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ABSTRACT 
An extensible processor provides a standard data-path and one or 

more regions for use as application-specific reconfigurable logic. 

In this paper we address two problems that arise in the practical 

use of extensible processors. Using multiple extensible regions 

can lead to avoidable time and space inefficiencies, and the 

physical placement of the interconnection points strongly affects 

the overall design timings. 

Standard tool-flows from FPGA manufacturers require the 

creation of separate configuration images for each region. The 

space and time complexities that this entails are undesirable, 

especially in an embedded system setting where storage is at 

premium. In this paper we introduce a run-time algorithm that 

allows the relocation of one configuration image to any number of 

compatible regions, in linear time. The application loader running 

on the data-path can perform the relocation along with the loading 

of the application code. We have implemented the algorithm on 

the eMIPS soft processor using two extensible regions, and on the 

MicroBlaze soft processor using four regions, in both cases 

targeting a Virtex-4 FPGA. There are two main advantages from 

image relocation. We save time at compilation because only one 

region needs to be synthesized. We save space at execution time 

by storing only one configuration in FLASH memory.  

The reconfigurable regions themselves are interfaced with the 

standard data-path using “bus macros”, connection points that are 

placed at fixed locations. The placement of the bus macros around 

a region has a noticeable impact on the timing of the design inside 

the region, and on the timings of the standard data-path outside 

the region. We have found that manual placement of the bus 

macros is not only tedious, but leads to sub-optimal timings even 

when following best design practices. We present a tool that uses 

design-space exploration to obtain automatic, near-optimal 

placement of the bus macros for the relocatable regions. Results 

show the worst solution found had a total timing score of 581,146 

ps while the best solution was only 22,964 ps and the average 

over the design space was 175,682 ps. The score for the manual 

placement was 97,714 ps. 

1. INTRODUCTION 
Dynamic partial reconfiguration of FPGAs (or PR for short) has 

been available for quite some time, yet the tools to support it are 

still deficient in many ways. The flows are cumbersome to use 

and not at all integrated in the regular flow supported by the 

graphic user interfaces. This keeps many users away because the 

technology is perceived as too difficult to use. But perhaps more 

importantly, there are still functional deficiencies that lead to sub-

optimal solutions. In this paper we address two of the functional 

shortcoming in the present tools. We have encountered these 

shortcomings in our own work with extensible processors, and 

therefore we have attacked them from a very practical perspective. 

Nonetheless, the issues are more widely relevant and affect all 

uses of the PR technology. The results are also more generally 

applicable.  

The preferred model for PR use is with one static region and one 

PR region. The static region guarantees the basic functionality and 

proper behavior during reconfiguration, especially with respect to 

the I/O signals. The single PR region is used to realize different 

temporal parts of the application, or alternate realization of certain 

(signal) processing, or to receive dynamic updates on deployed 

systems. Solutions that employ more than one PR region are 

described in the literature, but are not at all well supported by the 

tools. For example, the user is currently required to synthesize 

each design repeatedly, once for each PR region. Each 

compilation requires hours of computer time, sometimes many 

hours if targeting the larger FPGA models. There are space 

inefficiencies as well. Each of those long compilations produces a 

separate configuration file (bit-stream) for use with the given PR 

region and nowhere else. These files are large even for the 

smallest FPGA models and easily grow in the hundreds of 

kilobytes. All of the files must be present at run-time. These time 

and space inefficiencies lead to the desire to, somehow, use a 

single bit-stream file that can be relocated to any one of a many 

PR regions. Relocations should be doable at run-time, without 

excessive overhead. The file should be compiled only once, for 

one PR region only, and should be no bigger than a current file. In 

this paper, we describe the algorithm we have realized for 

performing the dynamic relocation of bit-streams. We 

demonstrate relocatable configuration files on two separate 

examples. One demonstration is with two PR regions using the 

eMIPS extensible processor presented in [8]. The other 

demonstration is with four PR regions, using the MicroBlaze soft-

core for image transformations on different parts of a digital 

image, and displayed on a VGA monitor. The two examples use 

radically different memory subsystems, which leads to different 

performance characteristics of the relocation process. The code 

for relocation, however, is the same in both instances. We also 

found that the composition of the bit-streams, as well as the 

location differences in PR regions are factors that affect the 

relocation times just as much as the sheer size of the streams 

themselves. 

A second shortcoming is in the interface between the static and 

the PR regions. Clearly, if independently developed designs for 

these regions are to interoperate correctly, at the very least they 

must agree on the routing and directions of the signals that 
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interconnect them. These are commonly referred to as the “bus 

macros”, using the terminology used for but one of the many ways 

in which the problem has been solved. While the problem is 

indeed solved, the current tools require the user to specify 

manually both the size and location of the PR regions, and the 

location of the interconnecting points (the “bus macros”) along 

the perimeter of the PR regions. It turns out that the placement of 

the bus macros around a region has a noticeable impact on the 

timing of the design inside the region, as well as on the timings of 

the design outside the region. We have found that manual 

placement of the bus macros is not only tedious, but leads to sub-

optimal timings even when following best design practices. Our 

solution is to create a tool that can automatically identify what is 

the placement of the interconnection points that leads to the best 

timings. Our tool uses design-space exploration via simulated 

annealing to obtain automatic, near-optimal placement of the bus 

macros for the relocatable regions. To the best of our knowledge, 

this is the first tool to address the problem of identifying the best 

placement of the bus macros, manually or otherwise. To 

underscore the practical relevance of the problem, our results 

show that the ratio between the best and worst placement can be a 

factor of 27 on a real design. The average solution is a factor of 8 

slower than the best. The score for the manual placement that 

follows the best-practices advice from the manufacturer is a factor 

of 4.5 worse than best.  

The rest of the paper is organized as follows. Section 2 presents 

background material and related work. Section 3 describes the bit-

stream relocation algorithm, the tool flow, and their 

implementation. Section 4 presents the automated tool for floor-

planning of the bus macros. Section 5 presents our measurements 

and results. Section 6 describes the limitations of our current tool 

implementations. Section 7 presents our conclusions and Section 

8 some ideas for future work. 

2. BACKGROUND AND RELATED WORK 
This section introduces the background concepts needed for the 

rest of the paper. They include FPGA partial reconfiguration, 

dynamic bit-stream relocation, the eMIPS processor, the 

MicroBlaze processor, the Virtex-4 configuration frame layout, 

and the floor-planning of partial reconfiguration regions. 

