

Relocation and Automatic Floor-planning of FPGA Partial
Configuration Bit-Streams

Jeff Carver, Neil Pittman, Alessandro Forin

Microsoft Research

August 2008

Technical Report

MSR-TR-2008-111

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

- 1 -

Relocation and Automatic Floor-planning of FPGA Partial
Configuration Bit-Streams

Jeff Carver
Microsoft Research
One Microsoft Way

Redmond, WA 98052

t-jeffc@microsoft.com

Neil Pittman
Microsoft Research
One Microsoft Way

Redmond, WA 98052

pittman@microsoft.com

Alessandro Forin
Microsoft Research
One Microsoft Way

Redmond, WA 98052

sandrof@microsoft.com

ABSTRACT
An extensible processor provides a standard data-path and one or

more regions for use as application-specific reconfigurable logic.

In this paper we address two problems that arise in the practical

use of extensible processors. Using multiple extensible regions

can lead to avoidable time and space inefficiencies, and the

physical placement of the interconnection points strongly affects

the overall design timings.

Standard tool-flows from FPGA manufacturers require the

creation of separate configuration images for each region. The

space and time complexities that this entails are undesirable,

especially in an embedded system setting where storage is at

premium. In this paper we introduce a run-time algorithm that

allows the relocation of one configuration image to any number of

compatible regions, in linear time. The application loader running

on the data-path can perform the relocation along with the loading

of the application code. We have implemented the algorithm on

the eMIPS soft processor using two extensible regions, and on the

MicroBlaze soft processor using four regions, in both cases

targeting a Virtex-4 FPGA. There are two main advantages from

image relocation. We save time at compilation because only one

region needs to be synthesized. We save space at execution time

by storing only one configuration in FLASH memory.

The reconfigurable regions themselves are interfaced with the

standard data-path using “bus macros”, connection points that are

placed at fixed locations. The placement of the bus macros around

a region has a noticeable impact on the timing of the design inside

the region, and on the timings of the standard data-path outside

the region. We have found that manual placement of the bus

macros is not only tedious, but leads to sub-optimal timings even

when following best design practices. We present a tool that uses

design-space exploration to obtain automatic, near-optimal

placement of the bus macros for the relocatable regions. Results

show the worst solution found had a total timing score of 581,146

ps while the best solution was only 22,964 ps and the average

over the design space was 175,682 ps. The score for the manual

placement was 97,714 ps.

1. INTRODUCTION
Dynamic partial reconfiguration of FPGAs (or PR for short) has

been available for quite some time, yet the tools to support it are

still deficient in many ways. The flows are cumbersome to use

and not at all integrated in the regular flow supported by the

graphic user interfaces. This keeps many users away because the

technology is perceived as too difficult to use. But perhaps more

importantly, there are still functional deficiencies that lead to sub-

optimal solutions. In this paper we address two of the functional

shortcoming in the present tools. We have encountered these

shortcomings in our own work with extensible processors, and

therefore we have attacked them from a very practical perspective.

Nonetheless, the issues are more widely relevant and affect all

uses of the PR technology. The results are also more generally

applicable.

The preferred model for PR use is with one static region and one

PR region. The static region guarantees the basic functionality and

proper behavior during reconfiguration, especially with respect to

the I/O signals. The single PR region is used to realize different

temporal parts of the application, or alternate realization of certain

(signal) processing, or to receive dynamic updates on deployed

systems. Solutions that employ more than one PR region are

described in the literature, but are not at all well supported by the

tools. For example, the user is currently required to synthesize

each design repeatedly, once for each PR region. Each

compilation requires hours of computer time, sometimes many

hours if targeting the larger FPGA models. There are space

inefficiencies as well. Each of those long compilations produces a

separate configuration file (bit-stream) for use with the given PR

region and nowhere else. These files are large even for the

smallest FPGA models and easily grow in the hundreds of

kilobytes. All of the files must be present at run-time. These time

and space inefficiencies lead to the desire to, somehow, use a

single bit-stream file that can be relocated to any one of a many

PR regions. Relocations should be doable at run-time, without

excessive overhead. The file should be compiled only once, for

one PR region only, and should be no bigger than a current file. In

this paper, we describe the algorithm we have realized for

performing the dynamic relocation of bit-streams. We

demonstrate relocatable configuration files on two separate

examples. One demonstration is with two PR regions using the

eMIPS extensible processor presented in [8]. The other

demonstration is with four PR regions, using the MicroBlaze soft-

core for image transformations on different parts of a digital

image, and displayed on a VGA monitor. The two examples use

radically different memory subsystems, which leads to different

performance characteristics of the relocation process. The code

for relocation, however, is the same in both instances. We also

found that the composition of the bit-streams, as well as the

location differences in PR regions are factors that affect the

relocation times just as much as the sheer size of the streams

themselves.

A second shortcoming is in the interface between the static and

the PR regions. Clearly, if independently developed designs for

these regions are to interoperate correctly, at the very least they

must agree on the routing and directions of the signals that

- 2 -

interconnect them. These are commonly referred to as the “bus

macros”, using the terminology used for but one of the many ways

in which the problem has been solved. While the problem is

indeed solved, the current tools require the user to specify

manually both the size and location of the PR regions, and the

location of the interconnecting points (the “bus macros”) along

the perimeter of the PR regions. It turns out that the placement of

the bus macros around a region has a noticeable impact on the

timing of the design inside the region, as well as on the timings of

the design outside the region. We have found that manual

placement of the bus macros is not only tedious, but leads to sub-

optimal timings even when following best design practices. Our

solution is to create a tool that can automatically identify what is

the placement of the interconnection points that leads to the best

timings. Our tool uses design-space exploration via simulated

annealing to obtain automatic, near-optimal placement of the bus

macros for the relocatable regions. To the best of our knowledge,

this is the first tool to address the problem of identifying the best

placement of the bus macros, manually or otherwise. To

underscore the practical relevance of the problem, our results

show that the ratio between the best and worst placement can be a

factor of 27 on a real design. The average solution is a factor of 8

slower than the best. The score for the manual placement that

follows the best-practices advice from the manufacturer is a factor

of 4.5 worse than best.

The rest of the paper is organized as follows. Section 2 presents

background material and related work. Section 3 describes the bit-

stream relocation algorithm, the tool flow, and their

implementation. Section 4 presents the automated tool for floor-

planning of the bus macros. Section 5 presents our measurements

and results. Section 6 describes the limitations of our current tool

implementations. Section 7 presents our conclusions and Section

8 some ideas for future work.

2. BACKGROUND AND RELATED WORK
This section introduces the background concepts needed for the

rest of the paper. They include FPGA partial reconfiguration,

dynamic bit-stream relocation, the eMIPS processor, the

MicroBlaze processor, the Virtex-4 configuration frame layout,

and the floor-planning of partial reconfiguration regions.

