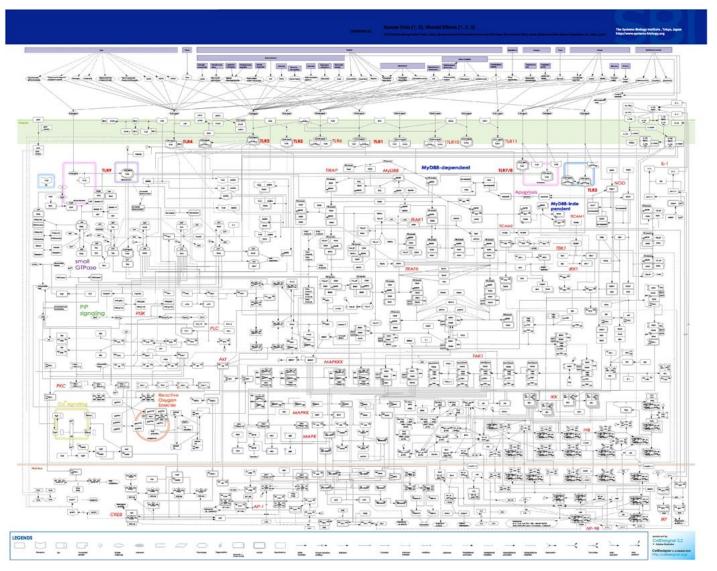

A Visual Programming Language for Biological Processes

Andrew Phillips with Luca Cardelli

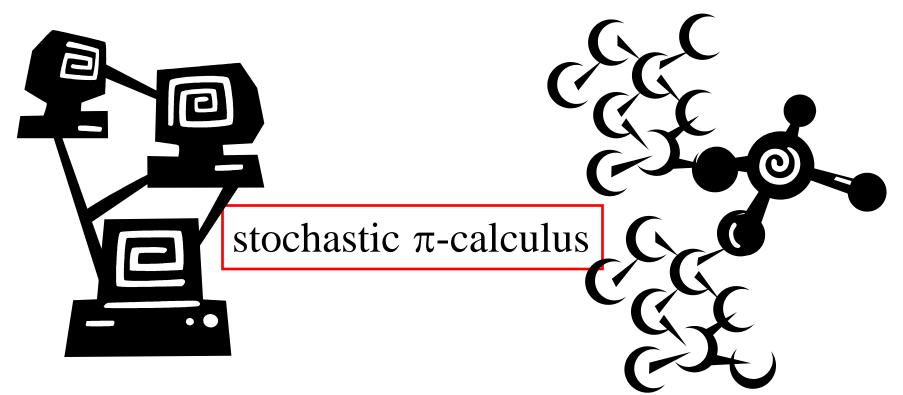
Microsoft Research, Cambridge UK


Biological Computing

Systems Biology

- The Human Genome project:
 - Map out the complete genetic code in humans
 - To unravel the mysteries of how the human body functions
 - The code raised many more questions than answers
- Systems Biology:
 - Understand and predict the behaviour of biological systems
- Two complementary approaches:
 - Look at experimental results and infer system properties
 - Build detailed models of systems and test these in the lab
- Biological Modelling:
 - Conduct virtual experiments, saving time and resources
 - Clarify key mechanisms of how a biological system functions
 - Beginning to play a role in understanding disease

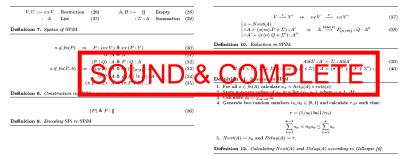
Large, Complex, Biological Models

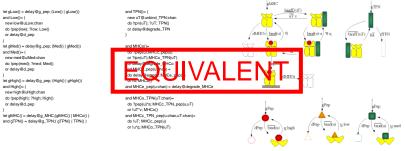

Biological Programming

- Complex Models:
 - Difficult to understand, maintain and extend
 - Hundreds of reactions, soon to be tens of thousands
 - Would not write a program as a list of 10000 instructions
- Modularity:
 - Need a way of decomposing a model into building blocks
 - Not your average computer programs
 - Massive parallelism, each instruction has a certain probability
 - Suggests a need for a biological programming language...

Programming Languages for Biology

Languages for <u>complex</u>, <u>parallel</u> computer systems:

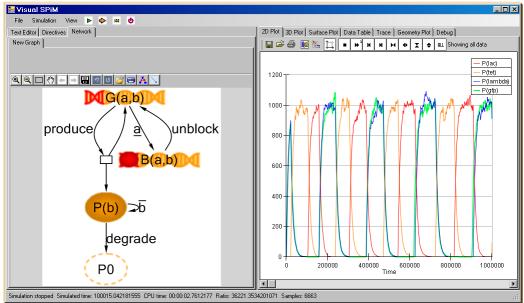

Languages for <u>complex</u>, <u>parallel</u> biological systems:


 π -calculus by [Milner et al. 1989]. Stochastic version by [Priami et al. 1995] First used in a biological context by [Regev et al. 2001]