2.1 Partial Reconfiguration and Relocation 
The ability to change portions of the FPGA configuration at run-

time is called dynamic partial reconfiguration. This entails 

modifying portions of the logic planes without affecting the 

remaining parts of the circuit, which continues to function 

unperturbed. Special support is needed in the FPGA chip for this 

process to execute flawlessly, without “glitches”. Manufacturers 

that support this feature include Xilinx and Altera. Currently the 

tool provided by Xilinx for doing dynamic partial reconfiguration 

is part of the Early Access Partial Reconfiguration, or EAPR, a 

flow that is found at [1]. The flow requires first implementing the 

part of the logic, called the static logic, which will not change 

during run-time. The logic that will change during run-time is 

implemented in a Partial Reconfiguration (PR) region. Each of the 

configurations of a PR region is implemented after the static part 

is implemented. Each implementation produces a configuration 

file, called a bit-stream. The final step is to generate the bit-stream 

for the initial configuration of the entire chip, and for each 

alternate configuration that was implemented for each PR region. 

The communication between the PR region and the static logic 

happens via bus macros, fixed interconnection points at the 

perimeter of the PR region. The bus macros must be instantiated 

in the HDL code and manually placed. The PR regions are 

reconfigured either off-chip by an external agent, or on-chip by 

the design itself, probably a processor. Off-chip interfaces use 

either JTAG, or some other specialized interface. To perform on-

chip reconfiguration on Xilinx devices, a designer instantiates a 

special macro for the Internal Configuration Access Port (ICAP), 

then sends the configuration data to it. For the Virtex-4 the ICAP 

can be implemented with either an 8-bit or 32-bit wide interface. 

The bit-stream for configuring one PR region is tightly bound to 

the physical location of that region and cannot be used directly to 

reconfigure any other portion of the chip. In many cases though, it 

is possible to modify an existing bit-stream and adapt it to a 

different physical location. This process is termed bit-stream 

relocation and can be performed statically by tools operating on 

the designer’s workstation, or dynamically by the agent that loads 

the bit-stream on chip. The key element is that a portion of the 

chip is reconfigured at run-time, without interfering with the 

operation of the rest of the chip.  There are various works 

describing static or dynamic relocation of configurations for a PR 

region to a different PR region. The motivation is to reduce the 

number of partial bit-streams required if two or more PR regions 

would use the same implementation. For example, if we had four 

target PR regions for the bit-stream we could save the storage of 

three bit-streams copies on, say, a FLASH chip and reduce the 

compilation time by a factor of four. The savings are noticeable 

because bit-streams tend to be large and the compilation times are 

often measured in hours per design. The trade-off is the size of the 

software/hardware and some placement restrictions on the PR 

regions to enable relocation. 

Becker et al [2] describe the building of bit-streams for a Virtex-4 

FPGA that are relocatable by-design. The approach does not allow 

any static logic in the PR regions. Manipulation of the bit-stream 

is performed to relocate a column (ex. CLB) to a non-identical 

column (ex. DSP) with respect to routing. The provided example 

of a software defined radio with two reconfigurable regions 

showed a reduction in the number of partial bit-streams by 50% 

and compilation time by 43%. We implemented a similar baseline 

using the MicroBlaze and extended it for use on our eMIPS 

architecture. 

Montminy et al.[3] show how to layout the redundant modules of 

a Triple Modular Fault Tolerant design in such a way that one 

module’s configuration is relocated to correct the errors in another 

redundant module. A circuit automatically calculates the CRC 

value as the bit-stream is being relocated. Horta et al.[7] 

demonstrate relocatable bit-streams for a Virtex-E chip. They 

used Gaskets, similar to bus macros, to define the routing between 

the similar regions. Our FPGAs do not appear affected by the 

absences of a correct CRC.  For this reason, we have delayed 

adding the CRC calculation in our tools. 

Sedcole et al. [11] discuss relocation for a Virtex-4. The 

distinguishing features in this work are the ability to route 

statically through a relocatable region by reserving routing lines 

for the static logic, and the ability to merge relocatable and static 

parts at run-time. A certain percentage of long lines are reserved 

for the static logic to cross over the PR region. The static design is 

then re-routed to use the reserved long lines. To merge parts at 

runtime the current configuration is read out, stripped of the 

previous configuration except the static logic, and merged with 

the new configuration. This process proved to be very time-
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consuming, with an increase of reconfiguration time from 6.2x to 

11.4x. The example used the HWICAP provided by Xilinx.  Due 

to the additional complexity and time overhead, we chose to 

exclude static routing from extensible regions. 

Kalte et al. present REPLICA [12], a system with a zero-overhead 

cost in relocation of the partial bit-stream. This is accomplished 

with a hardware module capable of relocating CLB columns for a 

Virtex-E FPGA. The hardware module also computes the new 

CRC automatically. Additional hardware would be needed in a 

Virtex-4 setup to allow for bit-reversal of the frames. Ferrandi et 

al. present the Bit-stream Relocation Filter (BiRF) [13], a device 

similar to REPLICA, but for a Virtex-2 and with minimal area 

cost. Krasteva et al. describe the pBITPOS tool [14], to allow 

relocation for Virtex II (Pro) solutions. The additional feature in 

this work is the ability to relocate configurations that make use of 

BRAM/MULs.  Additional hardware for supporting bit-stream 

relocation would improve performance; however our 

implementation is done completely in software at this time. 

 

2.2 The Extensible MIPS Processor 

The eMIPS microprocessor system [8] provides a MIPS [10] 

RISC data path tightly integrated with a configurable logic fabric. 

The system is available for download at [9]. Figure 1 shows a 

block diagram of the system, which is implemented for a Xilinx 

FPGA and makes use of the partial reconfiguration feature to 

change the state of the Soft Fabric at runtime. The MIPS data path 

is implemented in the Hard Fabric portion, along with the controls 

for the Soft Fabric, the memory interfaces and other fixed I/O 

peripherals. The Soft Fabric is further subdivided in a number of 

regions called Extensions, each Extension maps to a PR region. 

Extensions have been used for accelerating application execution 

time, for implementing plug and play on-chip peripherals and bus 

interfaces, for monitoring and model-checking applications, and 

for debugging of application software during development. The 

original release of eMIPS provides just one Extension slot. As 

part of this work we have ported eMIPS to a larger chip and 

realized it with two Extension slots. In Figure 1, the Memory 

Controller implements the interfaces to the ICAP, timer, General 

Purpose Input and Output (GPIO), and other peripherals used in 

the system.  

As more and more Extensions become available for use, it 

becomes advantageous to use relocatable bit-streams instead of 

having a bit-stream for each slot on the chip. The Extensions are 

configured at run-time with new functionality by software. 