2.1 Partial Reconfiguration and Relocation
The ability to change portions of the FPGA configuration at run-

time is called dynamic partial reconfiguration. This entails

modifying portions of the logic planes without affecting the

remaining parts of the circuit, which continues to function

unperturbed. Special support is needed in the FPGA chip for this

process to execute flawlessly, without “glitches”. Manufacturers

that support this feature include Xilinx and Altera. Currently the

tool provided by Xilinx for doing dynamic partial reconfiguration

is part of the Early Access Partial Reconfiguration, or EAPR, a

flow that is found at [1]. The flow requires first implementing the

part of the logic, called the static logic, which will not change

during run-time. The logic that will change during run-time is

implemented in a Partial Reconfiguration (PR) region. Each of the

configurations of a PR region is implemented after the static part

is implemented. Each implementation produces a configuration

file, called a bit-stream. The final step is to generate the bit-stream

for the initial configuration of the entire chip, and for each

alternate configuration that was implemented for each PR region.

The communication between the PR region and the static logic

happens via bus macros, fixed interconnection points at the

perimeter of the PR region. The bus macros must be instantiated

in the HDL code and manually placed. The PR regions are

reconfigured either off-chip by an external agent, or on-chip by

the design itself, probably a processor. Off-chip interfaces use

either JTAG, or some other specialized interface. To perform on-

chip reconfiguration on Xilinx devices, a designer instantiates a

special macro for the Internal Configuration Access Port (ICAP),

then sends the configuration data to it. For the Virtex-4 the ICAP

can be implemented with either an 8-bit or 32-bit wide interface.

The bit-stream for configuring one PR region is tightly bound to

the physical location of that region and cannot be used directly to

reconfigure any other portion of the chip. In many cases though, it

is possible to modify an existing bit-stream and adapt it to a

different physical location. This process is termed bit-stream

relocation and can be performed statically by tools operating on

the designer’s workstation, or dynamically by the agent that loads

the bit-stream on chip. The key element is that a portion of the

chip is reconfigured at run-time, without interfering with the

operation of the rest of the chip. There are various works

describing static or dynamic relocation of configurations for a PR

region to a different PR region. The motivation is to reduce the

number of partial bit-streams required if two or more PR regions

would use the same implementation. For example, if we had four

target PR regions for the bit-stream we could save the storage of

three bit-streams copies on, say, a FLASH chip and reduce the

compilation time by a factor of four. The savings are noticeable

because bit-streams tend to be large and the compilation times are

often measured in hours per design. The trade-off is the size of the

software/hardware and some placement restrictions on the PR

regions to enable relocation.

Becker et al [2] describe the building of bit-streams for a Virtex-4

FPGA that are relocatable by-design. The approach does not allow

any static logic in the PR regions. Manipulation of the bit-stream

is performed to relocate a column (ex. CLB) to a non-identical

column (ex. DSP) with respect to routing. The provided example

of a software defined radio with two reconfigurable regions

showed a reduction in the number of partial bit-streams by 50%

and compilation time by 43%. We implemented a similar baseline

using the MicroBlaze and extended it for use on our eMIPS

architecture.

Montminy et al.[3] show how to layout the redundant modules of

a Triple Modular Fault Tolerant design in such a way that one

module’s configuration is relocated to correct the errors in another

redundant module. A circuit automatically calculates the CRC

value as the bit-stream is being relocated. Horta et al.[7]

demonstrate relocatable bit-streams for a Virtex-E chip. They

used Gaskets, similar to bus macros, to define the routing between

the similar regions. Our FPGAs do not appear affected by the

absences of a correct CRC. For this reason, we have delayed

adding the CRC calculation in our tools.

Sedcole et al. [11] discuss relocation for a Virtex-4. The

distinguishing features in this work are the ability to route

statically through a relocatable region by reserving routing lines

for the static logic, and the ability to merge relocatable and static

parts at run-time. A certain percentage of long lines are reserved

for the static logic to cross over the PR region. The static design is

then re-routed to use the reserved long lines. To merge parts at

runtime the current configuration is read out, stripped of the

previous configuration except the static logic, and merged with

the new configuration. This process proved to be very time-

- 3 -

consuming, with an increase of reconfiguration time from 6.2x to

11.4x. The example used the HWICAP provided by Xilinx. Due

to the additional complexity and time overhead, we chose to

exclude static routing from extensible regions.

Kalte et al. present REPLICA [12], a system with a zero-overhead

cost in relocation of the partial bit-stream. This is accomplished

with a hardware module capable of relocating CLB columns for a

Virtex-E FPGA. The hardware module also computes the new

CRC automatically. Additional hardware would be needed in a

Virtex-4 setup to allow for bit-reversal of the frames. Ferrandi et

al. present the Bit-stream Relocation Filter (BiRF) [13], a device

similar to REPLICA, but for a Virtex-2 and with minimal area

cost. Krasteva et al. describe the pBITPOS tool [14], to allow

relocation for Virtex II (Pro) solutions. The additional feature in

this work is the ability to relocate configurations that make use of

BRAM/MULs. Additional hardware for supporting bit-stream

relocation would improve performance; however our

implementation is done completely in software at this time.

2.2 The Extensible MIPS Processor

The eMIPS microprocessor system [8] provides a MIPS [10]

RISC data path tightly integrated with a configurable logic fabric.

The system is available for download at [9]. Figure 1 shows a

block diagram of the system, which is implemented for a Xilinx

FPGA and makes use of the partial reconfiguration feature to

change the state of the Soft Fabric at runtime. The MIPS data path

is implemented in the Hard Fabric portion, along with the controls

for the Soft Fabric, the memory interfaces and other fixed I/O

peripherals. The Soft Fabric is further subdivided in a number of

regions called Extensions, each Extension maps to a PR region.

Extensions have been used for accelerating application execution

time, for implementing plug and play on-chip peripherals and bus

interfaces, for monitoring and model-checking applications, and

for debugging of application software during development. The

original release of eMIPS provides just one Extension slot. As

part of this work we have ported eMIPS to a larger chip and

realized it with two Extension slots. In Figure 1, the Memory

Controller implements the interfaces to the ICAP, timer, General

Purpose Input and Output (GPIO), and other peripherals used in

the system.

As more and more Extensions become available for use, it

becomes advantageous to use relocatable bit-streams instead of

having a bit-stream for each slot on the chip. The Extensions are

configured at run-time with new functionality by software.

Because it is unknown which region an extension will go in, it is

valuable to allow flexibility on where the extension will be

configured at. This allows maximum flexibility to the scheduler,

who can then place the Extension in an available slot without

requiring a separate reconfiguration file for each extension. An

example of a list of processes to schedule can be seen in Figure 2.

The mapping from process resource requirements and available

resources is already a difficult one for the scheduler, who must do

it in an efficient and time-predictable manner. Adding the

requirement of a specific placement will reduce the schedulable

sets and potentially cause confusion to the users. Consider the

case of a system with four Extension slots. The process set in

Figure 2 should be schedulable on this system, with all processes

receiving an Extension slot. Suppose the eBug extension is only

provided for two slots, which are both occupied by the first and

second process in the set. The scheduler can only provide the third

process with one slot for the P2V monitor. The user (a developer,

say) will be rather confused to see that an exception in this

process does not get reflected in the debugger but simply

terminates the program.

