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Abstract 

Where do all the cycles go when microprocessor applications 

are implemented spatially as circuits on an FPGA? It is well 

established that certain sequential applications can be captured 

spatially and achieve breathtaking speedups when run on an 

FPGA, but why? Despite running at clock speeds orders of 

magnitude slower compared to their embedded processor 

equivalents, FPGA applications can "lose" enough cycles to 

create exceptionally fast spatially-oriented circuits. We profile 

and analyze three canonical applications amenable to FPGA 

speedup to quantify exactly where FPGAs gain that speedup. We 

compare the FPGA implementations to several idealized 

software platforms. The idealized software platforms give insight 

as to how FPGA implementations attain such dramatic 

speedups. We quantify the effects of parallelizing and pipelining 

instructions, streaming data, and eliminating the instruction 

fetch, showing exactly where the cycles are lost in an FPGA 

implementation. We also show how the memory interface to the 

FPGA will affect the performance. Our results show that custom 

memory interfaces are the most effective way at enabling much 

greater performance on the FPGA, and that memory interfaces 

traditional software use become a bottleneck when the FPGA 

uses the same interface. The results, though not surprising, 

provide a clearer and more intuitive understanding of the 

performance FPGAs can achieve, offering researchers and 

engineers alike a new angle to attack the task of parallelizing 

applications. 

 

 

1. Introduction  

“…Therefore, we were able to attain 10,000X speedup over the 

fastest software implementation using our novel FPGA 

implementation …” And so concludes a typical researcher who 

ported a software application to a field-programmable gate-array 

(FPGA). Invented in the 1980s, FPGAs are custom computing 

elements that allow designers to create highly efficient, custom 

circuit accelerators. In fact, certain application domains have 

been known to achieve extraordinary speedups when 

implemented on an FPGA, the results being extensively reported 

[3][18][21], and with several conferences dedicating forums to 

FPGA application speedup[9][10]. 

Qualitatively, the reasons for FPGA speedups are clear. 

FPGAs can expose parallelism at many different levels, from the 

bit and instruction level all the way to the loop and task level. A 

typical von-Neumann computer must fetch an instruction from 

memory, execute the instruction, and store the result. An FPGA 

implementation instead thrives on executing multiple (often 10s 

of) instructions in one clock cycle, and ridding itself of fetching 

instructions since they are built into the FPGA data path itself. 

FPGAs implementations can also implement deep pipelines, 

enabling highly efficient, high throughput circuits that output 

results every clock cycle. Finally, FPGAs use specialized custom 

interfaces to memory banks that make the best use of the memory 

bus for that application. 

Quantitatively, the reasons for FPGA have not been 

completely unfolded. Why is it that despite a clock speed often 

orders of magnitude slower than the microprocessor an FPGA is 

able to achieve orders of magnitude speedup on the application 

in both latency and throughput compared to the software 

implementation? How much speedup can we gain by unrolling a 

software loop once? Twice? What about pipelining the circuit? 

What effect does the memory interface have on that pipeline? On 

the loop unrolling? Quantifying the effects of such optimizations 

can provide a deeper understanding for applying the same 

optimizations to other FPGA applications.  

In [12], the authors perform an extensive quantitative 

analysis of FPGA speedups on several simple image processing 

applications, comparing to baseline MIPS, Pentium, and VLIW 

platforms. The authors generalize the speedup factors accounted 

for into a cohesive speedup model, while Dehon [7] develops the 

concept of computational density to quantitatively analyze the 

differences between CPUs and FPGAs (as well as ASICs). 

We quantify three applications known to achieve high 

performance when implemented on an FPGA, including an N-

body simulation, a JPEG compressor, and an AES decryption 

algorithm. We do not plan on reporting on their speedup on an 

FPGA for the sake of speedup, but rather to quantitatively and 

intuitively show exactly where the speedup comes from when 

applying well-known FPGA optimizations. We also provide an 

in depth quantitative analysis on how the memory interface 

affects FPGA speedups. We quantify and analyze the effects of 

the FPGA interface by comparing three memory interfaces using 

three different memory technologies that exist on many FPGA 

development boards. Our goal is to provide a baseline and 

quantitative intuition as to where the speedups that FPGAs are 

known to achieve come from, and a list of practical recipes for 

attacking the problem of parallelizing an application. The 

techniques and tools should be valuable with the advent of a 

more parallel-computing aware generation of researchers and 

engineers.  

The rest of this paper is organized as follows. Section 2 

discusses the study methodology. Sections 3, 4, and 5 

quantitatively analyze three separate applications and their FPGA 

implementations. Section 6 quantifies the effects of the speedup 

attributed to the memory interface. Section 7 concludes. 



  

2. Study Methodology 

The goal of this study is to identify exactly why FPGA 

implementations are so much faster than their software 

counterparts. For this reason, we chose three applications that are 

particularly amenable to FPGA speedup. The examples include 

an N-body simulation, a JPEG compressor, and an AES 

decryption unit. While each example comes from a different 

application domain, each one can be characterized as a data-

driven, computationally intensive application, enabling efficient 

FPGA implementations that are suitable and convenient for such 

an analysis.  

We first run the software on a base MIPS architecture based 

on the eMIPS extensible processor [17]. Each example is run on 

a highly configurable simulator [11] that features real time 

hardware and software integrations, and allows the integration of 

a detailed SRAM and DDR-2 memory model for streaming data 

to the FPGA. The base MIPS platform (BASE) accesses memory 

through an SRAM interface, requiring five cycles to fetch both 

instructions and data. The base architecture is not pipelined, and 

has no instruction or data cache. We used this particular MIPS 

platform because the platform was simple to analyze, and is 

characteristic of a platform often used for real-time embedded 

system applications. To make our study more representative of 

the general-purpose processor class, we clocked the BASE at a 

nominal clock speed of 2 GHz. 

