

Where’s the Beef? Why FPGAs Are So Fast

Scott Sirowy, Alessandro Forin

Microsoft Research

September 2008

Technical Report

MSR-TR-2008-130

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Where’s the Beef? Why FPGAs Are So Fast

Scott Sirowy
Microsoft Research

t-scots@microsoft.com

Alessandro Forin

Microsoft Research

sandrof@microsoft.com

Abstract

Where do all the cycles go when microprocessor applications

are implemented spatially as circuits on an FPGA? It is well

established that certain sequential applications can be captured

spatially and achieve breathtaking speedups when run on an

FPGA, but why? Despite running at clock speeds orders of

magnitude slower compared to their embedded processor

equivalents, FPGA applications can "lose" enough cycles to

create exceptionally fast spatially-oriented circuits. We profile

and analyze three canonical applications amenable to FPGA

speedup to quantify exactly where FPGAs gain that speedup. We

compare the FPGA implementations to several idealized

software platforms. The idealized software platforms give insight

as to how FPGA implementations attain such dramatic

speedups. We quantify the effects of parallelizing and pipelining

instructions, streaming data, and eliminating the instruction

fetch, showing exactly where the cycles are lost in an FPGA

implementation. We also show how the memory interface to the

FPGA will affect the performance. Our results show that custom

memory interfaces are the most effective way at enabling much

greater performance on the FPGA, and that memory interfaces

traditional software use become a bottleneck when the FPGA

uses the same interface. The results, though not surprising,

provide a clearer and more intuitive understanding of the

performance FPGAs can achieve, offering researchers and

engineers alike a new angle to attack the task of parallelizing

applications.

1. Introduction

“…Therefore, we were able to attain 10,000X speedup over the

fastest software implementation using our novel FPGA

implementation …” And so concludes a typical researcher who

ported a software application to a field-programmable gate-array

(FPGA). Invented in the 1980s, FPGAs are custom computing

elements that allow designers to create highly efficient, custom

circuit accelerators. In fact, certain application domains have

been known to achieve extraordinary speedups when

implemented on an FPGA, the results being extensively reported

[3][18][21], and with several conferences dedicating forums to

FPGA application speedup[9][10].

Qualitatively, the reasons for FPGA speedups are clear.

FPGAs can expose parallelism at many different levels, from the

bit and instruction level all the way to the loop and task level. A

typical von-Neumann computer must fetch an instruction from

memory, execute the instruction, and store the result. An FPGA

implementation instead thrives on executing multiple (often 10s

of) instructions in one clock cycle, and ridding itself of fetching

instructions since they are built into the FPGA data path itself.

FPGAs implementations can also implement deep pipelines,

enabling highly efficient, high throughput circuits that output

results every clock cycle. Finally, FPGAs use specialized custom

interfaces to memory banks that make the best use of the memory

bus for that application.

Quantitatively, the reasons for FPGA have not been

completely unfolded. Why is it that despite a clock speed often

orders of magnitude slower than the microprocessor an FPGA is

able to achieve orders of magnitude speedup on the application

in both latency and throughput compared to the software

implementation? How much speedup can we gain by unrolling a

software loop once? Twice? What about pipelining the circuit?

What effect does the memory interface have on that pipeline? On

the loop unrolling? Quantifying the effects of such optimizations

can provide a deeper understanding for applying the same

optimizations to other FPGA applications.

In [12], the authors perform an extensive quantitative

analysis of FPGA speedups on several simple image processing

applications, comparing to baseline MIPS, Pentium, and VLIW

platforms. The authors generalize the speedup factors accounted

for into a cohesive speedup model, while Dehon [7] develops the

concept of computational density to quantitatively analyze the

differences between CPUs and FPGAs (as well as ASICs).

We quantify three applications known to achieve high

performance when implemented on an FPGA, including an N-

body simulation, a JPEG compressor, and an AES decryption

algorithm. We do not plan on reporting on their speedup on an

FPGA for the sake of speedup, but rather to quantitatively and

intuitively show exactly where the speedup comes from when

applying well-known FPGA optimizations. We also provide an

in depth quantitative analysis on how the memory interface

affects FPGA speedups. We quantify and analyze the effects of

the FPGA interface by comparing three memory interfaces using

three different memory technologies that exist on many FPGA

development boards. Our goal is to provide a baseline and

quantitative intuition as to where the speedups that FPGAs are

known to achieve come from, and a list of practical recipes for

attacking the problem of parallelizing an application. The

techniques and tools should be valuable with the advent of a

more parallel-computing aware generation of researchers and

engineers.

The rest of this paper is organized as follows. Section 2

discusses the study methodology. Sections 3, 4, and 5

quantitatively analyze three separate applications and their FPGA

implementations. Section 6 quantifies the effects of the speedup

attributed to the memory interface. Section 7 concludes.

2. Study Methodology

The goal of this study is to identify exactly why FPGA

implementations are so much faster than their software

counterparts. For this reason, we chose three applications that are

particularly amenable to FPGA speedup. The examples include

an N-body simulation, a JPEG compressor, and an AES

decryption unit. While each example comes from a different

application domain, each one can be characterized as a data-

driven, computationally intensive application, enabling efficient

FPGA implementations that are suitable and convenient for such

an analysis.

We first run the software on a base MIPS architecture based

on the eMIPS extensible processor [17]. Each example is run on

a highly configurable simulator [11] that features real time

hardware and software integrations, and allows the integration of

a detailed SRAM and DDR-2 memory model for streaming data

to the FPGA. The base MIPS platform (BASE) accesses memory

through an SRAM interface, requiring five cycles to fetch both

instructions and data. The base architecture is not pipelined, and

has no instruction or data cache. We used this particular MIPS

platform because the platform was simple to analyze, and is

characteristic of a platform often used for real-time embedded

system applications. To make our study more representative of

the general-purpose processor class, we clocked the BASE at a

nominal clock speed of 2 GHz.