Language Development

Exact Stochastic Simulation Algorithm

Graphical Representation and Execution Model


Graphical Editor and Simulator

and Low()= (

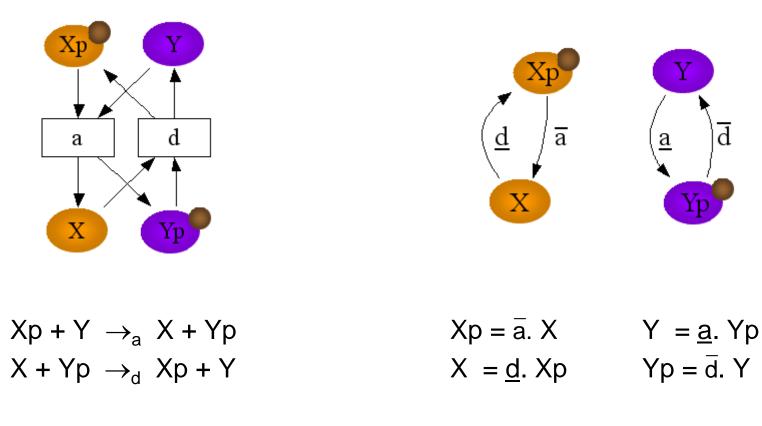
or delay@d_pep

and High()= (

or delay@d_pep

GUI by Filippo Polo, MSR Cambridge

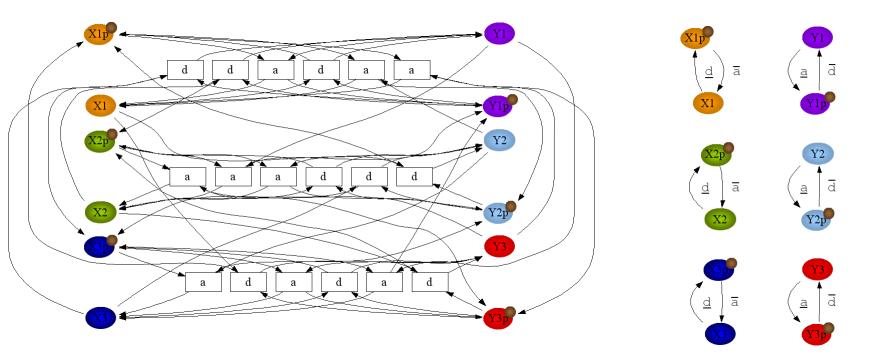
Phillips and Cardelli, 2004 Phillips, Cardelli and Castagna, 2006 Phillips and Cardelli, 2007


SPiM: Stochastic π for Biology

- A variant of stochastic π calculus
 - Supports expressive power of π
 - Graphical syntax and semantics
 - Biological constructs, e.g. complexation
 - Efficient implementation

Message-Passing Approach

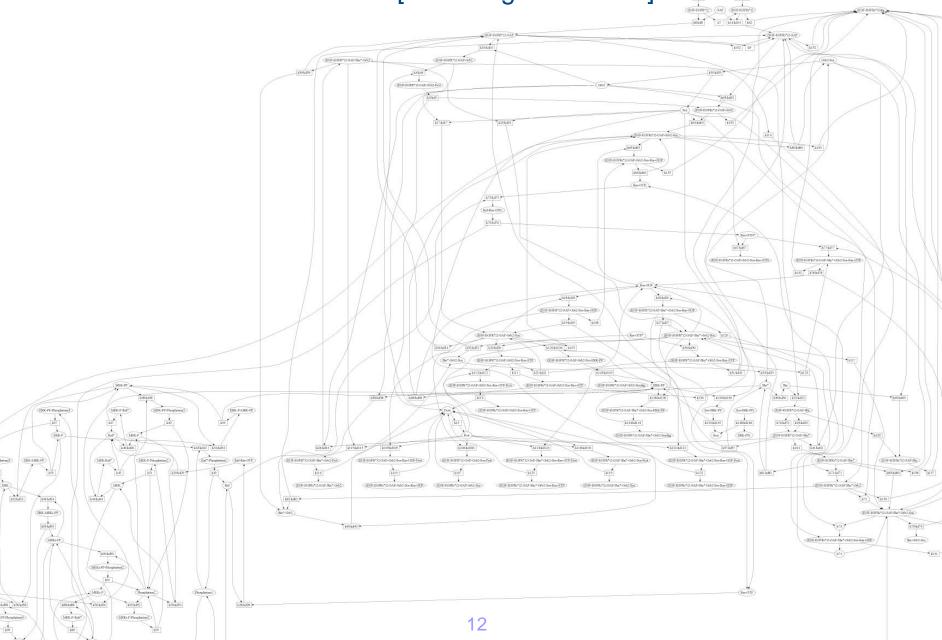
Chemical Reactions


SPiM Processes

Compact, Modular Models

Chemical Reactions

SPiM Processes



EGFR Model [Hornberg et. al 2005]