 To better understand and more intuitively depict why 

FPGAs attain a much higher performance over their software 

counterparts, we investigate a spectrum of idealized 

optimizations which augment the base MIPS processor for better 

performance, shown in Figure 1. While not entirely realistic, the 

optimizations do give some insight as to why FPGAs are able to 

attain orders of magnitude speedups on certain applications. 

Each optimization represents an aspect of execution that FPGAs 

accomplish very well. The superscalar optimization (S1, S5) 

allows the processor to execute N instructions in a single cycle, 

modeling the ability of an FPGA to exploit instruction level 

parallelism. We model a perfect instruction cache (S2) as an 

intermediate step in showing the impact of eliminating the 

execution time required for fetching instructions. Similarly, we 

model a platform that has no instruction fetch (S3, S4, and S5) 

to more closely model the FPGAs mode of execution, where 

there is no concept of an instruction fetch. We model a perfect 

data cache (S4) to simulate that an FPGA will probably be 

reading a large contiguous memory section and streaming data as 

fast as the memory interface allows. Finally, we model a perfect 

pipeline (S6), allowing the BASE to complete one instruction per 

cycle, regardless of actual instruction dependencies or hazards. 

The perfect pipeline closely models the ability of FPGA 

applications to complete one data element per cycle, a hallmark 

of efficient FPGA design for dataflow applications. 

We compare the software implementations of each example 

to the FPGA implementations, also shown in Figure 1. For each 

FPGA implementation, we apply varying levels of well-known 

FPGA optimizations [6], including loop unrolling (C1-C12), 

pipelining (C5-C12), and streaming constructs (C9-C12). Where 

applicable, we manually implemented each of the data paths for 

the examples in question and synthesized them using Xilinx ISE 

9.2 targeting the Virtex-4 LX25 FPGA on the ML401 board[22]. 

We simulated the circuits using Giano and ModelSim. For the 

JPEG compression circuit, we utilized extensive data published 

by [1].  

Since the goal of this work was not to report speedups for 

any given circuit, but rather explain how and why those speedups 

were attained, we observe that the execution time of each 

implementation can be broken down into four main elements: 

 

1. Instruction Fetch 

2. Support/Control Instructions 

3. Direct Computation Instructions 

4. Memory Instructions 

 

Figure 1: Analyzed Implementations. The key will serve as a reference 

for subsequent discussion 

 

Figure 2: N-body Algorithm. Both the loops and the instructions within 

the loops are independent, allowing an FPGA to exploit a large amount 

of parallelism 

 

For element(i) in space: 

      for element(j) in space: 

              fx += GravityForce(i,j); 

              fy += GravityForce(i,j); 

              fz += GravityForce(i,j); 

       element(i).fx = fx; 

       element(i).fy = fy; 

       element(i).fz = fz; 

       fx = fy = fz = 0; 

Implementation Key 

BASE       Base MIPS Platform 

  S2          BASE + Perfect Instruction Cache 

   S5          BASE+ Superscalar*4 & No I-fetch            

S6          BASE + Perfect Pipeline                            

C1          FPGA data path, No Unrolling                          

SW 

FPGA 

  S1          BASE + Superscalar Commit*2 

  S3             BASE + No Instruction Fetch 

   S4          BASE+ No I-fetch+ Perfect Data Cache            

C2          C1, Loop Unrolled Once                          

C3          C2, Loop Unrolled Twice                         

C4          C2, Loop Unrolled Four Times                         

C5          C1, Pipelined Mem. + Computation                         

C6          C2, Pipelined Mem. + Computation                         

C7          C3, Pipelined Mem. + Computation                         

C8          C4, Pipelined Mem. + Computation                         

C9          C1, Fully Pipelined                          

C10        C2, Fully Pipelined                          

C11        C3, Fully Pipelined                          

C12        C4, Fully Pipelined                          



  

The first element is the instruction fetch, which accounts for 

the time required to fetch instructions from memory. The 

support/control instructions, first noted by [12], are the 

instructions that do not directly contribute the real computation, 

but rather update loop counters, branching code, updating the 

stack pointer, etc. The direct computations account for all the 

instructions directly responsible for computing the desired 

results. Finally, the last category is the time taken to execute 

memory instructions, including loads and stores. Separating and 

correlating these four elements among the different 

implementations leads to a more specific breakdown of how the 

FPGA is able to attain often dramatic speedups. 

3. N-body Simulation 

One class of applications that are particularly amenable to FPGA 

speedup is N-body applications. As a broad definition, N-body 

applications compute the forces and movements for a (often very 

large) set of interacting particles/bodies using classical 

mechanics models. N-body applications usually work on a large 

set of data, and are computationally intensive. The standard 

particle-particle algorithm is shown in Figure 2. For each 

element/body in the data set, the N-body algorithm computes the 

force contributed by each of the other elements/bodies in the data 

set. The algorithm executes one time step, and then updates each 

body’s position according to the bodies’ velocity and the forces 

previously computed. The naïve particle-particle algorithm runs 

in O(n2), although more advanced algorithms can compute a time 

step in O(nlog(n)), using approximation for bodies beyond a 

certain threshold. While using optimized software might seem 

like a good starting point for creating customized FPGA 

applications, recent research has shown that is not always the 

case [20] and that often the most naïve algorithm produces the 

best circuits for FPGA execution. 