2.3 The MicroBlaze Processor

MicroBlaze is a soft core RISC processor provided by Xilinx [18].

It can be implemented as a 3-stage or 5-stage pipeline. Figure 3

provides an overview of how the MicroBlaze interacts with the

other components in the system used for our experiments. The

HWICAP interfaces with the ICAP to send the configuration for

the PR region. The Timer is free-running to measure the cycles it

takes to configure a region. Because of the reduced number of bit-

streams, it was possible to fit all software and partial bit-streams

required in the 64 kilobytes of space in the BRAM. Larger sized

Figure 2 – Example List of Processes to be scheduled.

Figure 1 – Overview of eMIPS.

- 4 -

bit-streams would require storage into other memory like flash

which would impact the time required for relocation.

2.4 Virtex-4 Configuration Layout

The smallest unit of configuration on a Xilinx FPGA is the frame.

A frame includes a fixed number of Configurable Logic Blocks

(CLBs), physically laid out in fixed geometries. On the Virtex-4

FPGAs, frames span the height of 16 CLBs, which is one HCLK

row. In previous Virtex FPGAs [15] a frame spans the entire

height of the chip. Each frame in the Virtex-4 is composed of

1,312 bits. Frames are addressed in a 2-D fashion. A frame

address command sets the starting destination of the configuration

frames. A frame address on the Virtex-4 is composed of five

parts: top/bottom of chip, block type, HCLK row, major column

address, and minor column address. The top/bottom part specifies

whether the target is at the top or at the bottom of the chip. The

block type is one of three types: CLB/IOB/DSP/GCLK (0),

BRAM interconnect (1), and BRAM content (2). The HCLK row

indicates which row of the chip is targeted. Numbering of the

HCLK row starts from the middle of the chip outward. The major

column address specifies which resource column to change. The

number begins at zero at the far left of the chip and increments

going to the right. How many minor addresses there are for a

given column depends on the type of resource targeted. There are

22 minor frames for CLBs, 21 for DSPs, 20 for BRAM

interconnect, 64 for BRAM content, 30 for IOBs, and 2 for

GCLK. The correlation between the frame address and target

frame is shown for an SX25 chip in Figure 4.

For example to reach the first CLB column in the upper-left of the

chip, the frame address would be as follows: top/bottom=0, block

type=0, HCLK row=1, major column address=1 and minor

column address=0-21. This correlation is critical to understand

how to manipulate the bit-stream to target the desired PR region.

2.5 Floor-planning

Floor-planning is the process of defining the size and physical

location of the PR regions on the target FPGA chip. The existing

manufacturer's flows currently require that the user performs this

selection process manually, using tools such as Xilinx PlanAhead

or by editing the User Constraint File (UCF). In addition to

selecting the location and size of the PR region, it is also

necessary to define the placement of the bus macros along the

perimeter of the chosen region. This is also a manual process

currently. These choices have a clear effect on the placement of

the design and on its ability to meet timing, but there are currently

no tools to help the user make the optimal or even an informed

choice.

Some research exists on automatically defining the ideal location

for the PR region. To the best of our knowledge there are no

results on finding the optimal placement of the bus macros around

a PR region, ours is the first tool to address this issue.

Singhal and Bozorgzadeh [16] use automated floor-planning to

find the best area to allocate for the designs that are going to

change at run-time. The process takes into consideration the

alternate designs that will replace the current setup in the PR

region. This is done by representing sequence pairs to represent

placement of modules in relation to each other. Difference

placements of modules are used to determine which modules are

reused and which ones are reconfigurable. It uses simulated

annealing to find the best placement of modules, and determine

which ones will be reconfigured when changes to the modules is

required. Koester et al. [17] develop a general mathematical

model for reconfigurable hardware. This is to develop better

placement algorithms for dynamically changing systems. Neither

work considers the further problem of placing the bus macros in

the chosen area.

Figure 4 – Frame Address Mapping Example on SX25 chip.

Figure 3 – Overview of the MicroBlaze Setup.

- 5 -

3. RELOCATING BIT-STREAMS
Relocation of the configuration file (bit-stream) is simple and

efficient as long as the source and target PR regions meet a few

constraints. In our work the regions must: (1) have the same

pattern of resources, (2) span the entire height of the HCLK row

(one entire frame), (3) encompass the same amount of area on the

chip, and (4) use bus-macros in the same (relative) placement.

When these constraints are valid, relocation consists mostly in

adjusting the frame addresses in the source configuration file to

match the target PR region.

3.1 Relocation Tool-Flow

The complete tool-flow for performing relocation is shown in

Figure 5 and includes both compile-time and run-time elements.

The inputs required are a description of (some properties of) the

Target FPGA and a description of the PR regions that are

potential targets. Currently only the Virtex-4 LX and SX chips are

supported because we do not have a complete understanding of

exactly how the embedded PowerPC on the FX chip series affects

the layout of the configuration frames. The FPGA Configuration

Generator computes the pattern of resources and the number of

HCLK rows on the target chip. The Adjustment Generator uses

this information to compute the run-time parameters required for

the actual Relocation of the Bit-streams. These parameters con be

compiled-in in the relocation code, or provided as a data file. The

relocation algorithm itself is therefore oblivious to the original

inputs. Note that the parameters are specific to the FPGA and its

PR configuration, which are also static elements in the overall

design. The Adjustment Generator performs some additional

checks to verify that the PR regions are relocatable to each other,

e.g. that they obey the constraints previously defined. The tool as

currently implemented does not check for the bus macro

placement constraint, but this can be added later on using the

floor-planner tool discussed in Section 4.

3.2 Implementation Constraints

Before we discuss the run-time relocation algorithm, we need to

consider a few practical problems that will affect our results.

A set of configuration frames for a column of CLBs can be used

as-is in another column of CLBs because it requires the exact

same routing bits and configuration logic bits. This is the good

case that we want to obtain at run-time, if at all possible, because

the relocation can then proceed at full bus-speed. A more difficult

case is when a set of configuration frames is targeted for one side

of the chip (ex. top) and the target is at the other side of the chip

(ex. bottom). This case requires a bit-reversal of the configuration

frames, each frame being over a thousand bits long. The

architectural layout of frames on the Virtex-4 chips is such that

frames on the top of the chip are mirror images of the frames on

the bottom of the chip. Only the middle word in the frame is not

mirrored. This word contains the global routing bits and other

configuration data. Bit-reversal means, for example that the bit in

position 0 is at position 1311 on the other side of the chip. This

requires that the frame is read from end to beginning, because the

end of the word in the frame is now the first word that needs to be

written to the ICAP port. This can be cumbersome and costly to

do in software. For instance, if the configuration bit-stream is read

sequentially from beginning to end, we need to allocate an

intermediate storage to buffer one full frame to ensure it is written

out in the correct order.