 To better understand and more intuitively depict why

FPGAs attain a much higher performance over their software

counterparts, we investigate a spectrum of idealized

optimizations which augment the base MIPS processor for better

performance, shown in Figure 1. While not entirely realistic, the

optimizations do give some insight as to why FPGAs are able to

attain orders of magnitude speedups on certain applications.

Each optimization represents an aspect of execution that FPGAs

accomplish very well. The superscalar optimization (S1, S5)

allows the processor to execute N instructions in a single cycle,

modeling the ability of an FPGA to exploit instruction level

parallelism. We model a perfect instruction cache (S2) as an

intermediate step in showing the impact of eliminating the

execution time required for fetching instructions. Similarly, we

model a platform that has no instruction fetch (S3, S4, and S5)

to more closely model the FPGAs mode of execution, where

there is no concept of an instruction fetch. We model a perfect

data cache (S4) to simulate that an FPGA will probably be

reading a large contiguous memory section and streaming data as

fast as the memory interface allows. Finally, we model a perfect

pipeline (S6), allowing the BASE to complete one instruction per

cycle, regardless of actual instruction dependencies or hazards.

The perfect pipeline closely models the ability of FPGA

applications to complete one data element per cycle, a hallmark

of efficient FPGA design for dataflow applications.

We compare the software implementations of each example

to the FPGA implementations, also shown in Figure 1. For each

FPGA implementation, we apply varying levels of well-known

FPGA optimizations [6], including loop unrolling (C1-C12),

pipelining (C5-C12), and streaming constructs (C9-C12). Where

applicable, we manually implemented each of the data paths for

the examples in question and synthesized them using Xilinx ISE

9.2 targeting the Virtex-4 LX25 FPGA on the ML401 board[22].

We simulated the circuits using Giano and ModelSim. For the

JPEG compression circuit, we utilized extensive data published

by [1].

Since the goal of this work was not to report speedups for

any given circuit, but rather explain how and why those speedups

were attained, we observe that the execution time of each

implementation can be broken down into four main elements:

1. Instruction Fetch

2. Support/Control Instructions

3. Direct Computation Instructions

4. Memory Instructions

Figure 1: Analyzed Implementations. The key will serve as a reference

for subsequent discussion

Figure 2: N-body Algorithm. Both the loops and the instructions within

the loops are independent, allowing an FPGA to exploit a large amount

of parallelism

For element(i) in space:

 for element(j) in space:

 fx += GravityForce(i,j);

 fy += GravityForce(i,j);

 fz += GravityForce(i,j);

 element(i).fx = fx;

 element(i).fy = fy;

 element(i).fz = fz;

 fx = fy = fz = 0;

Implementation Key

BASE Base MIPS Platform

 S2 BASE + Perfect Instruction Cache

 S5 BASE+ Superscalar*4 & No I-fetch

S6 BASE + Perfect Pipeline

C1 FPGA data path, No Unrolling

SW

FPGA

 S1 BASE + Superscalar Commit*2

 S3 BASE + No Instruction Fetch

 S4 BASE+ No I-fetch+ Perfect Data Cache

C2 C1, Loop Unrolled Once

C3 C2, Loop Unrolled Twice

C4 C2, Loop Unrolled Four Times

C5 C1, Pipelined Mem. + Computation

C6 C2, Pipelined Mem. + Computation

C7 C3, Pipelined Mem. + Computation

C8 C4, Pipelined Mem. + Computation

C9 C1, Fully Pipelined

C10 C2, Fully Pipelined

C11 C3, Fully Pipelined

C12 C4, Fully Pipelined

The first element is the instruction fetch, which accounts for

the time required to fetch instructions from memory. The

support/control instructions, first noted by [12], are the

instructions that do not directly contribute the real computation,

but rather update loop counters, branching code, updating the

stack pointer, etc. The direct computations account for all the

instructions directly responsible for computing the desired

results. Finally, the last category is the time taken to execute

memory instructions, including loads and stores. Separating and

correlating these four elements among the different

implementations leads to a more specific breakdown of how the

FPGA is able to attain often dramatic speedups.

3. N-body Simulation

One class of applications that are particularly amenable to FPGA

speedup is N-body applications. As a broad definition, N-body

applications compute the forces and movements for a (often very

large) set of interacting particles/bodies using classical

mechanics models. N-body applications usually work on a large

set of data, and are computationally intensive. The standard

particle-particle algorithm is shown in Figure 2. For each

element/body in the data set, the N-body algorithm computes the

force contributed by each of the other elements/bodies in the data

set. The algorithm executes one time step, and then updates each

body’s position according to the bodies’ velocity and the forces

previously computed. The naïve particle-particle algorithm runs

in O(n2), although more advanced algorithms can compute a time

step in O(nlog(n)), using approximation for bodies beyond a

certain threshold. While using optimized software might seem

like a good starting point for creating customized FPGA

applications, recent research has shown that is not always the

case [20] and that often the most naïve algorithm produces the

best circuits for FPGA execution.

Our particular implementation of N-body operated on 500

distinct bodies, but the analysis would have been similar for both

larger and smaller data sets. We first ran the resulting N-body

application on a number of software platforms in Figure 1. The

distributions are shown in Figure 3. Each column reports the

execution time as a percentage of the base platform (BASE).

We broke down the execution time for each application run

into four separate elements: instruction fetch cycles, direct

computation cycles, memory cycles, and support instruction

cycles. The base platform (BASE) spends 87% of its time

fetching instructions, and another 9% accessing data memory.