Our particular implementation of N-body operated on 500 

distinct bodies, but the analysis would have been similar for both 

larger and smaller data sets. We first ran the resulting N-body 

application on a number of software platforms in Figure 1. The 

distributions are shown in Figure 3. Each column reports the 

execution time as a percentage of the base platform (BASE). 

We broke down the execution time for each application run 

into four separate elements: instruction fetch cycles, direct 

computation cycles, memory cycles, and support instruction 

cycles. The base platform (BASE) spends 87% of its time 

fetching instructions, and another 9% accessing data memory. 

The last 4% of the BASE’s execution time is split between direct 

computation instructions and support instructions. As shown in 

Figure 4, the BASE requires 900 cycles to compute the force for 

one element in the space. A 2-way superscalar platform (S1) is 

not much better compared to the BASE. Since instruction fetches 

dominate the execution time, only 13% of the entire time is 

amenable to speedup via a superscalar platform. S1 did achieve a 

7% speedup compared to the base platform. When we 

supplement the BASE with a perfect instruction cache (S2), we 

begin to see a more balanced distribution and larger speedups. S2 

only spends 57% of its time fetching instructions, since fetching 

only takes one cycle. Data memory accesses now account for 

29% of the execution time, direct computations take 8%, and 

support/control instructions account for 6%. The fourth platform 

models an idealization of a processor that does not have an 

instruction fetch (S3). While not realistic, the modeling 

technique does give some insight as to where speedup from an 

FPGA implementation comes from since an FPGA has no 

Figure 3: N-body running on a number of different software platforms and with varying levels of FPGA optimizations.  

 

 

Figure 4: N-body. Computations on each force element  

 

Base MIPS (BASE)                          900 

Perfect I-Cache (S2)                         408 

Superscalar*4 & No I-fetch (S5)        60 

Implementation Cycles per Force Element 

Perfect Pipeline (S6)                         123 

FPGA data path    (C1)                     94 

Full Pipeline        (C9)                      4 

SW 

FPGA Loop Unroll 1      (C2)                     49 



  

concept of an instruction fetch. S3 runs 7.5X faster than the 

BASE. Memory accesses dominate, accounting for 69% of the 

execution time. The computations that relate directly to the force 

computation take 18% of the time, and the support/control 

instructions account for the final 13% of the execution time. We 

can improve the execution time by supplementing the previous 

ideal platform with a perfect data cache (S4), allowing our 

platform to effectively read data from memory in one cycle. The 

resulting platform attains ~17X speedup. Direct computations 

now account for 41% of the execution time, support/control 

instructions take 28% of the time, and memory accesses take 

31%. The resulting execution profile is beginning to resemble an 

FPGA implementation. A perfect four-way superscalar platform 

(S5) achieves 62X speedup over the BASE because it is able to 

execute four computations in parallel. This results in 39% of the 

execution time coming from direct computation execution, 27% 

of the execution from support/control instructions, and memory 

accesses occupying 35% of the execution time. Finally, we run 

the N-body application on a model of a perfect pipeline (S6). S6 

runs ~44X faster than the base platform. Memory computations 

take 8% of the execution time; direct computations take 42% of 

the time; support/control instructions take 30%, and the 

instruction fetch takes 20% of the execution time. 

     By executing the N-body application on a number of 

different idealized platforms, we gain insight into how the FPGA 

gains performance for the equivalent software platform. The 

superscalar models showed they can attain performance gains by 

parallelizing at the instruction level. Platforms without an 

instruction fetch immediately showed FPGAs gain performance 

because they have no concept of an instruction fetch. Similarly, 

FPGA implementations gain speedup by eliminating or hiding 

the support/control instructions, including branch instructions, 

updating loops, and moving data because of a lack of registers. 

Finally, FPGAs can gain by pipelining operations.  

We now analyze several FPGA implementations for the N-

body inner loop, which calculates the force between two bodies 

in the simulation. We implemented an N-body circuit that had a 

latency of 61 cycles to compute one force element. The circuit 

could be clocked at 251 MHz. The right hand side of Figure 3 

shows the distributions for FPGA circuit implementations with 

various levels of loop unrolling and pipelining. Figure 4 shows 

some of the FPGA implementations and how many total cycles 

they require to compute one force calculation. All of the circuit 

implementations were able to eliminate the cost of fetching 

instructions and the cost of the control instructions. The N-body 

circuit allows controlling software to push data as fast as it can 

through the N-body circuit, eliminating the need for any control 

flow within the circuit. The leftmost bar (C1) in Figure 3 shows a 

single FPGA data path implementing the N-body force 

calculation. The circuit fetches data from DDR memory, and 

accounts for 34% of the circuit’s execution time. Therefore, 66% 

of the time is spent calculating the force. Figure 4 shows that an 

FPGA data path is able to complete one force calculation in 94 

cycles. The computational latency of the data path is only 61 

cycles, but accessing the DDR-2 memory requires another 33 

cycles. Still, the FPGA data path is ~7X more efficient than the 

base MIPS processor. Part of the FPGAs efficiency is due to the 

elimination of the instruction fetch and control cycles (which 

account for 89% of the base platform’s time), but the FPGA is 

also able to schedule multiple instructions in parallel, which 

accounts for ~2X efficiency after the instruction fetch and 

control instructions are eliminated. Factoring in a slower clock 

speed of 251 MHz (~8X slower than the MIPS platform), the 

FPGA data path is able to achieve ~7X compared to the BASE.  