The wires used for routing signals in/out of the PR region must

match between the source and the target PR regions. The

configuration data routes only to/from adjacent columns, and

assumes that there actually is an external connection in the

adjacent column at the periphery of the region. This requirement

is currently handled by the left-to-right bus macros on the Virtex-

4. Figure 6 shows an example of a left to right bus macro.

The gray boxes are Slices on the FPGA. Each Slice on the Virtex-

4 contains two Look-Up Tables (LUTs), two Flip-Flops (FFs),

and other components. For asynchronous bus-macros, the LUTs in

the static region have a fixed and defined routing to the LUTs in

the PR region. This routing is shown by the gray lines in Figure 6,

where we assume the static region is on the left side of the picture.

The light blue lines in Figure 6 are what the router program can

use to route signals from the static region to the PR region. These

signals first go to the LUTs on the left, then they are routed

(fixed) to the slices on the right, and from there to the logic

implemented in the PR region. As long as the bus-macros have the

same relative positioning between the two PR regions, this

scheme correctly handles the relocatability constraints between

Figure 6 – Left to right (l2r) bus macro.

Figure 5 – Flow for Relocation.

- 6 -

PR regions and our algorithm does not have to modify the routing

information at all.

For ease and speed of reconfiguration, we decided not to support

static routing, e.g. the logic in the static region is not allowed to

route through the PR regions. This can have an adverse effect on

the design, for instance when that signal must route to an I/O pin.

To handle this requirement, the static routing must either match

across all of the PR designs, or we could use the scheme described

in [11] and reserve some long lines for the static region inside the

PR regions. We prohibited static routing from the PR region by

setting the “ROUTING=CLOSED” constraint in the Xilinx ISE.

Even though we used this constraint the router would still

sometimes inexplicably route through the PR region when trying

to get to the bus macros. To help the router route around the PR

region, we created target LUTs to route to before routing to the

troublesome bus macros. We used the same approach to handle

the case of static logic that mapped to input/output pins near the

PR regions. We added a LUT near the I/O pin and designated it as

the target for the troublesome I/O signal.

3.3 Relocation Algorithm

Figure 7 shows the algorithm for relocating bit-streams at run-

time. There are three possible destinations for a configuration:

1) Destination is where the bit-stream was generated for.

No relocation is necessary.

2) Destination is not where it was generated for, but on the

same side of the chip. Relocation consists only of the

translation of frame addresses.

3) Destination is on the opposite side of the chip.

Relocation involves both the translation of the frame

addresses and bit-reversal of the frames.

It is actually possible to encounter a combination of cases two and

three. The Multiple Frame Write (MFWR) command can write a

single frame of data to multiple frame addresses [15] and this can

create a problem. Suppose a bit-stream that is on the top of the

chip covering two HCLK rows must relocate to a PR region that

straddles the middle of the chip. In the target region, one HCLK is

used for both the top and bottom of the chip. A MFWR command

could correctly write the same configuration frame to both HCLK

rows in the original configuration, but in the new configuration

we now need two separate MFWR commands, one for the top and

one for the bottom of the chip. The frame data is valid as-is for the

HCLK on the top of the chip, but it must be flipped for the HCLK

row on the bottom of the chip. The separation can be done at run-

time. The cost is just some additional code because we need to

buffer the frame data regardless. It is clearly easier to use a tool

that expands the MFWR commands into multiple ones before

deploying the bit-stream. Therefore the examples presented in

Section 5 do not cover this case.

Based on this algorithm, the three key contributing factors in the

time to relocate a bit-stream are (1) the bit-stream size, (2) the bit-

stream composition, and (3) the location of the destination PR

region on the chip. By composition we mean the relative count of

commands that set the frame address and commands that write

configuration frames.

If the stream must be relocated, it would be best if we have very

few frame addresses and do not need bit-reversal.

Figure 7 – Relocation Algorithm.

- 7 -

4. POSITIONING THE BUS MACROS
The bus macros are the connection points between static and PR

regions, located on the perimeter of the PR regions. The

placement process is currently manual; the user selects the

location in the instantiated instance of the macro in the HDL

source code. There is no guarantee that the placement is optimal,

nor any practical way to verify how close to optimal it might be.

The best-practices advice is to place inputs to the left, outputs to

the right, and use common sense. Letting the macros float only

provides limited advice insofar as discovering where the placer

will (want to) locate the static/PR logic that connects to those
macros.

We used the following test to measure the quality of the

placement of a set of bus macros. Using a design that does not

meet timing, we define the “timing score” as the cumulative sum

of the timing errors across all signals that do not meet their timing

constraints. This is an indication that is easily obtained from the

synthesis reports, and therefore easy to use in an automated setup.

Ideally, a design would have a zero score. A negative score is

possible (using the slack timing) but harder to compute

automatically. Since the timing score is not a precise measure, it is

often the case that a design with a positive timing score will

actually function correctly. We can always generate a positive
score by artificially tightening the timing constraints.

We used a design of the eMIPS processor with a poorly located

PR region to test the importance of the placement of the bus

macros. This design uses a large number of macros, and therefore

provides a fine-grained tool for the evaluation. As shown in

Section 5, we observed timing scores in the range of 22,964 to

796,915 picoseconds for various placements. This large spread

clearly illustrates the importance of a good placement. At the end

of the study we found a second motivation for an automated tool.

We inspected the best/worst/manual placements to see if there

was any correlation, and to see if we could deduce any guiding

principles. We did not find any. The manual placement following

best-practices did score better than the average, but still far from

the optimal. The optimal design utterly violates all best-practice
rules.

Since the placement is done at the HDL source level, it would

appear that it is necessary to re-synthesize each placement from

start to finish to be able to evaluate the timing score. For instance,

moving a bus macro from the left side to the right side of the PR

region requires either a synthesis of the design or a direct

modification of the netlist. We can eliminate this expensive step

by using two LUTs instead of a bus macro in the design, and then

change the LOC constraint of the two LUTs inside the UCF file.

This approach costs the equivalent delay of going through two

LUTs, but eliminates the defined routing between them. As an

additional benefit, the automated floor-planner can generate

placements of the LUTs for whatever side it is currently targeting

around the PR region: top, bottom, left, or right. Care was

exercised so that the implementation of the LUTs does not change
the logical value of the signal they route.

The bus macro placement is an instance of the more general

place-and-route problem, albeit on a much smaller scale. This led

to the choice of using simulated annealing to automatically find

the best placement. Our simulated annealing algorithm works by

looping over five steps: copy the current solution, alter the copy,

evaluate the alternate solution, determine whether to accept the

alternate solution as the current solution, and adjust the current

temperature. The loop terminates when the cut-off temperature is

reached. Before the loop begins, the algorithm selects an initial

temperature and cut-off temperature. The first step copies the

current placement of the bus macros from the currently accepted

solution. The second step modifies the solution by randomly

swapping the positions of the bus macros around the PR region.