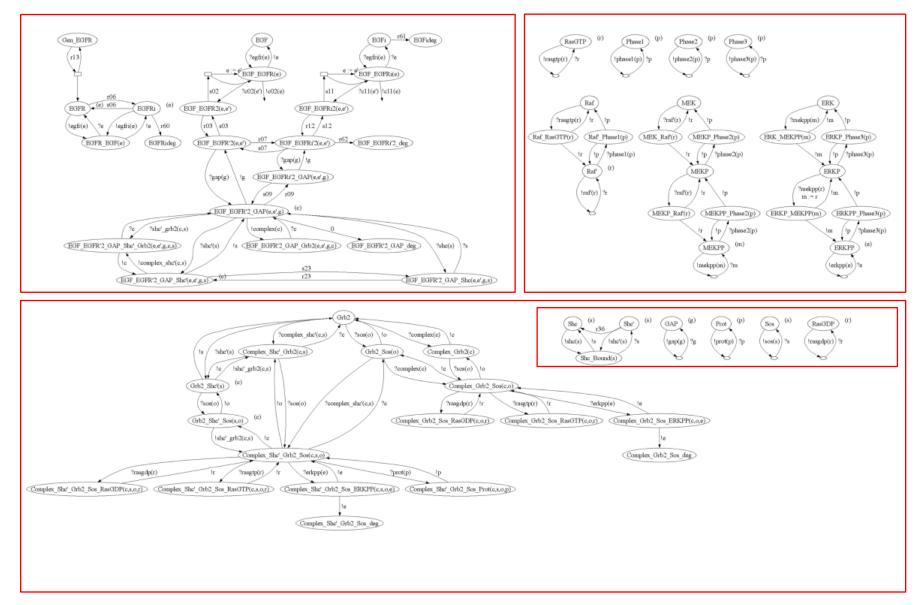
1 [EGFR]+[EGF] ↔ [EGF-EGFR] 2 [EGF-EGFR]+[EGF-EGFR] ↔ [(EGF-EGFR)2] 3 [(EGF-EGFR)2] ↔ [(EGF-EGFR*)2] 4 [(EGF-EGFR*)2-GAP-Grb2]+[Prot] ↔ [(EGF-EGFR*)2-GAP-Grb2-Prot] 5 [(EGF-EGFR*)2-GAP-Grb2-Prot] → [(EGF-EGFRi*)2-GAP-Grb2]+[Proti] 6 [EGFR] ↔ [EGFRi] 7 [(EGF-EGFR*)2] → [(EGF-EGFRi*)2] 8 [(EGF-EGFR*)2]+[GAP] \rightarrow [(EGF-EGFR*)2-GAP] 9 [(EGF-EGFR*)2-GAP] \rightarrow [(EGF-EGFR*)2-GAP] 10 [EGFRi]+[EGFi] ↔ [EGF-EGFRi] 11 [EGF-EGFRi]+[EGF-EGFRi] ↔ [(EGF-EGFRi)2] 12 [(EGF-EGFRi)2] ↔ [(EGF-EGFRi*)2] 13 → [EGFR] 14 [(EGF-EGFRi*)2]+ [GAP] \leftrightarrow [(EGF-EGFRi*)2-GAP] 15 [Proti] → [Prot] 16 [(EGF-EGFR*)2-GAP]+[Grb2] ↔ [(EGF-EGFR*)2-GAP-Grb2] 17 [(EGF-EGFR*)2-GAP-Grb2]+[Sos] ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos] 18 [(EGF-EGFR*)2-GAP-Grb2-Sos]+[Ras-GDP] ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP] 19 [(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP] ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos]+[Ras-GTP] 20 [Ras-GTP*]+[(EGF-EGFR*)2-GAP-Grb2-Sos] ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP] 21 [(EGF-EGFR^{*})2-GAP-Grb2-Sos-Ras-GTP] ↔ [(EGF-EGFR^{*})2-GAP-Grb2-Sos]+[Ras-GDP] 22 [(EGF-EGFR^{*})2-GAP]+[Shc] ↔ [(EGF-EGFR^{*})2-GAP-Shc] 23 [(EGF-EGFR*)2-GAP-Shc] ↔ [(EGF-EGFR*)2-GAP-Shc*] 24 [(EGF-EGFR*)2-GAP-Shc*]+[Grb2] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2] 25 [(EGF-EGFR*)2-GAP-Shc*-Grb2]+[Sos] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos] 26 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos]+[Ras-GDP] → [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] 27 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] + [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos] + [Ras-GTP] 28 [Raf]+[Ras-GTP] ↔ [Raf-Ras-GTP] 29 [Raf-Ras-GTP] ↔ [Raf*]+[Ras-GTP*] 30 [Ras-GTP"]+[[EGF-EGFR*]2-GAP-Shc*-Grb2-Sos] ↔ [[EGF-EGFR*]2-GAP-Shc*-Grb2-Sos-Ras-GTP] 31 [[EGF-EGFR*]2-GAP-Shc*-Grb2-Sos-Ras-GTP] ↔ [[EGF-EGFR*]2-GAP-Shc*-Grb2-Sos]+[Ras-GDP] 32 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos] ↔ [(EGF-EGFR*)2-GAP]+[Shc*-Grb2-Sos] 33 [Shc*-Grb2-Sos] ↔ [Grb2-Sos]+[Shc*] 34 [(EGF-EGFR*)2-GAP-Grb2-Sos] ↔ [(EGF-EGFR*)2-GAP]+[Grb2-Sos] 35 [Grb2-Sos] ↔ [Grb2] +[Sos] 36 [Shc*] ↔ [Shc] 37 [(EGF-EGFR*)2-GAP-Shc*] ↔ [(EGF-EGFR*)2-GAP]+[Shc*] 38 [Shc*]+[Grb2] ↔ [Shc*-Grb2] 39 [(EGF-EGFR*)2-GAP-Shc*-Grb2] ↔ [(EGF-EGFR*)2-GAP]+[Shc*-Grb2] 40 [Shc*-Grb2]+[Sos] ↔ [Shc*-Grb2-Sos] 41 [(EGF-EGFR*)2-GAP-Shc*1 + [Grb2-Sos] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos] 42 [Raf*]+[Phosphatase1] ↔ [Raf*-Phosphatase1] 43 [Raf*-Phosphatase1] \rightarrow [Raf]+[Phosphatase1] 44 [MEK] + [Raf*] \leftrightarrow [MEK-Raf*] 45 [MEK-Raf*] → [MEK-P] +[Raf*] 46 [MEK-P]+[Raf*] ↔ [MEK-P-Raf*] 47 [MEK-P-Raf*] → [MEK-PP] + [Raf*] 48 [MEK-PP]+[Phosphatase2] ↔ [MEK-PP-Phosphatase2] 49 [MEK-PP-Phosphatase2] → [MEK-P] + [Phosphatase2] 50 [MEK-P]+[Phosphatase2] ↔ [MEK-P-Phosphatase2] 51 [MEK-P-Phosphatase2] → [MEK]+[Phosphatase2] 52 [ERK]+[MEK-PP] ↔ [ERK-MEK-PP] 53 [ERK-MEK-PP] → [ERK-P]+[MEK-PP] 54 [ERK-P]+[MEK-PP] ↔ [ERK-P-MEK-PP] 55 [ERK-P-MEK-PP] → [ERK-PP]+[MEK-PP] 56 [ERK-PP]+[Phosphatase3] ↔ [ERK-PP-Phosphatase3] 57 [ERK-PP-Phosphatase3] → [ERK-P]+[Phosphatase3] 58 [ERK-P] + [Phosphatase3] \leftrightarrow [ERK-P-Phosphatase3] 59 [ERK-P-Phosphatase3] \rightarrow [ERK]+[Phosphatase3] 60 [EGFRi] → [EGFRideg] 61 [EGFi]→ [EGFidea] 62 [(EGF-EGFRi*)2] → [(EGF-EGFRi*)2deg] 63 [(EGF-EGFRi*)2-GAP]+[Grb2] ↔ [(EGF-EGFRi*)2-GAP-Grb2] 64 [(EGF-EGFRi*)2-GAP-Grb2]+[Sos] ↔ [(EGF-EGFRi*)2-GAP-Grb2-Sos] 65 [(EGF-EGFRi*)2-GAP-Grb2-Sos]+[Ras-GDP] ↔ [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GDP] 66 [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GDP] ↔ [(EGF-EGFRi*)2-GAP-Grb2-Sos]+[Ras-GTPi] 67 [Ras-GTPi*]+[(EGF-EGFRi*)2-GAP-Grb2-Sos] ↔ [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GTPi] 68 [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GTP] ↔ [(EGF-EGFRi*)2-GAP-Grb2-Sos]+[Ras-GDP] 69 [(EGF-EGFRi*)2-GAP]+[Shc] ↔ [(EGF-EGFRi*)2-GAP-Shc] 70 [[EGF-EGFR*]2-GAP-Shc¹] ↔ [[EGF-EGFR*]2-GAP-Shc¹] 71 [[EGF-EGFRi*]2-GAP-Shc^{*}]+[Grb2] ↔ [[EGF-EGFRi*]2-GAP-Shc*-Grb2] 146 [(EGF-EGFRi*)2-GAP-Grb2-Sos-ERKi-PP] ↔ [(EGF-EGFRi*)2-GAP-Grb2-Sos]deg+[ERKi-PP] 147 [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-ERKi-PP] ↔ [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos]deg+[ERKi-PP] 148 [Sos-ERK-PPi] ↔ [Sosi]+[ERK-PPi]