The FPGA implementation can be further improved by 

unrolling the inner loop a number of times, exhibited by the next 

few bars (C2-C4) in Figure 3. Loop unrolling once, twice, and 

four times results in speedups of 13X, 25X, and 35X 

respectively, compared to the BASE. As shown in Figure 4, loop 

unrolling once reduces the number of clock cycles to compute 

one force element to 49 cycles. The latency of the data path is 

still the same, but the FPGA can compute two forces at the same 

time. The distributions in Figure 2 show us that the FPGA 

increases the amount of computations performed in one time step 

by loop unrolling. The percentage of time spent on computation 

reduces from 66% with the base FPGA data path to 63% when 

we unroll the force loop once, 58% when the loop is unrolled 

twice and 40% when the loop is unrolled four times. Unrolling 

the calculation shifts the bottleneck from the calculation to the 

data fetch. In C4, the memory accesses account for 60% of the 

execution time.  

We can improve upon the naïve versions of loop unrolling by 

pipelining the accesses to memory while the previous calculation 

is taking place such that the data is ready for the next execution. 

Pipelining the memory accesses (C5-C8) for each of the four 

loop unrolling examples results in a ~1.2-1.4X speedup 

compared to the original loop unrolling implementations (C1-

C4). The majority of the execution time is now concentrated on 

the computation, 92% for C5 and 60% for C8.  

We fully pipeline the N-body calculation into a 61 stage 

pipeline (C9), allowing the circuit to achieve speedups of ~127X 

compared to the BASE. A full pipeline can complete one force 

calculation every four cycles, 225X more efficient than the 

BASE. Extra time must be spent paging and refreshing the DDR-

2 memory. Those extra cycles actually cause the pipeline to stall 

several times during execution. Unrolling the pipelined circuit 

(C10, C11, and C12) does not offer any additional opportunities 

for speedup since the 32-bit bus is completely occupied 

supplying just one pipeline with data. The N-body circuit could 

have certainly also performed better with a more custom memory 

interface to allow for larger bandwidth, but the current analysis 

was fixed to a development board that only had a 32-bit interface 

to memory. In Section 6, we quantitatively analyze how the 

memory interface to the FPGA affects the amount of speedup the 

FPGA achieves for the N-body simulation. 

4. JPEG Compression 
Image processing and compression algorithms are also well 

suited for FPGA implementations. The Joint Photographic 

Figure 5: JPEG Compression Steps. 
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Experts Group proposed the JPEG compression standard in 

1987[16], a lossy compression algorithm that can compress an 

image by orders of magnitude. A number of different 

compression techniques exist [4] based on the standard, which 

involves many different operation modes to control lossiness, 

etc., but most techniques involve several distinct steps, 

highlighted in Figure 4. 

A high level diagram of the JPEG compression algorithm is 

shown in Figure 5. A JPEG compressor begins by first 

transforming an image from the red, green, blue (RGB) color 

space to the YCbCr color space, where Y is the brightness of a 

pixel, and the Cb and Cr elements represent the chrominance of a 

pixel. The second step involves performing the discrete cosine 

transform on each 8x8 block of pixels in the picture. The picture 

is then quantized, eliminating many of the high frequency 

elements. The encoding concludes by running entropy coding 

and Huffman encoding on the quantified data.  

Each step in the JPEG compression standard is independent 

from the rest, offering an opportunity to take advantage of task 

level parallelism not seen in the N-body simulations. Further, 

each step within the compression process (besides the final 

encoding stage) operates independently on either each pixel, or a 

block of pixels, allowing an FPGA to further exploit both 

instruction level and loop level parallelism. 

Figure 6 shows the distributions for running the JPEG 

compression algorithm on a 1024x768 sized image, both in 

software and as FPGA circuit implementations. The analysis is 

similar for different sized images. We first examine the left side 

of Figure 6, which shows the JPEG compression algorithm 

running on the base MIPS platform as well as the idealized 

optimized MIPS architectures. The BASE spends 75% of its time 

fetching instructions from memory, 22% fetching from and 

storing to data memory, and a pale 3% on both direct 

computations and support/control instructions. Compared to the 

N-body example, the JPEG compression algorithm shows a 

higher dependence on memory operations. The compression 

algorithm fetches 1MB worth of pixels, and uses main memory 

for intermediate storage. Still, again we see that a significant 

portion of the time is spent fetching instructions from the 

processor’s memory. Figure 7 shows that the BASE spends 1155 

cycles per color component of a pixel. Therefore, the BASE 

requires 3465 cycles to process one pixel. As we progress down 

the list of software and circuit optimizations, we’ll see how this 

number can be improved greatly. As with the N-body 

application, running the compression algorithm on S1 only 

improves the execution by a minute 14% since the real 

bottleneck is the instruction fetch and data memory accesses. S2 

makes a steady 2.5X improvement over the base processor by 

allowing instruction fetched to only take one cycle. As shown in 

Figure 7, computing one color component only requires 568 

cycles. While the 2.5X improvement might be misleading since 

there is only a ~2X difference between the two cycle counts, we 

recall that the memory is operating on a much slower clock, so 

when the instruction cache eliminates 2X of the cycles, the 

overall speedup is even more. S3 reaches just over 4X speedup. 

S3 is thus left with a memory bottleneck where 89% of the 

execution time is fetching from and storing to data memory. S4 

more closely models streaming data to an FPGA. S4 balances its 

time more efficiently, leading to a ~14X speedup. S5 is able to 

compute a color component in 62 cycles, leading to a 55X 

speedup over the BASE. S5 is still spending 60% of its time 

accessing memory, but the other 40% is split evenly between 

direct computations and the support/control instructions. The 

perfect pipeline’s (S6) execution time is distributed such that 

20% of the time is spent on fetching instructions, 23% of the 

Figure 6: JPEG Compression running on a variety of different software platforms and FPGA implementations.  