The algorithm performs 10 random swaps, which we found was a

good balance between elapsed time and spread over the solution

space. The third step measures whether the new alternate solution

is better than the current accepted solution, using the timing score

for the comparison. This timing score is evaluated by running a

set of designs that will be used in the PR region through ngdbuild,

map, and place and route. This is the most expensive step by far

and running every combination of PR configurations would be

prohibitive, so only a few designs were used for our evaluations.

The number and type of designs is user-selectable, which leads to

a trade-off of time against accuracy of the search. Each design is

run in a separate thread to reduce the elapsed of this step. The

algorithm can therefore take advantage of multiple processors

when they are available in multi-core CPUs. The timing scores

from the different designs are combined into one overall score. If

the timing score is better than the current solution the new

placement will unconditionally replace the current one. If it is not

better, it is accepted with a probability based on the current

temperature. The formula used is shown in Equation 1. The fifth

and final step decrements the current temperature and breaks out
of the loop when it reaches the cutoff temperature.

(1) 𝐴𝑐𝑐𝑒𝑝𝑡 = 𝑒
(
𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒 −𝑐𝑢𝑟𝑆𝑐𝑜𝑟𝑒

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
)
< 𝑟𝑎𝑛𝑑𝑜𝑚()

The floor-planner generates an UCF file with the full constraints

needed for placing the bus macros. The constraints define on what

slice to place the bus macro and the direction: left to right, right to

left, top to bottom, or bottom to top. Note that the final solution

found by the tool does not need to be synthesized again.

5. RESULTS
We present the relocation time required for different target

destinations with an eMIPS and MicroBlaze setup. The results

from the floor-planner for the bus macros follow.

To evaluate the relocation algorithm as it applies to the eMIPS

processor, we ported the eMIPS design to the ML402 Xilinx

board using the larger SX35 chip, and we were then able to

instantiate two Extensions. The port required adding some

MUXes into each of the pipeline stages for the second Extension,

and in the bus arbiter. As shown in Figure 1, the following

modules also required additional signals: pipeline interface,

monitoring interface, register interface, and memory bus. The

Table I – Overhead for a second Extension

Resource 1 Extension 2 Extensions %increase

Slices 7862 9180 14.4

Flip-Flops 7977 8025 0.6

LUTs 13836 15997 13.5

BRAMs 8 8 0

DSPs 40 40 0

- 8 -

Table II – Relocation Timing Results using eMIPS

Configuration

Name

Size of

Bit-stream

(bytes)

#Frames

Written

FAR

Commands

Relocation

Required

Bit Reversal

of Frames

Required

Time To

Reconfigure

(msec) Bytes/Sec

Blank 26488

52

862

N N 83.1045 318731

Y N 212.528 124633

Y Y 1488.2942 79971

MMLDIV64 99528

559

367

N N 312.0913 318907

Y N 466.6724 213272

Y Y 1709.111 58234

LDRET 87888

477

457

N N 275.5942 318904

Y N 427.4353 205617

Y Y 1488.2942 59053

Table III – Relocation Timing Results using MicroBlaze

Size of

Bit-stream

(Bytes)

#Frames

Written

FAR

Commands

Relocation

Required

Bit Reversal

of Frames

Required

Time To

Reconfigure

(msec) BytesPerSecond

11076 62 22 1.11 9966257

11076 62 22 X 1.20 9196968

11076 62 22 X X 3.15 3517765

11184 64 10 1.12 9971647

11184 64 10 X 1.19 9392636

11184 64 10 X X 3.17 3523019

11616 67 7 1.17 9971647

11616 67 7 X 1.23 9445131

11616 67 7 X X 3.31 3509768

11652 67 9 1.17 9972868

11652 67 9 X 1.24 9419792

11652 67 9 X X 3.31 3512527

total area increase for one additional Extension on eMIPS is

shown in Table I. If the trend shown in the tale continues as we

scale to more Extensions there will be about a 14% increase in

slice area requirement for every extension that is added.

5.1 Bit-stream Relocation
As an example of the compilation time saved on map and place

and route, a bit-stream of size 99528 took 28 minutes and 50

seconds to complete. A bit-stream of size 87888 took 27 minutes

and 5 seconds to complete. Those savings are multiplied by the

number of PR regions that we do not need to compile for. The

times are for a Xilinx ISE 9.2.4.PR7 on a 2.4 GHz Intel Dual core

processor with 2 gigabytes of RAM. Additional time is saved by

not generating the bit-stream configuration for the FPGA from the

place and route netlist.

To evaluate the bit-stream relocation algorithm we used a number

of designs and in two different setups for the same ML402 board.

The first setup uses the eMIPS processor with two Extension

slots. The second uses a MicroBlaze processor with four

Extension slots. The first setup emphasizes the case of larger

designs that must be located off-chip, either in SRAM or in

FLASH memory. The second setup emphasizes smaller designs

that can fit in the chip’s block RAMs. Both designs were running

at a clock speed of 100 MHz.

The results from relocating different bit-streams on eMIPS are

shown in Table II. In these measurements, the bit-streams are

located in the SRAM section of the board, along with the code

and data buffers for the relocation program itself. As can be

readily seen comparing Tables II and III, the memory type and

parameters chosen for a design will impact the latency required to

relocate the bit-stream. For the eMIPS setup the latency for

accessing SRAM is five cycles. Using DDRAM would create

more latency and FLASH would be even worse. At present,

eMIPS does not use any caches or on-chip memory. This

penalizes the results in Table II because they include not only the

time to fetch the bit-stream from SRAM but also the instruction

fetches and data load/stores. The temporary swap buffer is also

located in SRAM.

If the bit-stream does not require any modification the throughput

achieved is about 318 kilobytes per second. If the bit-stream is

relocated but does not require a bit reversal of the frames, the

throughput is generally around 220 kilobytes per second. If the

bit-stream requires a reversal in the bits in the configuration

frames, the throughput is about 80 kilobytes per second.

The reason that the point at 26,488 bytes does not follow the trend

of the other points is because of the composition of that particular

bit-stream. This is the blanking bit-stream and it removes almost

- 9 -

Figure 8 – History of current solutions at end of iteration.

Figure 9 – History of alternate scores.

all the routing that was done in the PR region, which results in a

large number of matching configuration frames. The bit-stream

issues a large amount of MFWR commands to write the same

configuration frame to multiple frame addresses. This bit-stream

therefore contains an unusually large concentration of frame

addresses relative to its size. For comparison, the bit-stream of

size 87,888 has only 457 frame address commands compared to

862 for the blanking bit-stream. This decreases the throughput for

the relocation with no bit reversal because of the increased calls to

translate the frame addresses. Similarly, this bit-stream performs

better than average for the relocation with bit reversal of frames

because it contains a low concentration of configuration frames

compared to a bit-stream of size 11,652. This results in reducing

the penalty of calling the bit-reversal function. The no

modification throughput for all the different bit-streams is

approximately the same. This is expected since the algorithm is

just copying the bit-stream to the ICAP without any modification.