72 [(EGF-EGFRi*)2-GAP-Shc*-Grb2]+[Sos] ↔ [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] 73 [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos]+[Ras-GDP] ↔ [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] 74 [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] ↔ [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] + [Ras-GTPi] 75 [Raf]+[Ras-GTPi] ↔ [Raf-Ras-GTPi] 76 [Raf-Ras-GTPi] ↔ [Rafi*]+[Ras-GTPi*] 77 [Ras-GTPi*]+[(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] ↔ [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GTP] 78 [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GTP] ↔ [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos]+[Ras-GDP] 79 [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] ↔ [(EGF-EGFRi*)2-GAP]+[Shc-Grb2-Sos] 80 [(EGF-EGFRi*)2-GAP-Grb2-Sos] ↔ [(EGF-EGFRi*)2-GAP]+[Grb2-Sos] 81 [(EGF-EGFRi*)2-GAP-Shc*] ↔ [(EGF-EGFRi*)2-GAP]+[Shc*] 82 [(EGF-EGFRi*)2-GAP-Shc*-Grb2] ↔ [(EGF-EGFRi*)2-GAP]+[Shc*-Grb2] 83 [(EGF-EGFRi*)2-GAP-Shc*] + [Grb2-Sos] ↔ [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] 84 [Rafi*]+[Phosphatase1] ↔ [Rafi*-Phosphatase1] 85 [Rafi*-Phosphatase1] → [Raf]+[Phosphatase1] 86 [MEK] + [Rafi*] ↔ [MEK-Rafi*] 87 [MEK-Rafi*] → [MEKi-P] +[Rafi*] 88 [MEKI-P]+[Rafi*] ↔ [MEK-P-Rafi*] 89 [MEK-P-Rafi*] → [MEKi-PP] + [Rafi*] 90 [MEKi-PP]+[Phosphatase2] ↔ [MEKi-PP-Phosphatase2] 91 [MEKi-PP-Phosphatase2] → [MEKi-P] + [Phosphatase2] 92 [MEKi-P]+[Phosphatase2] ↔ [MEKi-P-Phosphatase2] 93 [MEKi-P-Phosphatase2] → [MEK]+[Phosphatase2] 94 [ERK]+[MEKi-PP] ↔ [ERK-MEKi-PP] 95 [ERK-MEKi-PP] \rightarrow [ERKi-P]+[MEKi-PP] 96 [ERKi-P]+[MEKi-PP] \leftrightarrow [ERKi-P-MEKi-PP] 97 [ERKi-P-MEKi-PP] → [ERKi-PP]+[MEKi-PP] 98 [ERKi-PP]+[Phosphatase3] → [ERKi-PP-Phosphatase3] 99 [ERKi-PP-Phosphatase3] → [ERKi-P]+[Phosphatase3] 100 [ERKi-P] + [Phosphatase3] ↔ [ERKi-P-Phosphatase3] 101 [ERKi-P-Phosphatase3] → [ERKi+Phosphatase3] 102 [[EGF-EGFR⁺]2-GAP] → [[EGF-EGFRi⁺]2-GAP] 103 [[EGF-EGFR⁺]2-GAP-Shc] → [[EGF-EGFRi⁺]2-GAP-Shc] 104 [(EGF-EGFR*)2-GAP-Shc*] → [(EGF-EGFRi*)2-GAP-Shc*] 105 [(EGF-EGFR*)2-GAP-Grb2-Sos] → [(EGF-EGFRi*)2-GAP-Grb2-Sos] 106 [(EGF-EGFR*)2-GAP-Grb2-Sos]+[Prot] ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos-Prot] 107 [(EGF-EGFR*)2-GAP-Grb2-Sos-Prot] → [(EGF-EGFRi*)2-GAP-Grb2-Sos]+[Proti] 108 [[EGF-EGFR*]2-GAP-Grb2-Sos-Ras-GDP] → [[EGF-EGFRi*]2-GAP-Grb2-Sos-Ras-GDP] 109 [[EGF-EGFR*]2-GAP-Grb2-Sos-Ras-GDP]+[Prot] ↔ [[EGF-EGFR*]2-GAP-Grb2-Sos-Ras-GDP-Prot] 110 [(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP-Prot] -> [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GDP]+[Proti] 111 [(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP] → [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GTP] 112 [[EGF-EGFR*]2-GAP-Grb2-Sos-Ras-GTP]+[Prot] ↔ [[EGF-EGFR*]2-GAP-Grb2-Sos-Ras-GTP-Prot] 113 [[EGF-EGFR*]2-GAP-Grb2-Sos-Ras-GTP-Prot] → [[EGF-EGFRi*]2-GAP-Grb2-Sos-Ras-GTP]+[Proti] 114 [(EGF-EGFR*)2-GAP-Shc*-Grb2] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2] 115 [(EGF-EGFR*)2-GAP-Shc*-Grb2]+[Prot] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Prot] 116 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Prot] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2]+[Proti] 117 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] 118 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos]+[Prot] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Prot] 119 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Prot] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos]+[Proti] 120 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] 121 [CEGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP]+[Prot] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP-Prot] 122 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP-Prot] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GDP]+[Proti] 123 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GTP] 124 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP]+[Prot] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP-Prot] 125 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP-Prot] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GTP]+[Proti] 126 [(EGF-EGFR*)2-GAP-Grb2-Sos]+[ERK-PP] ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos-ERK-PP] 127 [(EGF-EGFRi*)2-GAP-Grb2-Sos]+[ERKi-PP] ↔ [(EGF-EGFRi*)2-GAP-Grb2-Sos-ERKi-PP] 128 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos]+[ERK-PP] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-ERK-PP] 129 [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos]+[ERKi-PP] ↔ [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-ERKi-PP] 130 [Sos]+[ERK-PP] ↔ [Sos-ERK-PP] 131 [Sos]+[ERKi-PP] ↔ [Sos-ERKi-PP] 132 [(EGF-EGFRi^{*})2-GAP] \rightarrow [(EGF-EGFRi^{*})2deg] 133 [(EGF-EGFRi^{*})2-GAP-Grb2] \rightarrow [(EGF-EGFRi^{*})2deg] 134 [(EGF-EGFRi*)2-GAP-Grb2-Sos] → [(EGF-EGFRi*)2deg] 135 [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GDP] → [(EGF-EGFRi*)2deg] 136 [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GTP] → [(EGF-EGFRi*)2deq] 137 [(EGF-EGFRi*)2-GAP-Shc] → [(EGF-EGFRi*)2deg] 138 [[CGF-EGFRi*]2-GAP-Shc*] → [[CGF-EGFRi*]2deg] 139 [[CGF-EGFRi*]2-GAP-Shc*] → [[CGF-EGFRi*]2deg] 140 [[CGF-EGFRi*]2-GAP-Shc*-Grb2-Sos] → [[CGF-EGFRi*]2deg] 141 [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] → [(EGF-EGFRi*)2deg] 142 [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GTP] → [(EGF-EGFRi*)2deq] 143 [(EGF-EGFR*)2-GAP-Grb2-Sos-ERK-PP] ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos]deg+[ERK-PP] 144 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-ERK-PP] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos]deg+[ERK-PP] 145 [Sos-ERK-PP] ↔ [Sosi]+[ERK-PP]