The last 4% of the BASE’s execution time is split between direct

computation instructions and support instructions. As shown in

Figure 4, the BASE requires 900 cycles to compute the force for

one element in the space. A 2-way superscalar platform (S1) is

not much better compared to the BASE. Since instruction fetches

dominate the execution time, only 13% of the entire time is

amenable to speedup via a superscalar platform. S1 did achieve a

7% speedup compared to the base platform. When we

supplement the BASE with a perfect instruction cache (S2), we

begin to see a more balanced distribution and larger speedups. S2

only spends 57% of its time fetching instructions, since fetching

only takes one cycle. Data memory accesses now account for

29% of the execution time, direct computations take 8%, and

support/control instructions account for 6%. The fourth platform

models an idealization of a processor that does not have an

instruction fetch (S3). While not realistic, the modeling

technique does give some insight as to where speedup from an

FPGA implementation comes from since an FPGA has no

Figure 3: N-body running on a number of different software platforms and with varying levels of FPGA optimizations.

Figure 4: N-body. Computations on each force element

Base MIPS (BASE) 900

Perfect I-Cache (S2) 408

Superscalar*4 & No I-fetch (S5) 60

Implementation Cycles per Force Element

Perfect Pipeline (S6) 123

FPGA data path (C1) 94

Full Pipeline (C9) 4

SW

FPGA Loop Unroll 1 (C2) 49

concept of an instruction fetch. S3 runs 7.5X faster than the

BASE. Memory accesses dominate, accounting for 69% of the

execution time. The computations that relate directly to the force

computation take 18% of the time, and the support/control

instructions account for the final 13% of the execution time. We

can improve the execution time by supplementing the previous

ideal platform with a perfect data cache (S4), allowing our

platform to effectively read data from memory in one cycle. The

resulting platform attains ~17X speedup. Direct computations

now account for 41% of the execution time, support/control

instructions take 28% of the time, and memory accesses take

31%. The resulting execution profile is beginning to resemble an

FPGA implementation. A perfect four-way superscalar platform

(S5) achieves 62X speedup over the BASE because it is able to

execute four computations in parallel. This results in 39% of the

execution time coming from direct computation execution, 27%

of the execution from support/control instructions, and memory

accesses occupying 35% of the execution time. Finally, we run

the N-body application on a model of a perfect pipeline (S6). S6

runs ~44X faster than the base platform. Memory computations

take 8% of the execution time; direct computations take 42% of

the time; support/control instructions take 30%, and the

instruction fetch takes 20% of the execution time.

 By executing the N-body application on a number of

different idealized platforms, we gain insight into how the FPGA

gains performance for the equivalent software platform. The

superscalar models showed they can attain performance gains by

parallelizing at the instruction level. Platforms without an

instruction fetch immediately showed FPGAs gain performance

because they have no concept of an instruction fetch. Similarly,

FPGA implementations gain speedup by eliminating or hiding

the support/control instructions, including branch instructions,

updating loops, and moving data because of a lack of registers.

Finally, FPGAs can gain by pipelining operations.

We now analyze several FPGA implementations for the N-

body inner loop, which calculates the force between two bodies

in the simulation. We implemented an N-body circuit that had a

latency of 61 cycles to compute one force element. The circuit

could be clocked at 251 MHz. The right hand side of Figure 3

shows the distributions for FPGA circuit implementations with

various levels of loop unrolling and pipelining. Figure 4 shows

some of the FPGA implementations and how many total cycles

they require to compute one force calculation. All of the circuit

implementations were able to eliminate the cost of fetching

instructions and the cost of the control instructions. The N-body

circuit allows controlling software to push data as fast as it can

through the N-body circuit, eliminating the need for any control

flow within the circuit. The leftmost bar (C1) in Figure 3 shows a

single FPGA data path implementing the N-body force

calculation. The circuit fetches data from DDR memory, and

accounts for 34% of the circuit’s execution time. Therefore, 66%

of the time is spent calculating the force. Figure 4 shows that an

FPGA data path is able to complete one force calculation in 94

cycles. The computational latency of the data path is only 61

cycles, but accessing the DDR-2 memory requires another 33

cycles. Still, the FPGA data path is ~7X more efficient than the

base MIPS processor. Part of the FPGAs efficiency is due to the

elimination of the instruction fetch and control cycles (which

account for 89% of the base platform’s time), but the FPGA is

also able to schedule multiple instructions in parallel, which

accounts for ~2X efficiency after the instruction fetch and

control instructions are eliminated. Factoring in a slower clock

speed of 251 MHz (~8X slower than the MIPS platform), the

FPGA data path is able to achieve ~7X compared to the BASE.

The FPGA implementation can be further improved by

unrolling the inner loop a number of times, exhibited by the next

few bars (C2-C4) in Figure 3. Loop unrolling once, twice, and

four times results in speedups of 13X, 25X, and 35X

respectively, compared to the BASE. As shown in Figure 4, loop

unrolling once reduces the number of clock cycles to compute

one force element to 49 cycles. The latency of the data path is

still the same, but the FPGA can compute two forces at the same

time. The distributions in Figure 2 show us that the FPGA

increases the amount of computations performed in one time step

by loop unrolling. The percentage of time spent on computation

reduces from 66% with the base FPGA data path to 63% when

we unroll the force loop once, 58% when the loop is unrolled

twice and 40% when the loop is unrolled four times. Unrolling

the calculation shifts the bottleneck from the calculation to the

data fetch. In C4, the memory accesses account for 60% of the

execution time.

We can improve upon the naïve versions of loop unrolling by

pipelining the accesses to memory while the previous calculation

is taking place such that the data is ready for the next execution.

Pipelining the memory accesses (C5-C8) for each of the four

loop unrolling examples results in a ~1.2-1.4X speedup

compared to the original loop unrolling implementations (C1-

C4). The majority of the execution time is now concentrated on

the computation, 92% for C5 and 60% for C8.