The results from relocating on the MicroBlaze setup (Figure 3) are

shown in Table III. In this case, all of the bit-streams, code and

data buffers are located in BRAM on the chip, which is 32-bit

wide and accessible in a single cycle. If the bit-stream does not

require modification the throughput achieved is about 10

megabytes per second. If the bit-stream is relocated but does not

require a bit reversal of the frames, the throughput is between 9.2

to 9.5 megabytes per second. If the bit-stream requires a bit-

reversal of the configuration frames, the throughput is about 1.4

megabytes per second.

The ICAP port accepts one write per cycle, and in both

experiments it was configured in a 32-bit width. Since the designs

are run at 100 MHz, the maximum achievable throughput is 400

megabytes per second. The BRAMs provide the same throughput.

A detailed analysis of exactly how the memory, architecture, and

especially the software contribute to the reduction from the

maximum throughput is beyond the limits of this study.

5.2 Floor-planning of the Bus Macros
We ran the floor-planner using the eMIPS design, with two

Extension slots targeted for an SX35 chip. Each PR region

requires 71 bus macros to communicate with the static region.

This number of bus macros is large enough for the design space

exploration, but we make no claim of it being a good

representative of the average PR design. Other projects using PR

regions will use more or less bus macros, depending on the

required amount of communication between the static logic and

the PR region. For example, the MicroBlaze example with 4 PR

regions uses 3 bus macros for each PR region. In the experiments,

the location of the PR regions was fixed and the timing constraints

were constants. The initial placement of the bus macros was

randomly generated. The algorithm ran a total of 280 iterations.

We used two different PR designs for the timing analysis. The

first design was the load/return Extension which would be

impacted by the placement of the memory interface bus macros.

The other design was the mmldiv Extension because it covered all

the bus macros that the load/return Extensions did not use. The

time required for ngdbuild, map, place and route of the two

designs was about 6-8 minutes with normal effort for place and

route. The algorithm therefore takes about 10 minutes per

iteration. When using high effort for place and route this time

doubles. We choose not to use high effort in order to perform

more iterations, and to only select high effort starting from the

best placement to better meet timings. All times are for Xilinx ISE

10.1.02 on a 2.4 GHz Intel Dual core processor with 2 gigabytes
of RAM.

The history of the currently accepted solutions is shown in Figure

8. The full history, including the alternate scores is shown in

Figure 9. The results show that there is wide variance between

the scores depending on how the bus macros are placed. The

average score in the design space was 175,682 ps. Different bus

macro placements have noticeable effects on the timings. The

worst solution had a total score of 796,915 ps while the best

solution had a score of 22,964 ps. The original (manual)

placement for the design had a score of 97,714 ps. The timing

constraints used can be changed based on the desired optimization

the user wants the floor-planner to head towards. The original

placement had a max period for ld/return of 9.902ns and for

mmldiv of 10.120ns. The best solution found had a max period for

ld/return of 9.919ns and for mmldiv of 9.611ns. Turning back on

high effort would yield better results for the timing score. This

layout has a positive effect on the max frequency that can be used

in the system. For timing critical designs this tool will help meet

timing constraints and enable higher frequencies of the design due
to better placement.

Figure 10 shows the original placement given for the bus macros

around the PR region. Figure 11 shows the best placement found

by the tool. There are no bus macros around the top of the PR

region because in this design the region is located at the top of the

chip, leaving no room for placement of any static logic. The bus

- 10 -

Figure 11 – Best bus macro placement.

Figure 10 – Manual bus macro placement.

macro naming convention used in Figure 10 and Figure 11 is I/O,

macro number, and then 0-n for the number of macros needed for

the bus width, each macros carrying a maximum of 8 signals. For

example a 32-bit input bus signal used macros I0-0, I0-1, I0-2,

and I0-3. A 32-bit output bus signal used macros O3-0, O3-1, O3-

2, and O3-3. In Figure 11, the best solution placement does not

group the bus signals near each other. This makes it hard to figure

out the best placement by hand as there is no observable pattern to

the best layout. For example, in Figure 11 the bus signals for O2

are on the left, bottom, and upper-right of the chip. This

demonstrates the challenge the designer would have to face to find

the best placement and consequently the best timings. Note that

when using actual bus macros it is necessary to express at the

HDL level on which side of the PR region the bus macro must be

located. Each combination then requires manual changes to the

UCF file. On the other hand, trying to follow the pattern observed

in Figure 11 for other designs seems impractical.

6. LIMITATIONS
The bit-stream relocation program currently does not generate the

CRC values at the end of the stream. The CRC checker can be

disabled post-bit-stream generation, or by adding in some options

with the “POST_CRC*” constraints in the UCF file. Not

generating a new CRC value for the partial bit-streams had no

effect on the configuration taking place for the ML401 and

ML402 boards used for testing.

The floor-planner currently only handles asynchronous bus

macros. Adding support for synchronous bus macros requires

handling flip-flops as well. The tool requires some additional user

input to identify the bus macros from the UCF file. Currently the

user must manually update the HDL code with the new directions

for the bus macros found by the tool. Future work seeks to reduce

and eliminate these requirements from the user.

The 280 iterations we ran took 41 hours on a 2.4 GHz Intel Dual

core processor with 2 gigabytes of RAM. This means that even

simple changes in the interfaces would require a day or so before

the new placement of the bus macros is found. This effectively

limits the use of the placement algorithm to designs that are stable

enough to be ready for optimization.

7. CONCLUSIONS
We have shown that relocatable bit-streams are beneficial in two

dimensions: they reduce the number of bit-streams stored on a

deployed system and they save compilation time during

development. Both savings scale linearly with the number of PR

regions used in a system.

We have presented an on-chip algorithm and the corresponding

tool-flow for performing bit-stream relocation. The algorithm was

implemented and evaluated in two different architectures, leading

to different performance numbers. In both cases, the content and

destination of the bit-stream have the same and very noticeable

effect on the maximum achieved throughput. The span between

- 11 -

maximum and minimum throughput is between a factor of four

and a factor of seven, depending on the memory system. In all

cases, the throughput is quite far from the maximum bandwidth of

the configuration port.

We have presented a new tool, a floor-planner that finds the best

placement of the bus-macros along the perimeter of the PR

regions. To the best of our knowledge, this problem has not been

addressed before in the literature. We have shown that the

placement of the bus-macros affects the placement of the static

logic and thus the best timing achievable by the system. In the

example shown, the best solution found had a timing score of

22,964 ps while the worst solution found had a timing score of

796,915 ps. The floor-planner finds the best placement without

manual intervention. The best placement has no discernible

relationship with the placement indicated in the best-practice.