  

Figure 7: JPEG. Computation per color component 

 

Base MIPS (BASE)                          1155 

Perfect I-Cache (S2)                         568 

Superscalar*4 & No I-fetch (S5)        62 

Implementation Cycles per Color Component 

Perfect Pipeline (S6)                         146 

FPGA data path    (C1)                     300 

SW 

FPGA Loop Unroll 1      (C2)                     149 

Full Pipeline        (C9)                     1 



  

time spent on data memory accesses, and 28% for both the direct 

computation and support/control instructions, resulting in ~50X 

speedup. Again, we see that the perfectly pipelined machine is 

actually slower than the platform with a lot of instruction level 

parallelism and no instruction fetch (S5).  

The right half of Figure 6 shows several FPGA 

implementations of the JPEG compression algorithm. The FPGA 

data path is based on the work of Agostini et. al. and synthesizes 

to a maximum clock frequency of 160 MHz, or 12X slower than 

the BASE. The authors created a component for each task in the 

compression process, allowing parallelism at several different 

levels. When we do not consider pipelining as the authors did, 

the FPGA data path (C1) is able to achieve nearly a 2X speedup 

compared to the BASE. The data path latency is 243 cycles, 

leading to a distribution where the computations take 80% of the 

time, and the memory operations take 20%. As noted in Figure 7, 

even though the data path finishes the computation in 242 cycles, 

the total number of cycles required is 300. The extra cycles are 

due to the overhead of fetching and storing to DDR-2. Since C1 

does not stream, a lot of cycles are wasted fetching from 

memory. Comparing to the BASE, C1 eliminates the instruction 

fetch, eliminating 75% of the execution time. Despite the slower 

clock speed, C1 further improves its execution time by 

eliminating or hiding support/control instructions, which account 

for a nominal 3% of the BASE’s execution time. The data path 

also requires 70% fewer memory cycles per pixel (including 

instruction fetch) than the BASE. C1 does not improve on the 

direct computations cycles of the BASE since the data path 

thrives at working on multiple pixels at a time. Still, the data path 

improves on the BASE by ~2X. 

Loop unrolling (C2-C4) becomes advantageous for 

compressing multiple images, or working on multiple 8x8 blocks 

within the same image. Loop unrolling once (C2) results in just 

over a 2X speedup over C1, and 3.9X compared to the BASE. 

The streaming of multiple data elements accounts for the non-

linear speedup. The loop unrolled data path suffers from having a 

clock speed over 12X slower than the BASE clock, but the 

ability to execute multiple blocks in parallel overcomes the 

deficiency. In this particular case, the FPGA gains speedup by 

eliminating both the instruction fetch and the support/control 

instructions, which together account for 78% of the BASE 

implementation. The FPGA streams data from memory in bursts, 

fetching data 85% more efficiently than the BASE. C2 also takes 

advantage of both instruction and task level parallelism to 

operate on each pixel in 5X fewer cycles than the BASE. Figure 

7 shows that C2 only needs 149 cycles to compute a color 

component. While the latency of the data path is still the same, 

the data path can compute two at a time resulting in ~2X 

speedup. The cycles have decreased slightly because of the 

ability to fetch two words of data at the same time.   

We can pipeline (C9-C10) the JPEG compressor, allowing 

one color component to be input every cycle and a JPEG word to 

be output every cycle. Being able to input a pixel every three 

cycles results in a 568X speedup over the BASE. Compared to 

the perfect pipeline software implementation (S6), the circuit is 

11X faster. Let us examine the comparison between the two 

pipelined implementations. Once again, the clock speed of the 

circuit is over 12X slower than the microprocessor 

implementation, putting the FPGA circuit at an immediate 

disadvantage. Even though software is able to effectively commit 

one instruction/cycle, the software implementation is only able to 

complete the computation on a color component in a pixel every 

146 cycles, which is .6% as efficient as the hardware pipeline. 

Eliminating the 28% of the time the perfect pipeline spends on 

control instructions means the perfect pipeline still requires 100 

cycles per pixel component. The numbers suggest that a 

tremendous amount of speedup is coming from being able to 

execute a number of computations in parallel. Combining the 

component speedups, the overall speedup is 11X faster than a 

pipelined MIPS implementations, and 568X faster than the 

BASE.  

Since the pipelined FPGA data path (C9) only requires eight 

bits of information per cycle, the 32-bit bus allows the FPGA to 

compress four images concurrently, resulting in ~2100X speedup 

compared to the BASE. The fully pipelined circuit can compute 

one color component per cycle, or 1155X faster if we analyze the 

cycle counts, compared to the BASE. If each JPEG image is 

completely independent from the other, the speedups from each 

pipeline are additive (almost, DDR-2 takes several penalties 

when accessing a lot of data), whereas software implementations 

must compress each image in turn.  

5. Advanced Encryption Standard (AES) 

The Advanced Encryption Standard (AES), also known as 

Rijndael, is described in [5]. AES is a block cipher, allowing the 

algorithm to operate on a fixed length set of bits. In contrast to 

the N-body and JPEG compression examples, FPGA AES 

implementations exploit parallelism at the bit level, instructions 

level, and the loop level. Figure 8 depicts a high level diagram of 

the encryption algorithm. The inputs are a 128-bit plaintext block 

and a one-time input of a 128-bit key. The first step is to replace 

every byte in the plaintext block by its substitute in what is 

known as the S-box. In the second step, the rows are shifted in a 

defined manner. The third step involves mixing the columns by 

performing a number of XOR operations on the rectangle 

representation of the 128-bit block. Finally, the result is XORed 

with the sub key, which is an intermediate generated result based 

on the original key. The process is actually repeated nine times 

for a 128-bit key. AES’s applicability to FPGA speedup has 

spawned a number of groups developing efficient circuit 

implementations, trading off both size and performance [8]. 