We fully pipeline the N-body calculation into a 61 stage

pipeline (C9), allowing the circuit to achieve speedups of ~127X

compared to the BASE. A full pipeline can complete one force

calculation every four cycles, 225X more efficient than the

BASE. Extra time must be spent paging and refreshing the DDR-

2 memory. Those extra cycles actually cause the pipeline to stall

several times during execution. Unrolling the pipelined circuit

(C10, C11, and C12) does not offer any additional opportunities

for speedup since the 32-bit bus is completely occupied

supplying just one pipeline with data. The N-body circuit could

have certainly also performed better with a more custom memory

interface to allow for larger bandwidth, but the current analysis

was fixed to a development board that only had a 32-bit interface

to memory. In Section 6, we quantitatively analyze how the

memory interface to the FPGA affects the amount of speedup the

FPGA achieves for the N-body simulation.

4. JPEG Compression
Image processing and compression algorithms are also well

suited for FPGA implementations. The Joint Photographic

Figure 5: JPEG Compression Steps.

 Color Space

Conversion
DCT Quantization

Entropy &

Huffman

Coding

Input Image

Compressed Output

Image

Experts Group proposed the JPEG compression standard in

1987[16], a lossy compression algorithm that can compress an

image by orders of magnitude. A number of different

compression techniques exist [4] based on the standard, which

involves many different operation modes to control lossiness,

etc., but most techniques involve several distinct steps,

highlighted in Figure 4.

A high level diagram of the JPEG compression algorithm is

shown in Figure 5. A JPEG compressor begins by first

transforming an image from the red, green, blue (RGB) color

space to the YCbCr color space, where Y is the brightness of a

pixel, and the Cb and Cr elements represent the chrominance of a

pixel. The second step involves performing the discrete cosine

transform on each 8x8 block of pixels in the picture. The picture

is then quantized, eliminating many of the high frequency

elements. The encoding concludes by running entropy coding

and Huffman encoding on the quantified data.

Each step in the JPEG compression standard is independent

from the rest, offering an opportunity to take advantage of task

level parallelism not seen in the N-body simulations. Further,

each step within the compression process (besides the final

encoding stage) operates independently on either each pixel, or a

block of pixels, allowing an FPGA to further exploit both

instruction level and loop level parallelism.

Figure 6 shows the distributions for running the JPEG

compression algorithm on a 1024x768 sized image, both in

software and as FPGA circuit implementations. The analysis is

similar for different sized images. We first examine the left side

of Figure 6, which shows the JPEG compression algorithm

running on the base MIPS platform as well as the idealized

optimized MIPS architectures. The BASE spends 75% of its time

fetching instructions from memory, 22% fetching from and

storing to data memory, and a pale 3% on both direct

computations and support/control instructions. Compared to the

N-body example, the JPEG compression algorithm shows a

higher dependence on memory operations. The compression

algorithm fetches 1MB worth of pixels, and uses main memory

for intermediate storage. Still, again we see that a significant

portion of the time is spent fetching instructions from the

processor’s memory. Figure 7 shows that the BASE spends 1155

cycles per color component of a pixel. Therefore, the BASE

requires 3465 cycles to process one pixel. As we progress down

the list of software and circuit optimizations, we’ll see how this

number can be improved greatly. As with the N-body

application, running the compression algorithm on S1 only

improves the execution by a minute 14% since the real

bottleneck is the instruction fetch and data memory accesses. S2

makes a steady 2.5X improvement over the base processor by

allowing instruction fetched to only take one cycle. As shown in

Figure 7, computing one color component only requires 568

cycles. While the 2.5X improvement might be misleading since

there is only a ~2X difference between the two cycle counts, we

recall that the memory is operating on a much slower clock, so

when the instruction cache eliminates 2X of the cycles, the

overall speedup is even more. S3 reaches just over 4X speedup.

S3 is thus left with a memory bottleneck where 89% of the

execution time is fetching from and storing to data memory. S4

more closely models streaming data to an FPGA. S4 balances its

time more efficiently, leading to a ~14X speedup. S5 is able to

compute a color component in 62 cycles, leading to a 55X

speedup over the BASE. S5 is still spending 60% of its time

accessing memory, but the other 40% is split evenly between

direct computations and the support/control instructions. The

perfect pipeline’s (S6) execution time is distributed such that

20% of the time is spent on fetching instructions, 23% of the

Figure 6: JPEG Compression running on a variety of different software platforms and FPGA implementations.

Figure 7: JPEG. Computation per color component

Base MIPS (BASE) 1155

Perfect I-Cache (S2) 568

Superscalar*4 & No I-fetch (S5) 62

Implementation Cycles per Color Component

Perfect Pipeline (S6) 146

FPGA data path (C1) 300

SW

FPGA Loop Unroll 1 (C2) 149

Full Pipeline (C9) 1

time spent on data memory accesses, and 28% for both the direct

computation and support/control instructions, resulting in ~50X

speedup. Again, we see that the perfectly pipelined machine is

actually slower than the platform with a lot of instruction level

parallelism and no instruction fetch (S5).

The right half of Figure 6 shows several FPGA

implementations of the JPEG compression algorithm. The FPGA

data path is based on the work of Agostini et. al. and synthesizes

to a maximum clock frequency of 160 MHz, or 12X slower than

the BASE. The authors created a component for each task in the

compression process, allowing parallelism at several different

levels. When we do not consider pipelining as the authors did,

the FPGA data path (C1) is able to achieve nearly a 2X speedup

compared to the BASE. The data path latency is 243 cycles,

leading to a distribution where the computations take 80% of the

time, and the memory operations take 20%. As noted in Figure 7,

even though the data path finishes the computation in 242 cycles,

the total number of cycles required is 300. The extra cycles are

due to the overhead of fetching and storing to DDR-2. Since C1

does not stream, a lot of cycles are wasted fetching from

memory. Comparing to the BASE, C1 eliminates the instruction

fetch, eliminating 75% of the execution time. Despite the slower

clock speed, C1 further improves its execution time by

eliminating or hiding support/control instructions, which account

for a nominal 3% of the BASE’s execution time. The data path

also requires 70% fewer memory cycles per pixel (including

instruction fetch) than the BASE. C1 does not improve on the

direct computations cycles of the BASE since the data path

thrives at working on multiple pixels at a time. Still, the data path

improves on the BASE by ~2X.