8. FUTURE WORK
The following is a list of the remaining avenues for continued

work in this area. We also present some areas that we explored

but did not yield the desired results.

8.1 Relocatable Bus-macro Placement
If we do not require signals into the PR region to go through

LUTs, then the timing increase incurred when doing relocation

could be further reduced. This is because more signals can be

closer to the static logic instead of being placed farther away

around the perimeter of the PR region. With relocatable regions

the bus-macros must be in the same relative placement, which can

be less than ideal for timing. Quantifying the exact penalties, say

by comparing with the best floor-planned solution, is an area for

further study. More analysis can be done on the impact of forcing

the relative placement between the two relocatable regions. If the

penalties are significant they would motivate the development of a

tool for performing partial reconfiguration without the need to use

LUTs.

8.2 Analysis of Bit-streams
The ability to correlate a bit-stream to its function is important to

ensure that no problems occur when configuring the PR regions.

Yet the manufacturers are reluctant to disclose the format of the

bit-stream files. The tools presented in [4] can reverse engineer

the netlist from the bit-stream. This potentially allows run-time

modifications and more extensive verification. Future work can

deal with run-time checking the bit-stream for any potential

damage before downloading it to the extension. Some previous

work allowed off-line bit-stream modifications [5].

Our results show that a tool that splits the MFWR commands in a

bit-stream would be beneficial to performance. This is a real

problem when relocating to an area that spans top-low regions,

therefore requiring bit-reversal but only for part of the frames.

There are other opportunities for post-analysis on a bit-stream,

before installing it on chip. For instance, a bit-stream could be

compressed to further reduce the space requirement in memory.

This would add the overhead of decompression software in the

system but could save space. If the savings are enough that the

bit-stream can now live in BRAM the net effect on performance

could actually be positive. Other features in post bit-stream

analysis could be extracting the size, number of frames, and

configuration frames contained in the file in an up-front header.

This would indicate the time required for activating the stream

considering the different target PR regions. The system software

scheduler might decide to select a different PR region, depending

on the time required to activate the bit-stream in the various cases.

Post-analysis can simplify relocation of a bit-stream to hetero-

geneous regions, by breaking up frames opportunistically. The

frame address is auto-incremented to the next available frame and

this can lead to saving in FAR commands. For instance, in the

case of relocating from a BRAM interconnect (requiring 20

routing frames) to a CLB (requiring 20 routing frames and 2

content frames), we need to break up the group of frames

encompassing the BRAM interconnect to the next resource.

8.3 Performance of Relocation
We implemented our relocation algorithm in C, for two different

processors and different hardware configurations. The results are

strikingly different and warrant more study on exactly what is the

memory impact, instruction impact, and architecture impact for

the relocation times. This would be helpful in evaluating when to

use relocation and when not to. Precise, full-system simulation

and detailed part-information can lead to precise modeling of the

process and the collection of data that is verified against the

working systems.

The common case that requires only frame address modifications

can be handled in hardware. This is the idea in BiRF, REPLICA,

and pBITPOS. The hardware module would result in much faster

reconfiguration times and lower overhead, at a small price in area.

When used in connection with the ideas previously described for

post-analysis, the module could be extended to support

heterogeneous PR regions as well.

The main advantage of a hardware relocation module is in

decreasing the time to bit-reverse a frame. Bit-reversal is a simple

wiring matter in hardware and the algorithm could proceed at full

wire-speed. The hardware implementation would also reduce the

over-head in computing the adjustment to the frame addresses.

8.4 Relocating to Mirror PR regions
We abandoned the idea of creating relocatable PR regions that are

mirror images of each other. The idea was to place the bus-macros

of one PR region on the right side, and the bus-macros of the other

region on the left side. The signals from the static region would be

routed in the center area between the two regions, saving in

routing resources and leading to better timings. Relocation would

require changing the bit-stream in just a few basic places, say to

make it route “left” instead of routing “right”. Possibly this would

affect only the short, long, hex wires outside the Switch Box,

Slices, etc. Since the manufacturer does not provide that

information, this process would involve figuring out the bit

position of those routed lines through some automated testing

process, for instance via xdl2ncd and then ncd2bit. Then the bit-

stream would be parsed to find out the difference. An issue

brought up beyond the mere routing is the possible change in the

RC characteristics of the resulting circuit, which would result in

different timings and possibly incorrect behaviors.

8.5 Manipulation of LUT data
The extendible bit-streams used in eMIPS are Extensions to the

base data path; they recognize specific instructions and take over

execution when the instructions appear in the I-stream. It would

be beneficial to be able to change the opcode at run-time, so that

one Extension could recognize an arbitrary opcode rather than just

the one selected at design time. In principle, this requires a simple

change to the content of selected LUT(s) to replace one six-bit

value with a different one. It turns out that identifying the relevant

- 12 -

LUTs that compare the opcode is troublesome. We need a lot of

chip-specific information at run-time just to know what frame we

are currently at. Then we need to get the offsets of the LUTs in

the frame. The .ll file can do this, but only for the LUTs in Slice

M (i.e. must set it up in RAM/ROM mode). It would therefore

seem that only the ncd file can tell us where those specific LUTs

are located. If we cannot deduce that information from the bit-

stream it means that we have to trust the bit-stream blindly, which

is not ideal.

We tried to identify exactly what INIT values to send to a LUT to

change its function. The problem that we encountered was that the

inputs to the LUTs are rearranged into a different order, even for

small differences. This allows the fastest throughput through the

circuit as not all inputs are equal in delay. This makes it harder to

correlate a LUT’s value with the value found in the bit-stream.

8.6 Floor-planning of Bus-Macros
The tool we built has a relatively high cost in execution time.

Lowering this cost would make it more widely usable and/or

allow us to use a larger number of designs to find the best

placement. One idea for creating a faster method in the common

case of homogeneous regions is as follows. Rather than working

at the UCF level, start at the Verilog level. One immediate

advantage over our approach is that there is more freedom in

selecting which signals are grouped into a bus macro, because we

no longer operate at the granularity of a LUT. We can create an

area group constraint around the boundary of the PR region. The

Xilinx tools run post place and route. The routed file is converted

back to XDL. The automated tool uses the XDL file to create the

bus macros and slice locations. This requires a single iteration and

should immediately get a good placement for the bus macros.

When used on different designs that target the same PR region the

issue is then to match the bus-macro locations across all regions.

If we allow complete freedom in grouping signals into bus

macros, the optimal placement will likely create bus macros that

carry both input and output signals. This is not currently

supported and requires the creation of new bus-macros, for

instance using the tools described in[6]. Further work is also

needed to add support for synchronous bus macros.

It was suggested that we try to group even more signals together

in the floor-planner tool. For instance, when placing the bus-

macros for a 32-bit bus it might be advantageous to group signals

at more than the LUT granularity. As shown in Figure 11, the best

placement does not actually group bus signals together. This

discourages the idea that better results would be obtained by

keeping them together as they did not tend to cluster near each

other in the best placement found by the tool. Work is needed to

prove or disprove this point.