We analyze a software AES decryption algorithm running on 

128-bit blocks. The AES decryption algorithm is equivalent to 

the encryption algorithm in complexity, and the same analysis 

applies. The input to the AES decryption algorithm was a page 

Figure 8: AES Algorithm. Encrypting/Decrypting a 128-bit block 

actually involves performing the following process for nine rounds. 
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worth of encrypted text (204 blocks of 16 bytes each). The 

distributions for both the software and FPGA implementations 

are shown in Figure 9. Figure 10 shows how many cycles several 

implementations require to encrypt one AES block. The BASE 

spent 80% of the execution time fetching instructions, 16% 

accessing data memory, 3% on direct computation instructions, 

and only 1% on support/control instructions. The results were 

expected since the decryption algorithm has to fetch a large 

amount of data before executing the algorithm. The decryption 

algorithm also uses memory to store the S-box lookup table 

values. Overall, the BASE required 89,438 cycles to encrypt one 

AES block. S1 only improves the BASE execution time by 11% 

because the instruction fetch still dominates the execution time. 

S2 required just less than half the cycles (41,438) to encrypt one 

AES block, leading to a 3.6X speedup over the BASE. S3 speeds 

the decryption time up by ~5X compared to the BASE, showing 

that the lack of an instruction fetch poses one of the best 

opportunities for speedup on an FPGA. S4 performs ~15X better 

than the BASE. This platform attempts to model the ability to 

stream data to the FPGA as fast as possible. Still, improvements 

can be made. S5 runs AES ~60X faster. At this stage, the 

majority of the time is still fetching memory at 49%, but the 

computation time has jumped to 42% of the time. The 

support/control instructions still occupy 9% of the time, which 

shows room for improvement with an FPGA implementation. 

The S5 model resembles the FPGA’s ability to schedule multiple 

instructions in parallel. Figure 10 shows that S5 encrypts an AES 

block in 5,285 cycles. S6 achieves a 46X speedup over the 

BASE. The direct computation time jumps to 53%, the 

support/control instructions take 11% of the time, memory 

instructions take 16% of the time, and the instruction fetch takes 

20% of the time. Assuming we could eliminate the instruction 

fetch and support instructions from the perfect pipeline, and 

execute some of the direct computation instructions in parallel, 

the final implementation would closely resemble a very efficient 

FPGA implementation. 

Figure 9 (b) shows the speedups and distributions for the 

FPGA implementations. The FPGA data path operates at the 

maximum clock frequency of 116MHz, a factor of 17X slower 

than the BASE. C1 operates on only one 16-byte block yet 

performs remarkably well, attaining 56X speedup over the 

BASE. We can also see in Figure 10 that C1 only requires 566 

total cycles to encrypt one block. The data path generates 

decrypted text in 504 cycles, while the memory interface adds 63 

more cycles... Since there is no instruction fetching and/or 

control instructions, the FPGA data path spends 11% of its time 

accessing memory, and 89% of the time computing on the 

decrypted text. Compared to the BASE, C1 speeds up the 

memory operations by 1140X, and the computational 

instructions by 37X. Using Amdahl’s law and factoring in the 

FPGA AES clock speed (116MHz), the overall speedup is 56X. 

Loop unrolling offers more opportunity for speedup. Loop 

unrolling can mean decrypting different blocks within the same 

encrypted message, or different encrypted messages altogether. 

Duplicating the loop once (C2), twice (C3), and four times (C4) 

results in 111X, 217X, and 409X speedup, respectively, over the 

BASE. An analysis of C3 shows that 14% of the time is spent 

accessing memory, and 86% is spent on computation. Loop 

unrolling twice requires four times the amount of data, and thus 

the memory bandwidth requirement increases, but not linearly 

since the FPGA can stream data on both the rising and falling 

edges of the clock. C3 has longer memory latency since four data 

paths require data, but the memory streams the data, resulting in 

more efficient memory accesses. Despite fetching data from the 

same 32-bit DDR interface, the circuit can now stream data 400X 

more efficiently than software platforms can access memory 

since they have to multiplex between memory, support, and 

direct computation instructions. 

Figure 9: (a) AES running on different software platforms. Eliminating the instruction fetch speeds up AES by ~5X (b) Different FPGA 

implementations 
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FPGA implementations can further hide the memory latency 

behind the previous computation stage. The next four bars (C5-

C8) show that by pipelining the memory stage with the 

computation such that data is always ready for the computation, 

the FPGA can achieve 123X, 242X, and 458X speedups over the 

main software implementation when the main loop is unrolled 

once (C6), twice(C7), and four times(C8). The pipelining of the 

memory accesses gains an average 11% over loop unrolling 

alone (C1-C4). Further, AES can be fully pipelined. A fully 

pipelined AES circuit can reach over 4000X speedup over the 

BASE, effectively completing a 128-bit block each clock cycle. 

In contrast, the BASE requires almost 19,000 cycles to complete 

the same task. 

6. Quantification of the FPGA Memory 

Interface 

One of the most important and often overlooked elements of 

FPGA speedup (or slowdown) is the memory interface to the 

FPGA. The previous sections have shown that FPGA 

implementations thrive by being able to exploit parallelism at 

many different levels, including the instruction and loop levels. 

But, if the FPGA application requires more data in a given cycle 

than the memory interface can allow, the FPGA will suffer a 

latency penalty for accessing too much data from the memory.  