Loop unrolling (C2-C4) becomes advantageous for

compressing multiple images, or working on multiple 8x8 blocks

within the same image. Loop unrolling once (C2) results in just

over a 2X speedup over C1, and 3.9X compared to the BASE.

The streaming of multiple data elements accounts for the non-

linear speedup. The loop unrolled data path suffers from having a

clock speed over 12X slower than the BASE clock, but the

ability to execute multiple blocks in parallel overcomes the

deficiency. In this particular case, the FPGA gains speedup by

eliminating both the instruction fetch and the support/control

instructions, which together account for 78% of the BASE

implementation. The FPGA streams data from memory in bursts,

fetching data 85% more efficiently than the BASE. C2 also takes

advantage of both instruction and task level parallelism to

operate on each pixel in 5X fewer cycles than the BASE. Figure

7 shows that C2 only needs 149 cycles to compute a color

component. While the latency of the data path is still the same,

the data path can compute two at a time resulting in ~2X

speedup. The cycles have decreased slightly because of the

ability to fetch two words of data at the same time.

We can pipeline (C9-C10) the JPEG compressor, allowing

one color component to be input every cycle and a JPEG word to

be output every cycle. Being able to input a pixel every three

cycles results in a 568X speedup over the BASE. Compared to

the perfect pipeline software implementation (S6), the circuit is

11X faster. Let us examine the comparison between the two

pipelined implementations. Once again, the clock speed of the

circuit is over 12X slower than the microprocessor

implementation, putting the FPGA circuit at an immediate

disadvantage. Even though software is able to effectively commit

one instruction/cycle, the software implementation is only able to

complete the computation on a color component in a pixel every

146 cycles, which is .6% as efficient as the hardware pipeline.

Eliminating the 28% of the time the perfect pipeline spends on

control instructions means the perfect pipeline still requires 100

cycles per pixel component. The numbers suggest that a

tremendous amount of speedup is coming from being able to

execute a number of computations in parallel. Combining the

component speedups, the overall speedup is 11X faster than a

pipelined MIPS implementations, and 568X faster than the

BASE.

Since the pipelined FPGA data path (C9) only requires eight

bits of information per cycle, the 32-bit bus allows the FPGA to

compress four images concurrently, resulting in ~2100X speedup

compared to the BASE. The fully pipelined circuit can compute

one color component per cycle, or 1155X faster if we analyze the

cycle counts, compared to the BASE. If each JPEG image is

completely independent from the other, the speedups from each

pipeline are additive (almost, DDR-2 takes several penalties

when accessing a lot of data), whereas software implementations

must compress each image in turn.

5. Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES), also known as

Rijndael, is described in [5]. AES is a block cipher, allowing the

algorithm to operate on a fixed length set of bits. In contrast to

the N-body and JPEG compression examples, FPGA AES

implementations exploit parallelism at the bit level, instructions

level, and the loop level. Figure 8 depicts a high level diagram of

the encryption algorithm. The inputs are a 128-bit plaintext block

and a one-time input of a 128-bit key. The first step is to replace

every byte in the plaintext block by its substitute in what is

known as the S-box. In the second step, the rows are shifted in a

defined manner. The third step involves mixing the columns by

performing a number of XOR operations on the rectangle

representation of the 128-bit block. Finally, the result is XORed

with the sub key, which is an intermediate generated result based

on the original key. The process is actually repeated nine times

for a 128-bit key. AES’s applicability to FPGA speedup has

spawned a number of groups developing efficient circuit

implementations, trading off both size and performance [8].

We analyze a software AES decryption algorithm running on

128-bit blocks. The AES decryption algorithm is equivalent to

the encryption algorithm in complexity, and the same analysis

applies. The input to the AES decryption algorithm was a page

Figure 8: AES Algorithm. Encrypting/Decrypting a 128-bit block

actually involves performing the following process for nine rounds.

Byte Sub

128-bit plaintext Encrypted/Decrypted

Text

128-bit key

Shift Row Mix

Columns

 Add

 Round

 Key

worth of encrypted text (204 blocks of 16 bytes each). The

distributions for both the software and FPGA implementations

are shown in Figure 9. Figure 10 shows how many cycles several

implementations require to encrypt one AES block. The BASE

spent 80% of the execution time fetching instructions, 16%

accessing data memory, 3% on direct computation instructions,

and only 1% on support/control instructions. The results were

expected since the decryption algorithm has to fetch a large

amount of data before executing the algorithm. The decryption

algorithm also uses memory to store the S-box lookup table

values. Overall, the BASE required 89,438 cycles to encrypt one

AES block. S1 only improves the BASE execution time by 11%

because the instruction fetch still dominates the execution time.

S2 required just less than half the cycles (41,438) to encrypt one

AES block, leading to a 3.6X speedup over the BASE. S3 speeds

the decryption time up by ~5X compared to the BASE, showing

that the lack of an instruction fetch poses one of the best

opportunities for speedup on an FPGA. S4 performs ~15X better

than the BASE. This platform attempts to model the ability to

stream data to the FPGA as fast as possible. Still, improvements

can be made. S5 runs AES ~60X faster. At this stage, the

majority of the time is still fetching memory at 49%, but the

computation time has jumped to 42% of the time. The

support/control instructions still occupy 9% of the time, which

shows room for improvement with an FPGA implementation.

The S5 model resembles the FPGA’s ability to schedule multiple

instructions in parallel. Figure 10 shows that S5 encrypts an AES

block in 5,285 cycles. S6 achieves a 46X speedup over the

BASE. The direct computation time jumps to 53%, the

support/control instructions take 11% of the time, memory

instructions take 16% of the time, and the instruction fetch takes

20% of the time. Assuming we could eliminate the instruction

fetch and support instructions from the perfect pipeline, and

execute some of the direct computation instructions in parallel,

the final implementation would closely resemble a very efficient

FPGA implementation.