8.7 Simulated Annealing
We can improve on the simulated annealing algorithm used in the

floor-planner. One idea is to make alterations at the single signal

granularity rather than at the bus-macro granularity. This would

allow greater flexibility in finding the adjustment closest to the

optimal solution.

We can try different number of swaps per iteration as well as

different initial and cutoff temperatures. The goal is to reach a

closer approximation of the optimal solution in a shorter time. We

can also scale down the number of swaps performed in a step,

based on the current temperature. For instance, a smaller number

of swaps at lower temperatures might improve the final score.

It might turn out that the best choice for how many swaps and the

initial and cutoff temperatures are dependent on some general

properties of the designs used by the user. If that is the case the

tool should become more flexible for greater applicability.

8.8 PR Region Placement
We have assumed that the location of the PR region was an input

to the bus-macro placer. This is often not the case and designers

select that placement in an arbitrary way too. An important

addition to the tool flow is therefore a tool to find the best location

for the relocatable regions. The tool would be run first to

determine the best on-chip placement for the PR region, then the

bus macro floor-planner. The ideas presented in [16] could select

the optimal area, but making sure we only find areas that are

easily relocatable to each other.

8.9 Virtex-5 Relocation and Bus Macros
Our work so far has been restricted to the Virtex-4 FPGAs. We

have used two LUTs and LOC constraints in the UCF file to

automatically place the bus-macros. Reference [6] shows an

alternative approach, namely using XDL to create the Xilinx bus-

macros. Future work could be creating new bus-macros for the

Virtex-5 FPGA in order to extend our tool to that chip. Additional

work using this approach could assure that routing in/out of the

PR region is coherent among all the different PR regions.

8.10 Arcs.Exclude Format
The process described in [11] allows static routing in the PR

region. We have explored the idea of combining the static routing

restrictions from different PR regions into a single target PR

region. We would use the arcs.exclude file that is part of the

Xilinx flow to enforce the restrictions. Unfortunately, the format

of that file is also not documented and it does not follow an easily

recognizable logic. This makes it impossible to relocate the

excluded routed lines from one PR region to another PR region.

9. REFERENCES
[1] Available at

http://www.xilinx.com/support/prealounge/protected/index.ht

m

[2] Becker, T.; Luk, W.; Cheung, P.Y.K., "Enhancing

Relocatability of Partial Bit-streams for Run-Time

Reconfiguration," Field-Programmable Custom Computing

Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium

on, vol., no., pp.35-44, 23-25 April 2007.

[3] Montminy, D.P.; Baldwin, R.O.; Williams, P.D.; Mullins,

B.E., "Using Relocatable Bit-streams for Fault Tolerance,"

Adaptive Hardware and Systems, 2007. AHS 2007. Second

NASA/ESA Conference on, vol., no., pp.701-708, 5-8 Aug.

2007.

[4] Note, J. and Rannaud, É. 2008. From the bit-stream to the

netlist. In Proceedings of the 16th international ACM/SIGDA

Symposium on Field Programmable Gate Arrays (Monterey,

California, USA, February 24 - 26, 2008). FPGA '08. ACM,

New York, NY, 264-264.

[5] Guccione, S., Levi, D. and Sundararajan, P. “JBits: Java

based interface for reconfigurable computing”, Xilinx Inc,

San Jose, CA

[6] C. Claus, B. Zhang, M. Huebner, C. Schmutzler, J. Becker,

W. Stechele, "An XDL-based busmacro generator for

customizable communication interfaces for dynamically and

http://www.xilinx.com/support/prealounge/protected/index.htm
http://www.xilinx.com/support/prealounge/protected/index.htm

- 13 -

partially reconfigurable systems", Workshop on

Reconfigurable Computing Education at ISVLSI 2007, Porto

Alegre, Brazil, May 12, 2007.

[7] Horta, E.L.; Lockwood, J.W.; Taylor, D.E.; Parlour, D.,

"Dynamic hardware plugins in an FPGA with partial run-

time reconfiguration," Design Automation Conference, 2002.

Proceedings. 39th , vol., no., pp. 343-348, 2002.

[8] Pittman, R. N., Lynch, N. L., Forin, A. eMIPS, A

Dynamically Extensible Processor, MSR-TR-2006-143,

Microsoft Research, WA, October 2006.

[9] Download at

http://research.microsoft.com/research/EmbeddedSystems/e

MIPS/eMIPS.aspx

[10] Kane, G., Heinrich, J. 1992. MIPS RISC Architecture.

Prentice Hall, Upper Saddle River, NJ.

[11] Sedcole, P.; Blodget, B.; Becker, T.; Anderson, J.; Lysaght,

P., "Modular dynamic reconfiguration in Virtex FPGAs,"

Computers and Digital Techniques, IEE Proceedings - ,

vol.153, no.3, pp. 157-164, 2 May 2006.

[12] Kalte, H.; Lee, G.; Porrmann, M.; Ruckert, U., "REPLICA:

A Bit-stream Manipulation Filter for Module Relocation in

Partial Reconfigurable Systems," Parallel and Distributed

Processing Symposium, 2005. Proceedings. 19th IEEE

International , vol., no., pp. 151b-151b, 04-08 April 2005.

[13] Ferrandi, F., Novati, M., Morandi, M., Santambrogio, M. D.,

Sciuto, D. "Dynamic Reconfiguration: Core Relocation via

Partial Bit-streams Filtering with Minimal Overhead,"

System-on-Chip, 2006. International Symposium on , vol.,

no., pp.1-4, Nov. 2006.

[14] Krasteva, Y.E.; de la Torre, E.; Riesgo, T.; Joly, D., "Virtex

II FPGA Bit-stream Manipulation: Application to

Reconfiguration Control Systems," Field Programmable

Logic and Applications, 2006. FPL '06. International

Conference on , vol., no., pp.1-4, 28-30 Aug. 2006.

[15] Xilinx Inc. Virtex-4 Configuration Guide v1.10, April 2008.

[16] Singhal, L.; Bozorgzadeh, E., "Multi-layer Floor-planning on

a Sequence of Reconfigurable Designs," Field

Programmable Logic and Applications, 2006. FPL '06.

International Conference on , vol., no., pp.1-8, 28-30 Aug.

2006.

[17] Koester, M.; Porrmann, M.; Ruckert, U., "Placement-

Oriented Modeling of Partially Reconfigurable

Architectures," Parallel and Distributed Processing

Symposium, 2005. Proceedings. 19th IEEE International ,

vol., no., pp. 164b-164b, 04-08 April 2005.

[18] Xilinx Inc. MicroBlaze Processor Reference Guide. URL:

http://www.xilinx.com/support/documentation/sw_manuals/

mb_ref_guide.pdf.

http://research.microsoft.com/research/EmbeddedSystems/eMIPS/eMIPSreport1.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/eMIPSreport1.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/emips.aspx
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/emips.aspx