Because it is unknown which region an extension will go in, it is 

valuable to allow flexibility on where the extension will be 

configured at. This allows maximum flexibility to the scheduler, 

who can then place the Extension in an available slot without 

requiring a separate reconfiguration file for each extension. An 

example of a list of processes to schedule can be seen in Figure 2. 

 

The mapping from process resource requirements and available 

resources is already a difficult one for the scheduler, who must do 

it in an efficient and time-predictable manner. Adding the 

requirement of a specific placement will reduce the schedulable 

sets and potentially cause confusion to the users. Consider the 

case of a system with four Extension slots. The process set in 

Figure 2 should be schedulable on this system, with all processes 

receiving an Extension slot. Suppose the eBug extension is only 

provided for two slots, which are both occupied by the first and 

second process in the set. The scheduler can only provide the third 

process with one slot for the P2V monitor. The user (a developer, 

say) will be rather confused to see that an exception in this 

process does not get reflected in the debugger but simply 

terminates the program. 

2.3 The MicroBlaze Processor 

MicroBlaze is a soft core RISC processor provided by Xilinx [18]. 

It can be implemented as a 3-stage or 5-stage pipeline. Figure 3 

provides an overview of how the MicroBlaze interacts with the 

other components in the system used for our experiments. The 

HWICAP interfaces with the ICAP to send the configuration for 

the PR region. The Timer is free-running to measure the cycles it 

takes to configure a region. Because of the reduced number of bit-

streams, it was possible to fit all software and partial bit-streams 

required in the 64 kilobytes of space in the BRAM.  Larger sized 

 

Figure 2 – Example List of Processes to be scheduled. 

 

Figure 1 – Overview of eMIPS. 
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bit-streams would require storage into other memory like flash 

which would impact the time required for relocation. 

 

2.4 Virtex-4 Configuration Layout 

The smallest unit of configuration on a Xilinx FPGA is the frame. 

A frame includes a fixed number of Configurable Logic Blocks 

(CLBs), physically laid out in fixed geometries. On the Virtex-4 

FPGAs, frames span the height of 16 CLBs, which is one HCLK 

row. In previous Virtex FPGAs [15] a frame spans the entire 

height of the chip. Each frame in the Virtex-4 is composed of 

1,312 bits. Frames are addressed in a 2-D fashion. A frame 

address command sets the starting destination of the configuration 

frames. A frame address on the Virtex-4 is composed of five 

parts: top/bottom of chip, block type, HCLK row, major column 

address, and minor column address. The top/bottom part specifies 

whether the target is at the top or at the bottom of the chip. The 

block type is one of three types: CLB/IOB/DSP/GCLK (0), 

BRAM interconnect (1), and BRAM content (2). The HCLK row 

indicates which row of the chip is targeted. Numbering of the 

HCLK row starts from the middle of the chip outward. The major 

column address specifies which resource column to change. The 

number begins at zero at the far left of the chip and increments 

going to the right. How many minor addresses there are for a 

given column depends on the type of resource targeted. There are 

22 minor frames for CLBs, 21 for DSPs, 20 for BRAM 

interconnect, 64 for BRAM content, 30 for IOBs, and 2 for 

GCLK. The correlation between the frame address and target 

frame is shown for an SX25 chip in Figure 4. 

For example to reach the first CLB column in the upper-left of the 

chip, the frame address would be as follows: top/bottom=0, block 

type=0, HCLK row=1, major column address=1 and minor 

column address=0-21. This correlation is critical to understand 

how to manipulate the bit-stream to target the desired PR region. 

 

2.5 Floor-planning 

Floor-planning is the process of defining the size and physical 

location of the PR regions on the target FPGA chip. The existing 

manufacturer's flows currently require that the user performs this 

selection process manually, using tools such as Xilinx PlanAhead 

or by editing the User Constraint File (UCF). In addition to 

selecting the location and size of the PR region, it is also 

necessary to define the placement of the bus macros along the 

perimeter of the chosen region. This is also a manual process 

currently. These choices have a clear effect on the placement of 

the design and on its ability to meet timing, but there are currently 

no tools to help the user make the optimal or even an informed 

choice.  

Some research exists on automatically defining the ideal location 

for the PR region. To the best of our knowledge there are no 

results on finding the optimal placement of the bus macros around 

a PR region, ours is the first tool to address this issue. 

Singhal and Bozorgzadeh [16] use automated floor-planning to 

find the best area to allocate for the designs that are going to 

change at run-time.  The process takes into consideration the 

alternate designs that will replace the current setup in the PR 

region.  This is done by representing sequence pairs to represent 

placement of modules in relation to each other.  Difference 

placements of modules are used to determine which modules are 

reused and which ones are reconfigurable.  It uses simulated 

annealing to find the best placement of modules, and determine 

which ones will be reconfigured when changes to the modules is 

required.  Koester et al. [17] develop a general mathematical 

model for reconfigurable hardware. This is to develop better 

placement algorithms for dynamically changing systems. Neither 

work considers the further problem of placing the bus macros in 

the chosen area.  

 

Figure 4 – Frame Address Mapping Example on SX25 chip. 

 

Figure 3 – Overview of the MicroBlaze Setup. 
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3. RELOCATING BIT-STREAMS 
Relocation of the configuration file (bit-stream) is simple and 

efficient as long as the source and target PR regions meet a few 

constraints. In our work the regions must: (1) have the same 

pattern of resources, (2) span the entire height of the HCLK row 

(one entire frame), (3) encompass the same amount of area on the 

chip, and (4) use bus-macros in the same (relative) placement. 

When these constraints are valid, relocation consists mostly in 

adjusting the frame addresses in the source configuration file to 

match the target PR region. 

3.1 Relocation Tool-Flow 

The complete tool-flow for performing relocation is shown in 

Figure 5 and includes both compile-time and run-time elements. 

The inputs required are a description of (some properties of) the 

Target FPGA and a description of the PR regions that are 

potential targets. Currently only the Virtex-4 LX and SX chips are 

supported because we do not have a complete understanding of 

exactly how the embedded PowerPC on the FX chip series affects 

the layout of the configuration frames. The FPGA Configuration 

Generator computes the pattern of resources and the number of 

HCLK rows on the target chip. The Adjustment Generator uses 

this information to compute the run-time parameters required for 

the actual Relocation of the Bit-streams. These parameters con be 

compiled-in in the relocation code, or provided as a data file. The 

relocation algorithm itself is therefore oblivious to the original 

inputs. Note that the parameters are specific to the FPGA and its 

PR configuration, which are also static elements in the overall 

design. The Adjustment Generator performs some additional 

checks to verify that the PR regions are relocatable to each other, 

e.g. that they obey the constraints previously defined. The tool as 

currently implemented does not check for the bus macro 

placement constraint, but this can be added later on using the 

floor-planner tool discussed in Section 4. 