EGFR Model [Hornberg et. al 2005]

BOF BOR DOR BOR BORNE

(BOF-BOFR)


kMed3

kildit

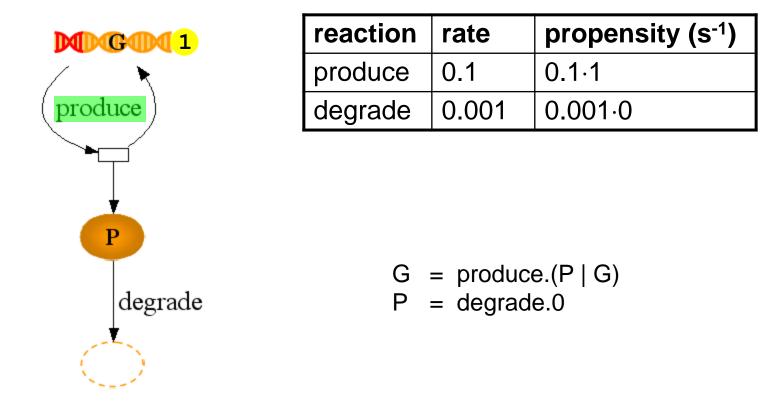
(EOF-BOFR)

k126d12

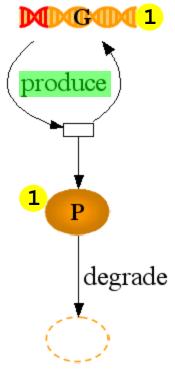
Modular EGFR

Outline

Basic Examples

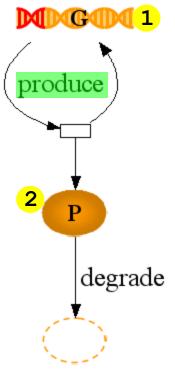

Gene Networks

• C. elegans Development

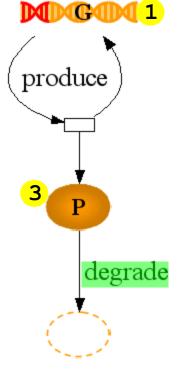

Immune System Modelling

Basic SPiM Examples

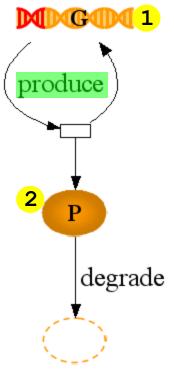
Protein Production Protein Interaction Protein Binding



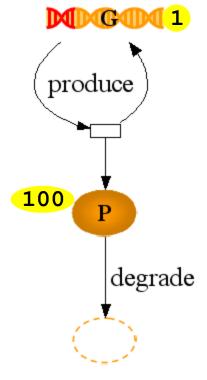
- A protein P can be produced with propensity 0.1
- Probability of a reaction depends on propensity
- Exact simulation: what happens next?


reaction	propensity (s ⁻¹)
produce	0.1
degrade	0.001

- Another protein *P* can be produced
- 100 times more likely to produce than degrade

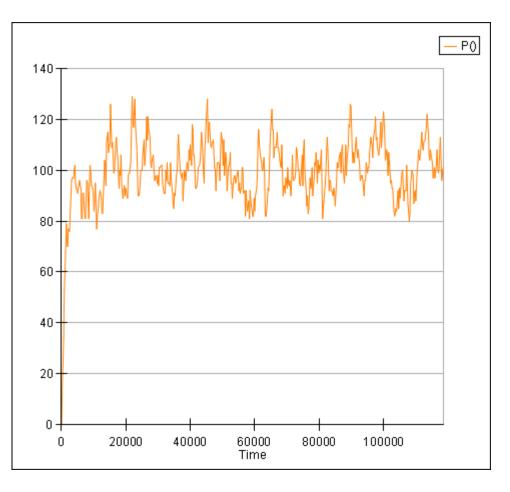

reaction	propensity (s ⁻¹)
produce	0.1
degrade	0.001.2

And another...

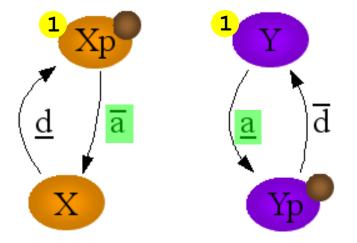

reaction	propensity (s ⁻¹)
produce	0.1
degrade	0.001.3

- A protein *b* can be degraded at rate 0.001
- Low probability, but still possible

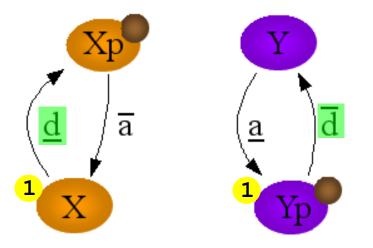
reaction	propensity (s ⁻¹)
produce	0.1
degrade	0.001.2


Eventually...

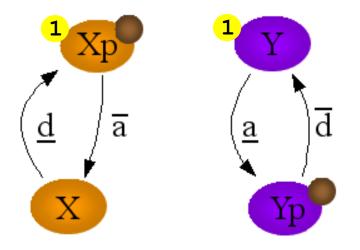
reaction	propensity (s ⁻¹)
produce	0.1
degrade	0.001.100


- Equilibrium at about 100 proteins.
- Propensities of both reactions are equal.

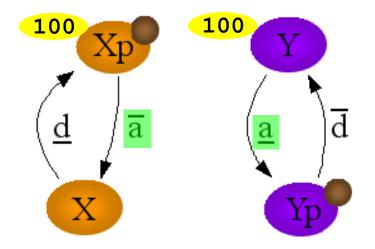
Gene Simulation



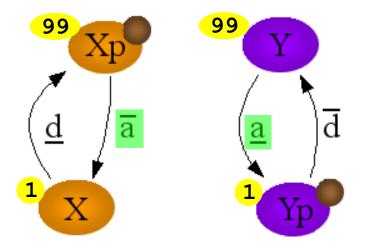
- Simulation results show evolution over time
- Level of protein *P* fluctuates around 100


$$Xp = \overline{a}$$
. X $Y = \underline{a}$. Yp $X = \underline{d}$. Xp $Yp = \overline{d}$. Y

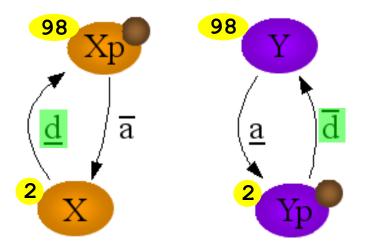
- Xp and Y can interact on channel a
- Xp activates Y by sending its phosphate group



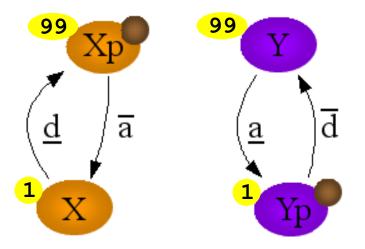
X and Yp can interact on channel d


Interactions can continue indefinitely...