Figure 9 (b) shows the speedups and distributions for the

FPGA implementations. The FPGA data path operates at the

maximum clock frequency of 116MHz, a factor of 17X slower

than the BASE. C1 operates on only one 16-byte block yet

performs remarkably well, attaining 56X speedup over the

BASE. We can also see in Figure 10 that C1 only requires 566

total cycles to encrypt one block. The data path generates

decrypted text in 504 cycles, while the memory interface adds 63

more cycles... Since there is no instruction fetching and/or

control instructions, the FPGA data path spends 11% of its time

accessing memory, and 89% of the time computing on the

decrypted text. Compared to the BASE, C1 speeds up the

memory operations by 1140X, and the computational

instructions by 37X. Using Amdahl’s law and factoring in the

FPGA AES clock speed (116MHz), the overall speedup is 56X.

Loop unrolling offers more opportunity for speedup. Loop

unrolling can mean decrypting different blocks within the same

encrypted message, or different encrypted messages altogether.

Duplicating the loop once (C2), twice (C3), and four times (C4)

results in 111X, 217X, and 409X speedup, respectively, over the

BASE. An analysis of C3 shows that 14% of the time is spent

accessing memory, and 86% is spent on computation. Loop

unrolling twice requires four times the amount of data, and thus

the memory bandwidth requirement increases, but not linearly

since the FPGA can stream data on both the rising and falling

edges of the clock. C3 has longer memory latency since four data

paths require data, but the memory streams the data, resulting in

more efficient memory accesses. Despite fetching data from the

same 32-bit DDR interface, the circuit can now stream data 400X

more efficiently than software platforms can access memory

since they have to multiplex between memory, support, and

direct computation instructions.

Figure 9: (a) AES running on different software platforms. Eliminating the instruction fetch speeds up AES by ~5X (b) Different FPGA

implementations

Figure 10: AES. Computation per 128-bit block

Base MIPS (BASE) 89438

Perfect I-Cache (S2) 41438

Superscalar*4 & No I-fetch (S5) 5285

Implementation Cycles per AES Block

Perfect Pipeline (S6) 11760

FPGA data path (C1) 566

Full Pipeline (C9) 2

SW

FPGA Loop Unroll 1 (C2) 286

FPGA implementations can further hide the memory latency

behind the previous computation stage. The next four bars (C5-

C8) show that by pipelining the memory stage with the

computation such that data is always ready for the computation,

the FPGA can achieve 123X, 242X, and 458X speedups over the

main software implementation when the main loop is unrolled

once (C6), twice(C7), and four times(C8). The pipelining of the

memory accesses gains an average 11% over loop unrolling

alone (C1-C4). Further, AES can be fully pipelined. A fully

pipelined AES circuit can reach over 4000X speedup over the

BASE, effectively completing a 128-bit block each clock cycle.

In contrast, the BASE requires almost 19,000 cycles to complete

the same task.

6. Quantification of the FPGA Memory

Interface

One of the most important and often overlooked elements of

FPGA speedup (or slowdown) is the memory interface to the

FPGA. The previous sections have shown that FPGA

implementations thrive by being able to exploit parallelism at

many different levels, including the instruction and loop levels.

But, if the FPGA application requires more data in a given cycle

than the memory interface can allow, the FPGA will suffer a

latency penalty for accessing too much data from the memory.

For example, the N-body data path requires eight 32-bit elements

per cycle to perform one computation. The memory interface

only allowed for two data elements a cycle, thereby reducing the

throughput of the data path from one computation per cycle to

one computation per four cycles (for the pipelined

implementations). The analysis also showed that duplicating the

data path multiple times resulted in no extra speedup over just

one pipelined N-body circuit. This was precisely because the

memory interface was not even large enough to effectively

handle one pipeline, let alone multiple.

In this section, we quantify the effects of the memory

interface on the FPGA speedup. We will concentrate our analysis

on the N-body example presented in Section 3. The resulting

analysis is similar for the other examples. We compare running

the N-body simulation from three forms of memory on the FPGA

platforms, DDR-2 RAM, SRAM, and onboard Block RAMs

(BRAM). The first type of memory is commonplace in PCs and

is now appearing on many new FPGA boards due to its economy

of scale and price. The second type is favored in embedded

systems due to its predictable response times. It is more

expensive and uses more area than DDR memory chips. The

third type is unique to FPGAs and many embedded chips that

provide “scratchpad” memories of one type or another. It is

available in the most limited quantities and the price is hard to

assess since it is built into the FPGA or embedded processor. The

ML401 board provides 64 MB of DDR memory, 1 MB of

SRAM memory, and up to 162 KB of BRAM. There are many

other types of memories with different properties, but our

analysis of these three basic types should suffice to illustrate the

most relevant performance issues.

The DDR-2 RAM specifications are summarized in Figure

11. The DDR-2 RAM has a 32-bit interface and runs at 266

MHz. DDR-2 (Dual Data Rate) reads two data elements per

cycle, one on the rising edge of the clock, and one on the falling

edge, thus doubling the DDR’s given bandwidth. Because it can

burst data in packs of four or eight 32-bit data elements, the

DDR-2 RAM can stream a large amount of data assuming the

data is contiguous in memory. We assume the data is stored in

Figure 11: DDR-2 RAM Specification Summary.

Figure 12: Execution Times(s)(on a log scale) for N-body using three different memory interfaces, one with DDR-2, one with SRAM,

and one with BRAM.