3.2 Implementation Constraints 

Before we discuss the run-time relocation algorithm, we need to 

consider a few practical problems that will affect our results. 

A set of configuration frames for a column of CLBs can be used 

as-is in another column of CLBs because it requires the exact 

same routing bits and configuration logic bits. This is the good 

case that we want to obtain at run-time, if at all possible, because 

the relocation can then proceed at full bus-speed. A more difficult 

case is when a set of configuration frames is targeted for one side 

of the chip (ex. top) and the target is at the other side of the chip 

(ex. bottom). This case requires a bit-reversal of the configuration 

frames, each frame being over a thousand bits long. The 

architectural layout of frames on the Virtex-4 chips is such that 

frames on the top of the chip are mirror images of the frames on 

the bottom of the chip. Only the middle word in the frame is not 

mirrored. This word contains the global routing bits and other 

configuration data. Bit-reversal means, for example that the bit in 

position 0 is at position 1311 on the other side of the chip. This 

requires that the frame is read from end to beginning, because the 

end of the word in the frame is now the first word that needs to be 

written to the ICAP port. This can be cumbersome and costly to 

do in software. For instance, if the configuration bit-stream is read 

sequentially from beginning to end, we need to allocate an 

intermediate storage to buffer one full frame to ensure it is written 

out in the correct order. 

 

 

The wires used for routing signals in/out of the PR region must 

match between the source and the target PR regions. The 

configuration data routes only to/from adjacent columns, and 

assumes that there actually is an external connection in the 

adjacent column at the periphery of the region. This requirement 

is currently handled by the left-to-right bus macros on the Virtex-

4. Figure 6 shows an example of a left to right bus macro.  

The gray boxes are Slices on the FPGA. Each Slice on the Virtex-

4 contains two Look-Up Tables (LUTs), two Flip-Flops (FFs), 

and other components. For asynchronous bus-macros, the LUTs in 

the static region have a fixed and defined routing to the LUTs in 

the PR region. This routing is shown by the gray lines in Figure 6, 

where we assume the static region is on the left side of the picture. 

The light blue lines in Figure 6 are what the router program can 

use to route signals from the static region to the PR region. These 

signals first go to the LUTs on the left, then they are routed 

(fixed) to the slices on the right, and from there to the logic 

implemented in the PR region. As long as the bus-macros have the 

same relative positioning between the two PR regions, this 

scheme correctly handles the relocatability constraints between 

 

Figure 6 – Left to right (l2r) bus macro. 

 

Figure 5 – Flow for Relocation. 
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PR regions and our algorithm does not have to modify the routing 

information at all. 

For ease and speed of reconfiguration, we decided not to support 

static routing, e.g. the logic in the static region is not allowed to 

route through the PR regions.  This can have an adverse effect on 

the design, for instance when that signal must route to an I/O pin. 

To handle this requirement, the static routing must either match 

across all of the PR designs, or we could use the scheme described 

in [11] and reserve some long lines for the static region inside the 

PR regions. We prohibited static routing from the PR region by 

setting the “ROUTING=CLOSED” constraint in the Xilinx ISE. 

Even though we used this constraint the router would still 

sometimes inexplicably route through the PR region when trying 

to get to the bus macros. To help the router route around the PR 

region, we created target LUTs to route to before routing to the 

troublesome bus macros. We used the same approach to handle 

the case of static logic that mapped to input/output pins near the 

PR regions. We added a LUT near the I/O pin and designated it as 

the target for the troublesome I/O signal.  

3.3 Relocation Algorithm 

Figure 7 shows the algorithm for relocating bit-streams at run-

time. There are three possible destinations for a configuration: 

1) Destination is where the bit-stream was generated for. 

No relocation is necessary. 

2) Destination is not where it was generated for, but on the 

same side of the chip. Relocation consists only of the 

translation of frame addresses. 

3) Destination is on the opposite side of the chip. 

Relocation involves both the translation of the frame 

addresses and bit-reversal of the frames. 

It is actually possible to encounter a combination of cases two and 

three. The Multiple Frame Write (MFWR) command can write a 

single frame of data to multiple frame addresses [15] and this can 

create a problem. Suppose a bit-stream that is on the top of the 

chip covering two HCLK rows must relocate to a PR region that 

straddles the middle of the chip. In the target region, one HCLK is 

used for both the top and bottom of the chip. A MFWR command 

could correctly write the same configuration frame to both HCLK 

rows in the original configuration, but in the new configuration 

we now need two separate MFWR commands, one for the top and 

one for the bottom of the chip. The frame data is valid as-is for the 

HCLK on the top of the chip, but it must be flipped for the HCLK 

row on the bottom of the chip. The separation can be done at run-

time. The cost is just some additional code because we need to 

buffer the frame data regardless. It is clearly easier to use a tool 

that expands the MFWR commands into multiple ones before 

deploying the bit-stream. Therefore the examples presented in 

Section 5 do not cover this case.  

Based on this algorithm, the three key contributing factors in the 

time to relocate a bit-stream are (1) the bit-stream size, (2) the bit-

stream composition, and (3) the location of the destination PR 

region on the chip. By composition we mean the relative count of 

commands that set the frame address and commands that write 

configuration frames. 

 

If the stream must be relocated, it would be best if we have very 

few frame addresses and do not need bit-reversal. 

 

Figure 7 – Relocation Algorithm. 
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4. POSITIONING THE BUS MACROS 
The bus macros are the connection points between static and PR 

regions, located on the perimeter of the PR regions. The 

placement process is currently manual; the user selects the 

location in the instantiated instance of the macro in the HDL 

source code. There is no guarantee that the placement is optimal, 

nor any practical way to verify how close to optimal it might be. 

The best-practices advice is to place inputs to the left, outputs to 

the right, and use common sense. Letting the macros float only 

provides limited advice insofar as discovering where the placer 

will (want to) locate the static/PR logic that connects to those 
macros. 

We used the following test to measure the quality of the 

placement of a set of bus macros. Using a design that does not 

meet timing, we define the “timing score” as the cumulative sum 

of the timing errors across all signals that do not meet their timing 

constraints. This is an indication that is easily obtained from the 

synthesis reports, and therefore easy to use in an automated setup. 

Ideally, a design would have a zero score. A negative score is 

possible (using the slack timing) but harder to compute 

automatically. Since the timing score is not a precise measure, it is 

often the case that a design with a positive timing score will 

actually function correctly. We can always generate a positive 
score by artificially tightening the timing constraints. 

