Y. Zheng, X. Xie, and G. Sun. 2011a. Driving with knowledge from the physical world. In Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
316–324.

J. Yuan, Y. Zheng, X. Xie, and G. Sun. 2013a. T-Drive: Enhancing driving directions with taxi drivers’
intelligence. IEEE Transaction on Knowledge and Data Engineering 25, 1 (2013), 220–232.

J. Yuan, Y. Zheng, C. Zhang, X. Xie and G. Sun. 2010b. An interactive-voting based map matching algorithm.
In Proceedings of the 11th IEEE International Conference on Mobile Data Management. IEEE, 43–52.

J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun. 2011b. Where to find my next passenger? In Proceedings of
the 13th International Conference on Ubiquitous Computing. ACM, 109–118.

N. J. Yuan, Y. Zheng, and X. Xie. 2012. Segmentation of Urban Areas using Road Networks. Technical Report
MSR-TR-2012-65.

N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie. 2013b. T-Finder: A recommender system for finding passengers
and vacant taxis. IEEE Transaction on Knowledge and Data Engineering 25, 10 (2013), 2390–2403.

N. J. Yuan, Y. Zheng, X. Xie, Y. Wang, K. Zheng, and H. Xiong. 2015. Discovering urban functional zones
using latent activity trajectories. IEEE Transactions on Knowledge and Data Engineering 27, 3 (2015),
1041–4347.

D. Zhang, N. Li, Z. Zhou, C. Chen, L. Sun, and S. Li. 2011. iBAT: Detecting anomalous taxi trajectories
from GPS traces. In Proceedings of the 13th International Conference on Ubiquitous Computing. ACM,
99–108.

F. Zhang, D. Wilkie, Y. Zheng, and X. Xie. 2013. Sensing the pulse of urban refueling behavior. In Proceedings
of the 15th International Conference on Ubiquitous Computing. ACM, 13–22.

F. Zhang, N. J. Yuan, D. Wilkie, Y. Zheng, and X. Xie. 2015. Sensing the pulse of urban refueling behavior: A
perspective from taxi mobility. ACM Transactions on Intelligent Systems and Technology 6 (2015), 3.

K. Zheng, Y. Zheng, X. Xie, and X. Zhou. 2012a. Reducing uncertainty of low-sampling-rate trajectories. In
Proceedings of the 28th IEEE International Conference on Data Engineering. IEEE, 1144–1155.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

29:40 Y. Zheng

K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang. 2013a. On discovery of gathering patterns from trajec-
tories. In Proceedings of the 29th IEEE International Conference on Data Engineering. IEEE, 242–
253.

K. Zheng, Y. Zheng, N. J. Yuan, S. Shang, and X. Zhou. 2014a. Online discovery of gathering patterns over
trajectories. IEEE Transaction on Knowledge and Data Engineering 26, 8 (2014), 1974–1988.

V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang. 2010a. Collaborative filtering meets mobile recommen-
dation: A user-centered approach. In Proceedings of the 24th AAAI Conference on Artificial Intelligence.
AAAI, 236–241.

V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang. 2010b. Collaborative location and activity recommendations
with gps history data. In Proceedings of the 19th International Conference on World Wide Web. ACM,
1029–1038.

V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang. 2012b. Towards mobile intelligence: Learning from GPS history
data for collaborative recommendation. Artificial Intelligence 184–185 (2012), 17–37.

Y. Zheng. 2011. Location-based social networks: users. Computing with Spatial Trajectories, Y. Zheng and
X. Zhou (Eds.). Springer, 243–276.

Y. Zheng. 2012. Tutorial on location-based social networks. In Proceedings of the 21st International Conference
on World Wide Web. ACM.

Y. Zheng, L. Capra, O. Wolfson, and H. Yang. 2014b. Urban computing: Concepts, methodologies, and appli-
cations. ACM Transactions on Intelligent Systems and Technology 5, 3 (2014), 38–55.