Speed 266 MHz

Bank Size 64 MB

Bus Width 32 bits

of Banks 1

RAS 28 cycles

Burst Length 4 or 8

Page Boundary 8 kB

Active to Refresh 70 ns

Refresh All 7.8 us

memory contiguously to allow the memory controller to take

advantage of the streaming data capabilities. DDR-2 technology

is built using one transistor and one capacitor for each bit of

storage, meaning at specific time intervals, the memory must be

refreshed. A more thorough explanation of how dynamic RAM

works can be found at [19]. Consequently, DDR-2 must be

refreshed every time the memory controller accesses a new page,

and on two specific timing intervals, including the active to pre-

charge time interval and the refresh all time interval. The penalty

for refreshing is 28 cycles, symbolized by the row access strobe

(RAS) in the figure for the DDR-2 [13] on our development

platform. We use only one bank of 32-bit memory, but a designer

that plans to target an FPGA might take advantage of an even

more custom memory interface with more banks to both reduce

the refresh penalties and offer more memory bandwidth.

The second memory on the FPGA platform is the SRAM.

The SRAM also runs at 266 MHz, and has a memory latency of 5

cycles. But, as with the DDR-2, the SRAM can also stream data

using a burst command and a smart memory controller. The

memory interface to the SRAM is 32-bits, allowing one 32-bit

data element per cycle, or half the bandwidth of the DDR-2.

However, the SRAM does not have to ever refresh itself due to

the technology on which it is built upon [19].

The third memory technology we focus our quantitative

analysis on is block RAM (BRAM). BRAMs are small

distributed RAMs located throughout the FPGA fabric that allow

the designer to create custom, high bandwidth solutions at

compile time. Thus, a designer can easily create a large 128-bit,

256-bit, etc. size bus for the particular application at hand. One

drawback of BRAM is there is often little storage (162 KB of

data storage vs. 64 MB for DDR-2). With a smart memory

controller, a designer could also potentially stream data from the

DDR-2 to the BRAM interface to give the application much

greater bandwidth.

For the purposes of quantitatively assessing speedup, we

only concentrate on performance of the three memory

technologies in creating custom memory interfaces, but there are

certainly tradeoffs to utilizing any of the three in a particular

implementation, including area, power, and size.

Figure 12 shows the execution times for running the same N-

body application from Section 3 with DDR-2, SRAM, and

BRAM interfaces. We varied the number of bodies run in the

simulation from 512 to 1,024,000, running on a fully pipelined

version of the FPGA data path (C9). As expected, the BRAM

implementation was able to deliver the most memory to the

FPGA data path per cycle, resulting in a 7.2X-8X speedup over

the SRAM implementation, and 4.5X-5X speedup over the

DDR-2 memory interface. Similarly, the N-body implementation

with the DDR-2 interface runs approximately 1.57X-1.6X faster

than the N-body FPGA application running with an SRAM

interface. As we did for the different application

implementations, we break up the elements of speedup for each

of the memory interfaces.

We first look at the elements of speedup comparing the

SRAM and DDR-2 interfaces to the N-body circuit, shown in

Figure 13. Ideally, given that both DDR-2 and SRAM have the

same bus width, and both run at the same clock frequency, DDR-

2 should be able to attain 2X speedup over the SRAM interface

because of DDR-2’s ability to fetch two memory words every

cycle. Due to the refresh and startup overheads, the DDR-2 is not

able to achieve the ideal speedup figures. We broke up the actual

speedup into several elements, including paging penalty, active

to refresh transitions, refresh all, and startup overhead. The

paging penalty is the cost of accessing memory that spans the

page boundary of the DDR-2. As shown in Figure 11, the DDR-2

has a page boundary of 8 KB and if all of the application data

can be kept within one page, there is no page penalty for

accessing data on a different page. Every time the application

pages, the application must take a paging penalty equal to the

time to access a new row (RAS), or 28 cycles. The active to

refresh time refers to the fact that an active row must be

refreshed at a given interval to ensure the memory data stays

Figure 13: Analysis of SRAM and DDR-2 Interfaces. DDR-2 should attain 2X speedup, but several factors prevent it from approaching

the ideal speedup.

valid. In this case, the active to refresh time is 70ns. The active to

refresh also means that we must activate a row again at the RAS

time interval. Finally, all the rows in a DDR-2 must periodically

be refreshed, meaning that we must activate the current row

again once the refresh has taken place. The refresh all time

models this penalty in the overall execution time.

Figure 13 shows the DDR-2 speedup over SRAM as a

fraction of the ideal speedup of DDR-2 over SRAM. For most of

the execution runs, the paging penalty accounts for 39% of the

slowdown compared to the ideal speedup accounted for on

bandwidth alone. For the smallest example, startup overhead

accounts for 1% of the slowdown. The startup overhead

disappears for all but the smallest examples since the memory

controller does not need to activate the DDR-2 memory. The

active refresh and refresh all overheads account for less than .5%

of the slowdown. Combining the 2X bandwidth speedup and the

slowdowns associated with paging penalty costs and refreshing

the memory at dedicated intervals, the DDR-2 still performs

consistently better than SRAM wherever the examples stream a

large amount of contiguous memory.

We provide a similar analysis showing how a BRAM

interface attains such a large speedup compared to a DDR-2

interface for the N-body simulation. As stated earlier, the BRAM

interface is able to achieve a 4.5X-5X speedup over the DDR-2

implementation mostly by using a much larger bus width, but the

speedup alone does not really explain the whole story. Figure 14

shows how a BRAM interface is able to achieve much greater

speedups than the DDR-2 interface. For each example, we

created a custom 256-bit interface to the FPGA data path by

combining the BRAMs into one wide bus. We distributed the

data into the BRAM such that a separate BRAM memory was

connected to a data path input. Thus, we could completely fill the

FPGA pipeline and deliver a new result every cycle once the

pipeline is filled. Figure 14 shows that roughly 80% of the

speedup comes from the fact that the BRAM has can deliver

more data to the FPGA data path than DDR-2 can. Recall that

the bus width of DDR-2 is 32 bits but can deliver two words per

cycle. The BRAM thus has a 4X greater bus width, accounting

for most of the speedup. The smaller examples on the left show

that the data path doesn’t actually get 4X speedup on bandwidth

alone. This is because the data path still hasn’t been completely

utilized. In most of the examples though, the bandwidth accounts

for 4X of the speedup. As we saw in the analysis of DDR-2 and

SRAM interfaces, BRAM attains 19% more speedup because the

DDR-2 frequently has to page, adding cycles that neither the

BRAM nor the SRAM suffer. For large examples, the paging

penalty pushes the BRAM speedup over DDR-2 to 5X. The

refresh penalties, including the active to refresh time and the

refresh all times, add an insignificant amount of speedup.