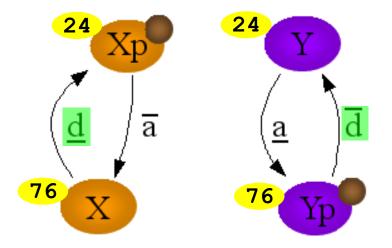
reaction	propensity (s ⁻¹)
а	100.100.100
d	0


- What happens if we mix 100·Xp and 100·Y?
- Assume $rate(a) = 100s^{-1}$ and $rate(d) = 10s^{-1}$
- An Xp and Y protein can interact on channel a.

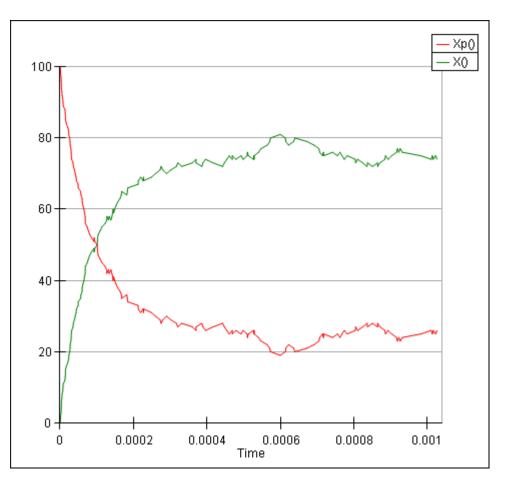
reaction	propensity (s ⁻¹)
а	100.99.99
d	10.1.1


• An additional *Xp* and *Y* protein can interact.

reaction	propensity (s ⁻¹)
а	100.98.98
d	10.2.2

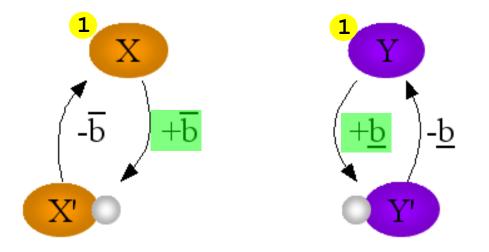

An X and Yp protein can interact

reaction	propensity (s ⁻¹)
а	100.99.99
d	10.1.1

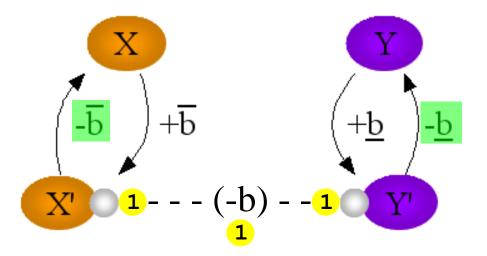


Eventually an equilibrium is reached...

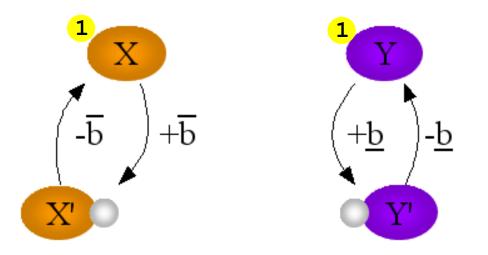
reaction	propensity (s ⁻¹)
а	100.24.24
d	10.76.76



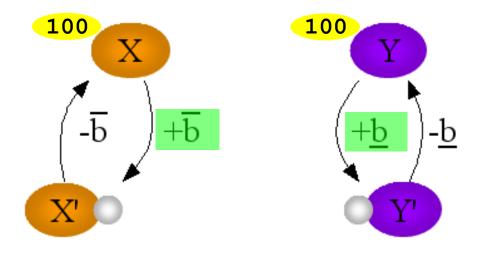
At equilibrium when rate(a)·[Xp][Y] \approx rate(d)·[X][Yp]



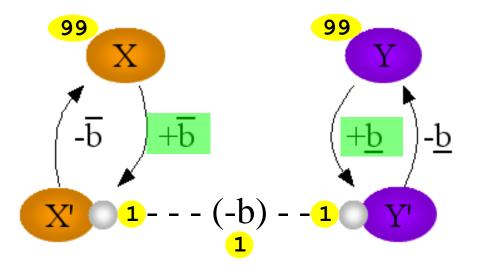
- At equilibrium: $100s^{-1} \cdot [Xp][Y] \approx 10s^{-1} \cdot [X][Yp]$
- Approximately $24 \cdot Xp$ and $76 \cdot X$


$$X = {}^{+}\overline{b}.X' \qquad Y = {}^{+}\underline{b}.Y'$$
$$X' = {}^{-}\overline{b}.X \qquad Y' = {}^{-}\underline{b}.Y$$

X and Y can bind on channel +b

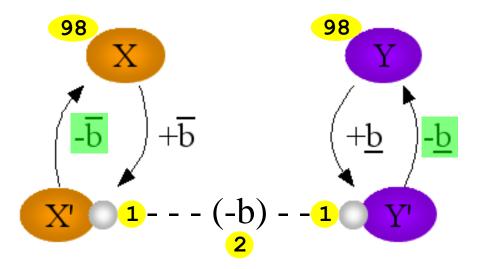


X' and Y' can unbind on channel ⁻b


Binding and unbinding can continue indefinitely...