Y. Zheng, X. Chen, Q. Jin, Y. Chen, X. Qu, X. Liu, E. Chang, W. Ma, Y. Rui, and W. Sun. 2014c. A Cloud-based
knowledge discovery system for monitoring fine-grained air quality. MSR-TR-2014-40.

Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. 2010c. Understanding transportation modes based on GPS
data for Web applications. ACM Transactions on the Web 4, 1 (2010), 1–36.

Y. Zheng, Y. Chen, X. Xie, and W.-Y. Ma. 2009a. GeoLife2.0: A location-based social networking service. In
Proceedings of the 10th IEEE International Conference on Mobile Data Management. IEEE, 357–358.

Y. Zheng, S. E. Koonin, and O. E. Wolfson. 2013. Proceedings of the 2nd ACM SIGKDD International Workshop
on Urban Computing. ACM.

Y. Zheng, Q. Li, Y. Chen, and X. Xie. 2008a. Understanding mobility based on GPS data. In Proceedings of
the 11th International Conference on Ubiquitous Computing. ACM, 312–321.

Y. Zheng, L. Liu, L. Wang, and X. Xie. 2008b. Learning transportation mode from raw GPS data for geographic
application on the Web. In Proceedings of the 17th International Conference on World Wide Web. ACM,
247–256.

Y. Zheng, F. Liu, and H. P. Hsieh. 2013b. U-Air: When urban air quality inference meets big data. In
Proceedings of the 19th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM,
1436–1444.

Y. Zheng, T. Liu, Y. Wang, Y. Liu, Y. Zhu, and E. Chang. 2014c. Diagnosing New York City’s noises with ubiq-
uitous data. In Proceedings of the 16th ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 715–725.

Y. Zheng, Y. Liu, J. Yuan, and X. Xie. 2011a. Urban computing with taxicabs. In Proceedings of the 13th
International Conference on Ubiquitous Computing. ACM, 89–98.

Y. Zheng and X. Xie. 2011b. Learning travel recommendations from user-generated GPS traces. ACM Trans-
actions on Intelligent Systems and Technology 2, 1 (2011), 2–19.

Y. Zheng, X. Xie, and W.-Y. Ma. 2010d. GeoLife: A collaborative social networking service among user, location
and trajectory. IEEE Data Engineering Bulletin 33, 2 (2010), 32–40.

Y. Zheng, L. Zhang, Z. Ma, X. Xie, and W.-Y. Ma. 2011c. Recommending friends and locations based on
individual location history. ACM Transaction on the Web 5, 1 (2011), 5–44.

Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. 2009b. Mining interesting locations and travel sequences from GPS
trajectories. In Proceedings of the 18th International Conference on World Wide Web. ACM, 791–800.

Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. 2009c. Mining correlation between locations using human location
history. In Proceedings of the 17th Annual ACM International Conference on Advances in Geographic
Information Systems. ACM, 352–361.

Y. Zheng and X. Zhou. 2011. Computing with Spatial Trajectories. Springer.
Y. Zhu, Y. Zheng, L. Zhang, D. Santani, X. Xie, and Q. Yang. 2011. Inferring Taxi Status using GPS Trajectories.

Technical Report MSR-TR-2011-144.
GeoLife Data: http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/

default.aspx.
T-Drive Data: http://research.microsoft.com/apps/pubs/?id=152883.

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/default.aspx
http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/default.aspx

Trajectory Data Mining: An Overview 29:41

Trajectory with transportation modes: http://research.microsoft.com/apps/pubs/?id=141896.
User check-in data: https://www.dropbox.com/s/4nwb7zpsj25ibyh/check-in%20data.zip.
Hurricane trajectory (HURDAT): http://www.nhc.noaa.gov/data/hurdat.
The Greek Trucks Dataset,” http://www.chorochronos.org.
Movebank data: https://www.movebank.org/.

Received October 2013; revised May 2014; accepted November 2014

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 3, Article 29, Publication date: May 2015.