We used a design of the eMIPS processor with a poorly located 

PR region to test the importance of the placement of the bus 

macros. This design uses a large number of macros, and therefore 

provides a fine-grained tool for the evaluation. As shown in 

Section 5, we observed timing scores in the range of 22,964 to 

796,915 picoseconds for various placements. This large spread 

clearly illustrates the importance of a good placement. At the end 

of the study we found a second motivation for an automated tool. 

We inspected the best/worst/manual placements to see if there 

was any correlation, and to see if we could deduce any guiding 

principles. We did not find any. The manual placement following 

best-practices did score better than the average, but still far from 

the optimal. The optimal design utterly violates all best-practice 
rules. 

Since the placement is done at the HDL source level, it would 

appear that it is necessary to re-synthesize each placement from 

start to finish to be able to evaluate the timing score. For instance, 

moving a bus macro from the left side to the right side of the PR 

region requires either a synthesis of the design or a direct 

modification of the netlist. We can eliminate this expensive step 

by using two LUTs instead of a bus macro in the design, and then 

change the LOC constraint of the two LUTs inside the UCF file. 

This approach costs the equivalent delay of going through two 

LUTs, but eliminates the defined routing between them. As an 

additional benefit, the automated floor-planner can generate 

placements of the LUTs for whatever side it is currently targeting 

around the PR region: top, bottom, left, or right. Care was 

exercised so that the implementation of the LUTs does not change 
the logical value of the signal they route. 

The bus macro placement is an instance of the more general 

place-and-route problem, albeit on a much smaller scale.  This led 

to the choice of using simulated annealing to automatically find 

the best placement. Our simulated annealing algorithm works by 

looping over five steps: copy the current solution, alter the copy, 

evaluate the alternate solution, determine whether to accept the 

alternate solution as the current solution, and adjust the current 

temperature. The loop terminates when the cut-off temperature is 

reached. Before the loop begins, the algorithm selects an initial 

temperature and cut-off temperature. The first step copies the 

current placement of the bus macros from the currently accepted 

solution. The second step modifies the solution by randomly 

swapping the positions of the bus macros around the PR region. 

The algorithm performs 10 random swaps, which we found was a 

good balance between elapsed time and spread over the solution 

space. The third step measures whether the new alternate solution 

is better than the current accepted solution, using the timing score 

for the comparison. This timing score is evaluated by running a 

set of designs that will be used in the PR region through ngdbuild, 

map, and place and route. This is the most expensive step by far 

and running every combination of PR configurations would be 

prohibitive, so only a few designs were used for our evaluations. 

The number and type of designs is user-selectable, which leads to 

a trade-off of time against accuracy of the search. Each design is 

run in a separate thread to reduce the elapsed of this step. The 

algorithm can therefore take advantage of multiple processors 

when they are available in multi-core CPUs. The timing scores 

from the different designs are combined into one overall score. If 

the timing score is better than the current solution the new 

placement will unconditionally replace the current one. If it is not 

better, it is accepted with a probability based on the current 

temperature.  The formula used is shown in Equation 1.  The fifth 

and final step decrements the current temperature and breaks out 
of the loop when it reaches the cutoff temperature. 

 

(1) 𝐴𝑐𝑐𝑒𝑝𝑡 = 𝑒
(
𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒 −𝑐𝑢𝑟𝑆𝑐𝑜𝑟𝑒

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
)
< 𝑟𝑎𝑛𝑑𝑜𝑚() 

 

The floor-planner generates an UCF file with the full constraints 

needed for placing the bus macros. The constraints define on what 

slice to place the bus macro and the direction: left to right, right to 

left, top to bottom, or bottom to top. Note that the final solution 

found by the tool does not need to be synthesized again. 

 

5. RESULTS 
We present the relocation time required for different target 

destinations with an eMIPS and MicroBlaze setup. The results 

from the floor-planner for the bus macros follow. 

 

To evaluate the relocation algorithm as it applies to the eMIPS 

processor, we ported the eMIPS design to the ML402 Xilinx 

board using the larger SX35 chip, and we were then able to 

instantiate two Extensions. The port required adding some 

MUXes into each of the pipeline stages for the second Extension, 

and in the bus arbiter. As shown in Figure 1, the following 

modules also required additional signals: pipeline interface, 

monitoring interface, register interface, and memory bus. The 

Table I – Overhead for a second Extension 

Resource 1 Extension 2 Extensions %increase 

Slices 7862 9180 14.4 

Flip-Flops 7977 8025 0.6 

LUTs 13836 15997 13.5 

BRAMs 8 8 0 

DSPs 40 40 0 
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Table II – Relocation Timing Results using eMIPS 

Configuration 

Name 

Size of 

Bit-stream 

(bytes) 

#Frames 

Written 

# FAR 

Commands 

Relocation 

Required 

Bit Reversal 

of Frames 

Required 

Time To 

Reconfigure 

(msec) Bytes/Sec 

Blank 26488 

 

52 

 

 

862 

 

 

N N 83.1045 318731 

Y N 212.528 124633 

Y Y 1488.2942 79971 

MMLDIV64 99528 

 

 

559 

 

 

367 

 

 

N N 312.0913 318907 

Y N 466.6724 213272 

Y Y 1709.111 58234 

LDRET 87888 

 

 

477 

 

 

457 

 

 

N N 275.5942 318904 

Y N 427.4353 205617 

Y Y 1488.2942 59053 

 

Table III – Relocation Timing Results using MicroBlaze 

Size of 

Bit-stream 

(Bytes) 

#Frames 

Written 

# FAR 

Commands 

Relocation 

Required 

Bit Reversal 

of Frames 

Required 

Time To 

Reconfigure 

(msec) BytesPerSecond 

11076 62 22   1.11 9966257 

11076 62 22 X  1.20 9196968 

11076 62 22 X X 3.15 3517765 

11184 64 10   1.12 9971647 

11184 64 10 X  1.19 9392636 

11184 64 10 X X 3.17 3523019 

11616 67 7   1.17 9971647 

11616 67 7 X  1.23 9445131 

11616 67 7 X X 3.31 3509768 

11652 67 9   1.17 9972868 

11652 67 9 X  1.24 9419792 

11652 67 9 X X 3.31 3512527 

 

total area increase for one additional Extension on eMIPS is 

shown in Table I. If the trend shown in the tale continues as we 

scale to more Extensions there will be about a 14% increase in 

slice area requirement for every extension that is added. 