For example, the N-body data path requires eight 32-bit elements 

per cycle to perform one computation. The memory interface 

only allowed for two data elements a cycle, thereby reducing the 

throughput of the data path from one computation per cycle to 

one computation per four cycles (for the pipelined 

implementations).  The analysis also showed that duplicating the 

data path multiple times resulted in no extra speedup over just 

one pipelined N-body circuit. This was precisely because the 

memory interface was not even large enough to effectively 

handle one pipeline, let alone multiple. 

In this section, we quantify the effects of the memory 

interface on the FPGA speedup. We will concentrate our analysis 

on the N-body example presented in Section 3.  The resulting 

analysis is similar for the other examples. We compare running 

the N-body simulation from three forms of memory on the FPGA 

platforms, DDR-2 RAM, SRAM, and onboard Block RAMs 

(BRAM). The first type of memory is commonplace in PCs and 

is now appearing on many new FPGA boards due to its economy 

of scale and price. The second type is favored in embedded 

systems due to its predictable response times. It is more 

expensive and uses more area than DDR memory chips. The 

third type is unique to FPGAs and many embedded chips that 

provide “scratchpad” memories of one type or another. It is 

available in the most limited quantities and the price is hard to 

assess since it is built into the FPGA or embedded processor. The 

ML401 board provides 64 MB of DDR memory, 1 MB of 

SRAM memory, and up to 162 KB of BRAM.  There are many 

other types of memories with different properties, but our 

analysis of these three basic types should suffice to illustrate the 

most relevant performance issues. 

The DDR-2 RAM specifications are summarized in Figure 

11. The DDR-2 RAM has a 32-bit interface and runs at 266 

MHz. DDR-2 (Dual Data Rate) reads two data elements per 

cycle, one on the rising edge of the clock, and one on the falling 

edge, thus doubling the DDR’s given bandwidth.  Because it can 

burst data in packs of four or eight 32-bit data elements, the 

DDR-2 RAM can stream a large amount of data assuming the 

data is contiguous in memory. We assume the data is stored in 

Figure 11: DDR-2 RAM Specification Summary.  

 

Figure 12: Execution Times(s)(on a log scale) for N-body using three different memory interfaces, one with DDR-2, one with SRAM, 

and one with BRAM. 
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RAS                                      28 cycles 
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Refresh All                              7.8 us 



  

memory contiguously to allow the memory controller to take 

advantage of the streaming data capabilities. DDR-2 technology 

is built using one transistor and one capacitor for each bit of 

storage, meaning at specific time intervals, the memory must be 

refreshed. A more thorough explanation of how dynamic RAM 

works can be found at [19]. Consequently, DDR-2 must be 

refreshed every time the memory controller accesses a new page, 

and on two specific timing intervals, including the active to pre-

charge time interval and the refresh all time interval. The penalty 

for refreshing is 28 cycles, symbolized by the row access strobe 

(RAS) in the figure for the DDR-2 [13] on our development 

platform. We use only one bank of 32-bit memory, but a designer 

that plans to target an FPGA might take advantage of an even 

more custom memory interface with more banks to both reduce 

the refresh penalties and offer more memory bandwidth. 

The second memory on the FPGA platform is the SRAM. 

The SRAM also runs at 266 MHz, and has a memory latency of 5 

cycles. But, as with the DDR-2, the SRAM can also stream data 

using a burst command and a smart memory controller. The 

memory interface to the SRAM is 32-bits, allowing one 32-bit 

data element per cycle, or half the bandwidth of the DDR-2. 

However, the SRAM does not have to ever refresh itself due to 

the technology on which it is built upon [19].  

The third memory technology we focus our quantitative 

analysis on is block RAM (BRAM).  BRAMs are small 

distributed RAMs located throughout the FPGA fabric that allow 

the designer to create custom, high bandwidth solutions at 

compile time. Thus, a designer can easily create a large 128-bit, 

256-bit, etc. size bus for the particular application at hand. One 

drawback of BRAM is there is often little storage (162 KB of 

data storage vs. 64 MB for DDR-2). With a smart memory 

controller, a designer could also potentially stream data from the 

DDR-2 to the BRAM interface to give the application much 

greater bandwidth.  

For the purposes of quantitatively assessing speedup, we 

only concentrate on performance of the three memory 

technologies in creating custom memory interfaces, but there are 

certainly tradeoffs to utilizing any of the three in a particular 

implementation, including area, power, and size.  

Figure 12 shows the execution times for running the same N-

body application from Section 3 with DDR-2, SRAM, and 

BRAM interfaces. We varied the number of bodies run in the 

simulation from 512 to 1,024,000, running on a fully pipelined 

version of the FPGA data path (C9). As expected, the BRAM 

implementation was able to deliver the most memory to the 

FPGA data path per cycle, resulting in a 7.2X-8X speedup over 

the SRAM implementation, and 4.5X-5X speedup over the 

DDR-2 memory interface. Similarly, the N-body implementation 

with the DDR-2 interface runs approximately 1.57X-1.6X faster 

than the N-body FPGA application running with an SRAM 

interface. As we did for the different application 

implementations, we break up the elements of speedup for each 

of the memory interfaces.  