Because the N-body application is streaming data from a

contiguous memory, the paging penalty completely dominates

any notion of refreshing at dedicated intervals.

7. Conclusion

We analyzed how FPGAs attain so much speedup over their

sequential software counterparts. Our goal is to provide

researchers and engineers a quantitative intuition how to attack

the problem of parallelizing certain applications, both for

software and FPGA platforms. We presented an extensive

quantitative analysis of three different applications, a baseline N-

body simulation, a JPEG compressor, and an AES decryption

algorithm. By first showing how each application ran on both a

baseline MIPS processor and several ideal optimized software

architectures, and breaking up the execution time into several

elements, we created a spectrum that visually and intuitively

showed how an FPGA gathers speedup. The superscalar models

showed how FPGAs can exploit instruction level parallelism.

Platforms without an instruction fetch closely modeled the fact

that FPGAs have no instruction fetch phase. We then compared

those ideal optimized platform executions to several FPGA

implementations, with varying levels of loop unrolling and

pipelining. We showed how FPGA implementations lose cycles

by eliminating the software instruction fetch, hiding the control

instructions, executing multiple instructions in parallel, and

pipelining those instructions. We then quantitatively showed

Figure 14: Analysis of BRAM and DDR-2 Interfaces. A BRAM interface is able to achieve 5X speedup over a DDR-2 interface even though

the bandwidth is only 4X greater. The rest of the speedup comes from paging penalty and refresh penalty cycles.

how the memory interface to the FPGA affects the performance.

We showed that custom interfaces enabling high bandwidth

enable much greater speedups, and that current development

boards will always have a memory bottleneck for large FPGA

applications. There are penalties from using DDR memory,

which is the most appealing from a price-area-capacity

viewpoint. The penalties can be limited to about 20%, but only

when the data is arranged in very large and contiguous blocks.

BRAMS are the easiest and most flexible way to create large and

custom memory busses, which are very effective means to

achieve speedups up to 8X over SRAM and ~5X over DDR. The

very limited capacity of BRAMS means that they must be used in

conjunction with some other external memory for most practical

applications.

References

[1] AGOSTINI, L., B. SERGIO., AND SILVA, I. High Throughput

Architecture of JPEG Compressor for Color Images

Targeting FPGAs. ICECS 2006.

[2] ALTERA CORPORATION. http://www.altera.com

[3] BEECKLER, J. S. AND GROSS, W. J. 2005. FPGA Particle

Graphics Hardware. FCCM 2005

[4] BHASKARAN, V. AND KONSTANTINIDES, K. Image and Video

Compression Standards Algorithms and Architectures

Second Edition. Kluwer Academic Publishers, USA, 1999.

[5] DAEMEN, J. AND RIJMEN, V. The Design of Rijndael. AES-

The Advanced Encryption Standard. Springer 2002.

[6] DE MICHELI, G. Synthesis and Optimization of Digital

Circuits. McGraw Hill Higher Education. 1994

[7] DEHOHN, A. The Density Advantage of Configurable

Computing. IEEE Computer, vol. 33, No.4, April 2000

[8] ELBIRT, A.J., YIP W., CHETWYND, B. AND PAAR C. An

FPGA Implementation and Performance Evaluation of the

AES Block Cipher Candidate Algorithm. AES Candidate

Conference. 2000.

[9] FCCM. Field-Programmable Custom Computing Machines

Conference. http://www.fccm.org

[10] FPGA. International Symposium on Field-Programmable

Gate Arrays. http://www.ece.wisc.edu/~kati/isfpga/

[11] FORIN, A. , NEEKZAD, B. ,AND LYNCH, N. Giano: The Two-

Headed System Simulator. Microsoft Technical Report?

[12] GUO, Z., NAJJAR, W., VAHID, F., AND VISSERS, K. 2004. A

quantitative analysis of the speedup factors of FPGAs over

processors. FPGA '04

[13] INFINEON TECHNOLOGIES. HYB25D256 256-Mbit SDRAM

Data Sheet. January 2003. Version 1.1

[14] LIENHART, G., KUGEL, A. AND MANNER, R. Using Floating

Point Arithmetic on FPGAs to Accelerate Scientific N-body

Simulations. FCCM 2002.

[15] MEYER, K. AND HALL, G. Introduction to Hamiltonian

Dynamical Systems and the N-body Problem. Springer

Publishing 2002.

[16] PENNEBAKER, W. AND MITCHELL, J. JPEG Still Image Data

Compression Standard. Van Nostrand, 1992.

[17] PITTMAN, R.N, LYNCH, N., AND FORIN, A. eMIPS, a

Dynamically Extensible Processor. Microsoft Technical

Report. October 2006.

[18] TSOI, K. H., LEE, K. H., AND LEONG, P. H. 2002. A

Massively Parallel RC4 Key Search Engine. FCCM

[19] VAHID, F. AND GIVARGIS, T. Embedded Systems Design: A

Unified Hardware/Software Introduction. Wiley Publishing

2001

[20] VILLEREAL, J. AND NAJJAR, W. Compiler Hardware

Acceleration of Molecular Dynamics Code. FPL 2008.

[21] WHITTON, K., HU, X. S., YI, C. X., AND CHEN, D. Z. 2006.

An FPGA Solution for Radiation Dose Calculation.FCCM

[22] XILINX, INC. http://www.xilinx.com

http://www.altera.com/