5.1 Bit-stream Relocation 
As an example of the compilation time saved on map and place 

and route, a bit-stream of size 99528 took 28 minutes and 50 

seconds to complete. A bit-stream of size 87888 took 27 minutes 

and 5 seconds to complete. Those savings are multiplied by the 

number of PR regions that we do not need to compile for. The 

times are for a Xilinx ISE 9.2.4.PR7 on a 2.4 GHz Intel Dual core 

processor with 2 gigabytes of RAM. Additional time is saved by 

not generating the bit-stream configuration for the FPGA from the 

place and route netlist. 

To evaluate the bit-stream relocation algorithm we used a number 

of designs and in two different setups for the same ML402 board. 

The first setup uses the eMIPS processor with two Extension 

slots. The second uses a MicroBlaze processor with four 

Extension slots. The first setup emphasizes the case of larger 

designs that must be located off-chip, either in SRAM or in 

FLASH memory. The second setup emphasizes smaller designs 

that can fit in the chip’s block RAMs. Both designs were running 

at a clock speed of 100 MHz. 

The results from relocating different bit-streams on eMIPS are 

shown in Table II. In these measurements, the bit-streams are 

located in the SRAM section of the board, along with the code 

and data buffers for the relocation program itself. As can be 

readily seen comparing Tables II and III, the memory type and 

parameters chosen for a design will impact the latency required to 

relocate the bit-stream. For the eMIPS setup the latency for 

accessing SRAM is five cycles. Using DDRAM would create 

more latency and FLASH would be even worse. At present, 

eMIPS does not use any caches or on-chip memory. This 

penalizes the results in Table II because they include not only the 

time to fetch the bit-stream from SRAM but also the instruction 

fetches and data load/stores. The temporary swap buffer is also 

located in SRAM. 

If the bit-stream does not require any modification the throughput 

achieved is about 318 kilobytes per second. If the bit-stream is 

relocated but does not require a bit reversal of the frames, the 

throughput is generally around 220 kilobytes per second. If the 

bit-stream requires a reversal in the bits in the configuration 

frames, the throughput is about 80 kilobytes per second. 

The reason that the point at 26,488 bytes does not follow the trend 

of the other points is because of the composition of that particular 

bit-stream. This is the blanking bit-stream and it removes almost 
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Figure 8 – History of current solutions at end of iteration. 

 

Figure 9 – History of alternate scores. 

all the routing that was done in the PR region, which results in a 

large number of matching configuration frames. The bit-stream 

issues a large amount of MFWR commands to write the same 

configuration frame to multiple frame addresses. This bit-stream 

therefore contains an unusually large concentration of frame 

addresses relative to its size. For comparison, the bit-stream of 

size 87,888 has only 457 frame address commands compared to 

862 for the blanking bit-stream. This decreases the throughput for 

the relocation with no bit reversal because of the increased calls to 

translate the frame addresses. Similarly, this bit-stream performs 

better than average for the relocation with bit reversal of frames 

because it contains a low concentration of configuration frames 

compared to a bit-stream of size 11,652. This results in reducing 

the penalty of calling the bit-reversal function. The no 

modification throughput for all the different bit-streams is 

approximately the same. This is expected since the algorithm is 

just copying the bit-stream to the ICAP without any modification. 

The results from relocating on the MicroBlaze setup (Figure 3) are 

shown in Table III. In this case, all of the bit-streams, code and 

data buffers are located in BRAM on the chip, which is 32-bit 

wide and accessible in a single cycle. If the bit-stream does not 

require modification the throughput achieved is about 10 

megabytes per second. If the bit-stream is relocated but does not 

require a bit reversal of the frames, the throughput is between 9.2 

to 9.5 megabytes per second. If the bit-stream requires a bit-

reversal of the configuration frames, the throughput is about 1.4 

megabytes per second. 

The ICAP port accepts one write per cycle, and in both 

experiments it was configured in a 32-bit width. Since the designs 

are run at 100 MHz, the maximum achievable throughput is 400 

megabytes per second. The BRAMs provide the same throughput. 

A detailed analysis of exactly how the memory, architecture, and 

especially the software contribute to the reduction from the 

maximum throughput is beyond the limits of this study. 

5.2 Floor-planning of the Bus Macros 
We ran the floor-planner using the eMIPS design, with two 

Extension slots targeted for an SX35 chip. Each PR region 

requires 71 bus macros to communicate with the static region. 

This number of bus macros is large enough for the design space 

exploration, but we make no claim of it being a good 

representative of the average PR design. Other projects using PR 

regions will use more or less bus macros, depending on the 

required amount of communication between the static logic and 

the PR region. For example, the MicroBlaze example with 4 PR 

regions uses 3 bus macros for each PR region.  In the experiments, 

the location of the PR regions was fixed and the timing constraints 

were constants. The initial placement of the bus macros was 

randomly generated. The algorithm ran a total of 280 iterations. 

We used two different PR designs for the timing analysis. The 

first design was the load/return Extension which would be 

impacted by the placement of the memory interface bus macros. 

The other design was the mmldiv Extension because it covered all 

the bus macros that the load/return Extensions did not use. The 

time required for ngdbuild, map, place and route of the two 

designs was about 6-8 minutes with normal effort for place and 

route. The algorithm therefore takes about 10 minutes per 

iteration. When using high effort for place and route this time 

doubles. We choose not to use high effort in order to perform 

more iterations, and to only select high effort starting from the 

best placement to better meet timings. All times are for Xilinx ISE 

10.1.02 on a 2.4 GHz Intel Dual core processor with 2 gigabytes 
of RAM. 

The history of the currently accepted solutions is shown in Figure 

8. The full history, including the alternate scores is shown in 

Figure 9.  The results show that there is wide variance between 

the scores depending on how the bus macros are placed. The 

average score in the design space was 175,682 ps.  Different bus 

macro placements have noticeable effects on the timings. The 

worst solution had a total score of 796,915 ps while the best 

solution had a score of 22,964 ps. The original (manual) 

placement for the design had a score of 97,714 ps. The timing 

constraints used can be changed based on the desired optimization 

the user wants the floor-planner to head towards. The original 

placement had a max period for ld/return of 9.902ns and for 

mmldiv of 10.120ns. The best solution found had a max period for 

ld/return of 9.919ns and for mmldiv of 9.611ns. Turning back on 

high effort would yield better results for the timing score. This 

layout has a positive effect on the max frequency that can be used 

in the system. For timing critical designs this tool will help meet 

timing constraints and enable higher frequencies of the design due 
to better placement. 