We first look at the elements of speedup comparing the 

SRAM and DDR-2 interfaces to the N-body circuit, shown in 

Figure 13. Ideally, given that both DDR-2 and SRAM have the 

same bus width, and both run at the same clock frequency, DDR-

2 should be able to attain 2X speedup over the SRAM interface 

because of DDR-2’s ability to fetch two memory words every 

cycle. Due to the refresh and startup overheads, the DDR-2 is not 

able to achieve the ideal speedup figures. We broke up the actual 

speedup into several elements, including paging penalty, active 

to refresh transitions, refresh all, and startup overhead. The 

paging penalty is the cost of accessing memory that spans the 

page boundary of the DDR-2. As shown in Figure 11, the DDR-2 

has a page boundary of 8 KB and if all of the application data 

can be kept within one page, there is no page penalty for 

accessing data on a different page. Every time the application 

pages, the application must take a paging penalty equal to the 

time to access a new row (RAS), or 28 cycles. The active to 

refresh time refers to the fact that an active row must be 

refreshed at a given interval to ensure the memory data stays 

Figure 13: Analysis of SRAM and DDR-2 Interfaces. DDR-2 should attain 2X speedup, but several factors prevent it from approaching 

the ideal speedup. 

 

 



  

valid. In this case, the active to refresh time is 70ns. The active to 

refresh also means that we must activate a row again at the RAS 

time interval. Finally, all the rows in a DDR-2 must periodically 

be refreshed, meaning that we must activate the current row 

again once the refresh has taken place. The refresh all time 

models this penalty in the overall execution time. 

Figure 13 shows the DDR-2 speedup over SRAM as a 

fraction of the ideal speedup of DDR-2 over SRAM. For most of 

the execution runs, the paging penalty accounts for 39% of the 

slowdown compared to the ideal speedup accounted for on 

bandwidth alone. For the smallest example, startup overhead 

accounts for 1% of the slowdown. The startup overhead 

disappears for all but the smallest examples since the memory 

controller does not need to activate the DDR-2 memory. The 

active refresh and refresh all overheads account for less than .5% 

of the slowdown. Combining the 2X bandwidth speedup and the 

slowdowns associated with paging penalty costs and refreshing 

the memory at dedicated intervals, the DDR-2 still performs 

consistently better than SRAM wherever the examples stream a 

large amount of contiguous memory. 

We provide a similar analysis showing how a BRAM 

interface attains such a large speedup compared to a DDR-2 

interface for the N-body simulation. As stated earlier, the BRAM 

interface is able to achieve a 4.5X-5X speedup over the DDR-2 

implementation mostly by using a much larger bus width, but the 

speedup alone does not really explain the whole story.  Figure 14 

shows how a BRAM interface is able to achieve much greater 

speedups than the DDR-2 interface. For each example, we 

created a custom 256-bit interface to the FPGA data path by 

combining the BRAMs into one wide bus. We distributed the 

data into the BRAM such that a separate BRAM memory was 

connected to a data path input. Thus, we could completely fill the 

FPGA pipeline and deliver a new result every cycle once the 

pipeline is filled. Figure 14 shows that roughly 80% of the 

speedup comes from the fact that the BRAM has can deliver 

more data to the FPGA data path than DDR-2 can. Recall that 

the bus width of DDR-2 is 32 bits but can deliver two words per 

cycle. The BRAM thus has a 4X greater bus width, accounting 

for most of the speedup. The smaller examples on the left show 

that the data path doesn’t actually get 4X speedup on bandwidth 

alone. This is because the data path still hasn’t been completely 

utilized. In most of the examples though, the bandwidth accounts 

for 4X of the speedup. As we saw in the analysis of DDR-2 and 

SRAM interfaces, BRAM attains 19% more speedup because the 

DDR-2 frequently has to page, adding cycles that neither the 

BRAM nor the SRAM suffer. For large examples, the paging 

penalty pushes the BRAM speedup over DDR-2 to 5X. The 

refresh penalties, including the active to refresh time and the 

refresh all times, add an insignificant amount of speedup. 

Because the N-body application is streaming data from a 

contiguous memory, the paging penalty completely dominates 

any notion of refreshing at dedicated intervals. 

 

7. Conclusion  

We analyzed how FPGAs attain so much speedup over their 

sequential software counterparts. Our goal is to provide 

researchers and engineers a quantitative intuition how to attack 

the problem of parallelizing certain applications, both for 

software and FPGA platforms. We presented an extensive 

quantitative analysis of three different applications, a baseline N-

body simulation, a JPEG compressor, and an AES decryption 

algorithm. By first showing how each application ran on both a 

baseline MIPS processor and several ideal optimized software 

architectures, and breaking up the execution time into several 

elements, we created a spectrum that visually and intuitively 

showed how an FPGA gathers speedup. The superscalar models 

showed how FPGAs can exploit instruction level parallelism. 

Platforms without an instruction fetch closely modeled the fact 

that FPGAs have no instruction fetch phase. We then compared 

those ideal optimized platform executions to several FPGA 

implementations, with varying levels of loop unrolling and 

pipelining. We showed how FPGA implementations lose cycles 

by eliminating the software instruction fetch, hiding the control 

instructions, executing multiple instructions in parallel, and 

pipelining those instructions. We then quantitatively showed 

Figure 14: Analysis of BRAM and DDR-2 Interfaces. A BRAM interface is able to achieve 5X speedup over a DDR-2 interface even though 

the bandwidth is only 4X greater. The rest of the speedup comes from paging penalty and refresh penalty cycles. 

 



  

how the memory interface to the FPGA affects the performance. 

We showed that custom interfaces enabling high bandwidth 

enable much greater speedups, and that current development 

boards will always have a memory bottleneck for large FPGA 

applications. There are penalties from using DDR memory, 

which is the most appealing from a price-area-capacity 

viewpoint. The penalties can be limited to about 20%, but only 

when the data is arranged in very large and contiguous blocks. 

BRAMS are the easiest and most flexible way to create large and 

custom memory busses, which are very effective means to 

achieve speedups up to 8X over SRAM and ~5X over DDR. The 

very limited capacity of BRAMS means that they must be used in 

conjunction with some other external memory for most practical 

applications.  
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