Figure 10 shows the original placement given for the bus macros 

around the PR region. Figure 11 shows the best placement found 

by the tool. There are no bus macros around the top of the PR 

region because in this design the region is located at the top of the 

chip, leaving no room for placement of any static logic. The bus 
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Figure 11 – Best bus macro placement. 

 

Figure 10 – Manual bus macro placement. 

macro naming convention used in Figure 10 and Figure 11 is I/O, 

macro number, and then 0-n for the number of macros needed for 

the bus width, each macros carrying a maximum of 8 signals. For 

example a 32-bit input bus signal used macros I0-0, I0-1, I0-2, 

and I0-3. A 32-bit output bus signal used macros O3-0, O3-1, O3-

2, and O3-3. In Figure 11, the best solution placement does not 

group the bus signals near each other. This makes it hard to figure 

out the best placement by hand as there is no observable pattern to 

the best layout. For example, in Figure 11 the bus signals for O2 

are on the left, bottom, and upper-right of the chip. This 

demonstrates the challenge the designer would have to face to find 

the best placement and consequently the best timings. Note that 

when using actual bus macros it is necessary to express at the 

HDL level on which side of the PR region the bus macro must be 

located. Each combination then requires manual changes to the 

UCF file. On the other hand, trying to follow the pattern observed 

in Figure 11 for other designs seems impractical.  

6. LIMITATIONS 
The bit-stream relocation program currently does not generate the 

CRC values at the end of the stream. The CRC checker can be 

disabled post-bit-stream generation, or by adding in some options 

with the “POST_CRC*” constraints in the UCF file. Not 

generating a new CRC value for the partial bit-streams had no 

effect on the configuration taking place for the ML401 and 

ML402 boards used for testing. 

The floor-planner currently only handles asynchronous bus 

macros. Adding support for synchronous bus macros requires 

handling flip-flops as well. The tool requires some additional user 

input to identify the bus macros from the UCF file. Currently the 

user must manually update the HDL code with the new directions 

for the bus macros found by the tool. Future work seeks to reduce 

and eliminate these requirements from the user. 

The 280 iterations we ran took 41 hours on a 2.4 GHz Intel Dual 

core processor with 2 gigabytes of RAM. This means that even 

simple changes in the interfaces would require a day or so before 

the new placement of the bus macros is found. This effectively 

limits the use of the placement algorithm to designs that are stable 

enough to be ready for optimization. 

7. CONCLUSIONS 
We have shown that relocatable bit-streams are beneficial in two 

dimensions: they reduce the number of bit-streams stored on a 

deployed system and they save compilation time during 

development. Both savings scale linearly with the number of PR 

regions used in a system.  

We have presented an on-chip algorithm and the corresponding 

tool-flow for performing bit-stream relocation. The algorithm was 

implemented and evaluated in two different architectures, leading 

to different performance numbers. In both cases, the content and 

destination of the bit-stream have the same and very noticeable 

effect on the maximum achieved throughput. The span between 
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maximum and minimum throughput is between a factor of four 

and a factor of seven, depending on the memory system. In all 

cases, the throughput is quite far from the maximum bandwidth of 

the configuration port. 

We have presented a new tool, a floor-planner that finds the best 

placement of the bus-macros along the perimeter of the PR 

regions. To the best of our knowledge, this problem has not been 

addressed before in the literature. We have shown that the 

placement of the bus-macros affects the placement of the static 

logic and thus the best timing achievable by the system. In the 

example shown, the best solution found had a timing score of 

22,964 ps while the worst solution found had a timing score of 

796,915 ps. The floor-planner finds the best placement without 

manual intervention. The best placement has no discernible 

relationship with the placement indicated in the best-practice.  

8. FUTURE WORK 
The following is a list of the remaining avenues for continued 

work in this area. We also present some areas that we explored 

but did not yield the desired results.  

8.1 Relocatable Bus-macro Placement 
If we do not require signals into the PR region to go through 

LUTs, then the timing increase incurred when doing relocation 

could be further reduced. This is because more signals can be 

closer to the static logic instead of being placed farther away 

around the perimeter of the PR region. With relocatable regions 

the bus-macros must be in the same relative placement, which can 

be less than ideal for timing. Quantifying the exact penalties, say 

by comparing with the best floor-planned solution, is an area for 

further study. More analysis can be done on the impact of forcing 

the relative placement between the two relocatable regions. If the 

penalties are significant they would motivate the development of a 

tool for performing partial reconfiguration without the need to use 

LUTs. 

8.2 Analysis of Bit-streams 
The ability to correlate a bit-stream to its function is important to 

ensure that no problems occur when configuring the PR regions. 

Yet the manufacturers are reluctant to disclose the format of the 

bit-stream files. The tools presented in [4] can reverse engineer 

the netlist from the bit-stream. This potentially allows run-time 

modifications and more extensive verification. Future work can 

deal with run-time checking the bit-stream for any potential 

damage before downloading it to the extension. Some previous 

work allowed off-line bit-stream modifications [5]. 

Our results show that a tool that splits the MFWR commands in a 

bit-stream would be beneficial to performance. This is a real 

problem when relocating to an area that spans top-low regions, 

therefore requiring bit-reversal but only for part of the frames. 

There are other opportunities for post-analysis on a bit-stream, 

before installing it on chip. For instance, a bit-stream could be 

compressed to further reduce the space requirement in memory. 

This would add the overhead of decompression software in the 

system but could save space. If the savings are enough that the 

bit-stream can now live in BRAM the net effect on performance 

could actually be positive. Other features in post bit-stream 

analysis could be extracting the size, number of frames, and 

configuration frames contained in the file in an up-front header. 

This would indicate the time required for activating the stream 

considering the different target PR regions. The system software 

scheduler might decide to select a different PR region, depending 

on the time required to activate the bit-stream in the various cases. 

Post-analysis can simplify relocation of a bit-stream to hetero-

geneous regions, by breaking up frames opportunistically. The 

frame address is auto-incremented to the next available frame and 

this can lead to saving in FAR commands. For instance, in the 

case of relocating from a BRAM interconnect (requiring 20 

routing frames) to a CLB (requiring 20 routing frames and 2 

content frames), we need to break up the group of frames 

encompassing the BRAM interconnect to the next resource.  

8.3 Performance of Relocation 
We implemented our relocation algorithm in C, for two different 

processors and different hardware configurations. The results are 

strikingly different and warrant more study on exactly what is the 

memory impact, instruction impact, and architecture impact for 

the relocation times. This would be helpful in evaluating when to 

use relocation and when not to. Precise, full-system simulation 

and detailed part-information can lead to precise modeling of the 

process and the collection of data that is verified against the 

working systems. 

The common case that requires only frame address modifications 

can be handled in hardware. This is the idea in BiRF, REPLICA, 

and pBITPOS. The hardware module would result in much faster 

reconfiguration times and lower overhead, at a small price in area. 

When used in connection with the ideas previously described for 

post-analysis, the module could be extended to support 

heterogeneous PR regions as well. 

The main advantage of a hardware relocation module is in 

decreasing the time to bit-reverse a frame. Bit-reversal is a simple 

wiring matter in hardware and the algorithm could proceed at full 

wire-speed. The hardware implementation would also reduce the 

over-head in computing the adjustment to the frame addresses. 

8.4 Relocating to Mirror PR regions 
We abandoned the idea of creating relocatable PR regions that are 

mirror images of each other. The idea was to place the bus-macros 

of one PR region on the right side, and the bus-macros of the other 

region on the left side. The signals from the static region would be 

routed in the center area between the two regions, saving in 

routing resources and leading to better timings. Relocation would 

require changing the bit-stream in just a few basic places, say to 

make it route “left” instead of routing “right”. Possibly this would 

affect only the short, long, hex wires outside the Switch Box, 

Slices, etc. Since the manufacturer does not provide that 

information, this process would involve figuring out the bit 

position of those routed lines through some automated testing 

process, for instance via xdl2ncd and then ncd2bit. Then the bit-

stream would be parsed to find out the difference. An issue 

brought up beyond the mere routing is the possible change in the 

RC characteristics of the resulting circuit, which would result in 

different timings and possibly incorrect behaviors. 

8.5 Manipulation of LUT data 
The extendible bit-streams used in eMIPS are Extensions to the 

base data path; they recognize specific instructions and take over 

execution when the instructions appear in the I-stream. It would 

be beneficial to be able to change the opcode at run-time, so that 

one Extension could recognize an arbitrary opcode rather than just 

the one selected at design time. In principle, this requires a simple 

change to the content of selected LUT(s) to replace one six-bit 

value with a different one. It turns out that identifying the relevant 



- 12 - 

 

LUTs that compare the opcode is troublesome. We need a lot of 

chip-specific information at run-time just to know what frame we 

are currently at. Then we need to get the offsets of the LUTs in 

the frame. The .ll file can do this, but only for the LUTs in Slice 

M (i.e. must set it up in RAM/ROM mode). It would therefore 

seem that only the ncd file can tell us where those specific LUTs 

are located. If we cannot deduce that information from the bit-

stream it means that we have to trust the bit-stream blindly, which 

is not ideal.  

We tried to identify exactly what INIT values to send to a LUT to 

change its function. The problem that we encountered was that the 

inputs to the LUTs are rearranged into a different order, even for 

small differences. This allows the fastest throughput through the 

circuit as not all inputs are equal in delay. This makes it harder to 

correlate a LUT’s value with the value found in the bit-stream. 

8.6 Floor-planning of Bus-Macros 
The tool we built has a relatively high cost in execution time. 

Lowering this cost would make it more widely usable and/or 

allow us to use a larger number of designs to find the best 

placement. One idea for creating a faster method in the common 

case of homogeneous regions is as follows. Rather than working 

at the UCF level, start at the Verilog level. One immediate 

advantage over our approach is that there is more freedom in 

selecting which signals are grouped into a bus macro, because we 

no longer operate at the granularity of a LUT. We can create an 

area group constraint around the boundary of the PR region. The 

Xilinx tools run post place and route. The routed file is converted 

back to XDL. The automated tool uses the XDL file to create the 

bus macros and slice locations. This requires a single iteration and 

should immediately get a good placement for the bus macros. 

When used on different designs that target the same PR region the 

issue is then to match the bus-macro locations across all regions. 

If we allow complete freedom in grouping signals into bus 

macros, the optimal placement will likely create bus macros that 

carry both input and output signals. This is not currently 

supported and requires the creation of new bus-macros, for 

instance using the tools described in[6]. Further work is also 

needed to add support for synchronous bus macros. 

It was suggested that we try to group even more signals together 

in the floor-planner tool. For instance, when placing the bus-

macros for a 32-bit bus it might be advantageous to group signals 

at more than the LUT granularity. As shown in Figure 11, the best 

placement does not actually group bus signals together. This 

discourages the idea that better results would be obtained by 

keeping them together as they did not tend to cluster near each 

other in the best placement found by the tool. Work is needed to 

prove or disprove this point. 

8.7 Simulated Annealing 
We can improve on the simulated annealing algorithm used in the 

floor-planner. One idea is to make alterations at the single signal 

granularity rather than at the bus-macro granularity. This would 

allow greater flexibility in finding the adjustment closest to the 

optimal solution. 

We can try different number of swaps per iteration as well as 

different initial and cutoff temperatures. The goal is to reach a 

closer approximation of the optimal solution in a shorter time. We 

can also scale down the number of swaps performed in a step, 

based on the current temperature. For instance, a smaller number 

of swaps at lower temperatures might improve the final score. 

It might turn out that the best choice for how many swaps and the 

initial and cutoff temperatures are dependent on some general 

properties of the designs used by the user. If that is the case the 

tool should become more flexible for greater applicability. 

8.8 PR Region Placement 
We have assumed that the location of the PR region was an input 

to the bus-macro placer. This is often not the case and designers 

select that placement in an arbitrary way too. An important 

addition to the tool flow is therefore a tool to find the best location 

for the relocatable regions. The tool would be run first to 

determine the best on-chip placement for the PR region, then the 

bus macro floor-planner. The ideas presented in [16] could select 

the optimal area, but making sure we only find areas that are 

easily relocatable to each other. 

8.9 Virtex-5 Relocation and Bus Macros 
Our work so far has been restricted to the Virtex-4 FPGAs. We 

have used two LUTs and LOC constraints in the UCF file to 

automatically place the bus-macros. Reference [6] shows an 

alternative approach, namely using XDL to create the Xilinx bus-

macros. Future work could be creating new bus-macros for the 

Virtex-5 FPGA in order to extend our tool to that chip. Additional 

work using this approach could assure that routing in/out of the 

PR region is coherent among all the different PR regions. 

8.10 Arcs.Exclude Format 
The process described in [11] allows static routing in the PR 

region. We have explored the idea of combining the static routing 

restrictions from different PR regions into a single target PR 

region. We would use the arcs.exclude file that is part of the 

Xilinx flow to enforce the restrictions. Unfortunately, the format 

of that file is also not documented and it does not follow an easily 

recognizable logic. This makes it impossible to relocate the 

excluded routed lines from one PR region to another PR region.  
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