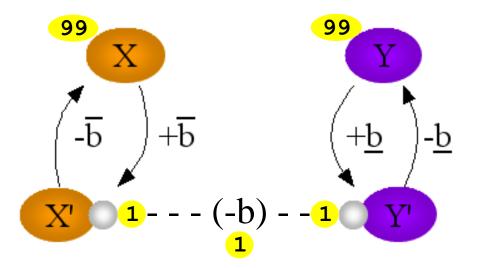
reaction	propensity (s ⁻¹)
+b	100.100.100
-p	0

- What happens if we mix $100 \cdot X$ and $100 \cdot Y$?
- Assume $rate(+b) = 100s^{-1}$ and $rate(-b) = 10s^{-1}$
- An X and Y protein can bind on channel +b.


reaction	propensity (s ⁻¹)
+b	100.99.99
-p	10.1

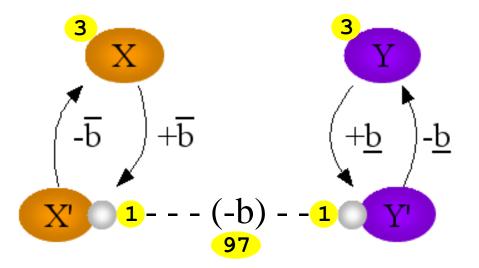
• An additional X and Y protein can bind.

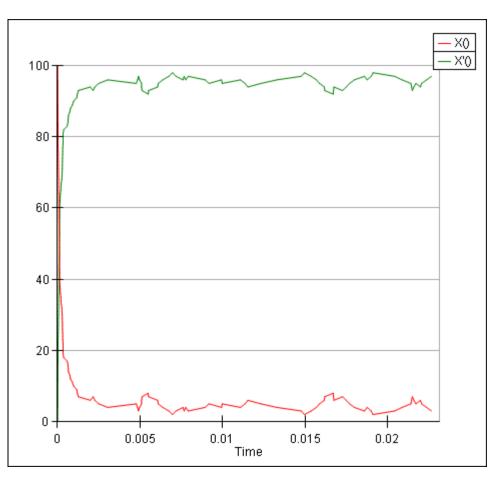
Binding: $X + Y \rightarrow b X'Y'$


reaction	propensity (s ⁻¹)	
+b	100.98.98	
-p	10.2	

An X' and Y' protein can unbind on channel ⁻b

Binding: $X + Y \rightarrow b X'Y'$

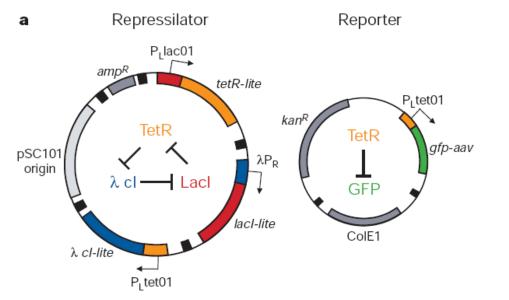

reaction	propensity (s ⁻¹)	
+b	100.99.99	
-p	10.1	

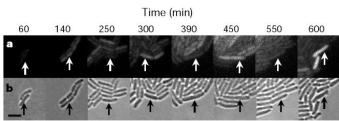

Binding: $X + Y \rightarrow b X'Y'$

reaction	propensity (s ⁻¹)	
+b	100.3.3	
-p	10.97	

At equilibrium when rate(^+b)·[X][Y] \approx rate(^-b)·(^-b) ([X] [Y])

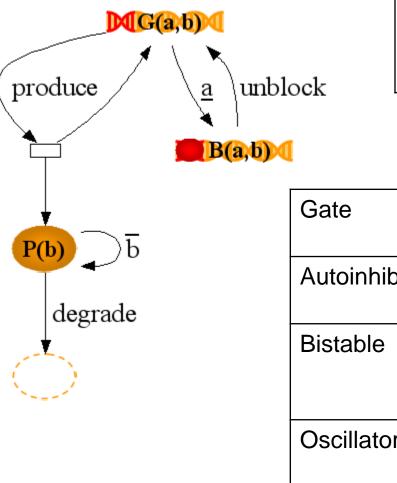
Binding: $X + Y \rightarrow b X'Y'$


- At equilibrium: $100s^{-1} \cdot [X][Y] = 10s^{-1} \cdot [X'Y']$
- Approximately $3 \cdot X$ and $97 \cdot X'Y'$


Programming Gene Networks

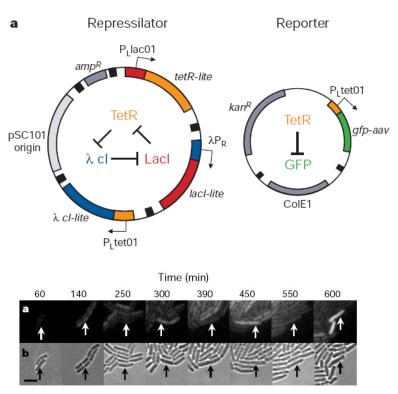
with Luca Cardelli (MSR Cambridge) Ralf Blossey (IRI Lille)

Repressilator [Elowitz and Leibler, 2000]


A gene network engineered in live bacteria.

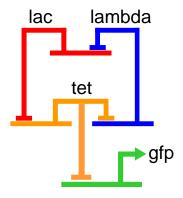
© 2000 Elowitz, M.B., Leibler. S. A Synthetic Oscillatory Network of Transcriptional Regulators. Nature 403:335-338.

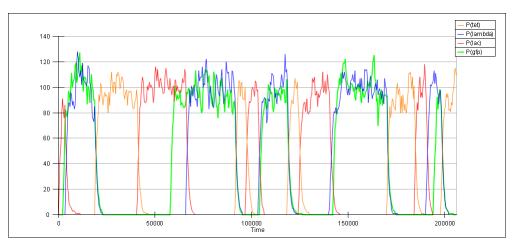
Parameterised Gene Gate

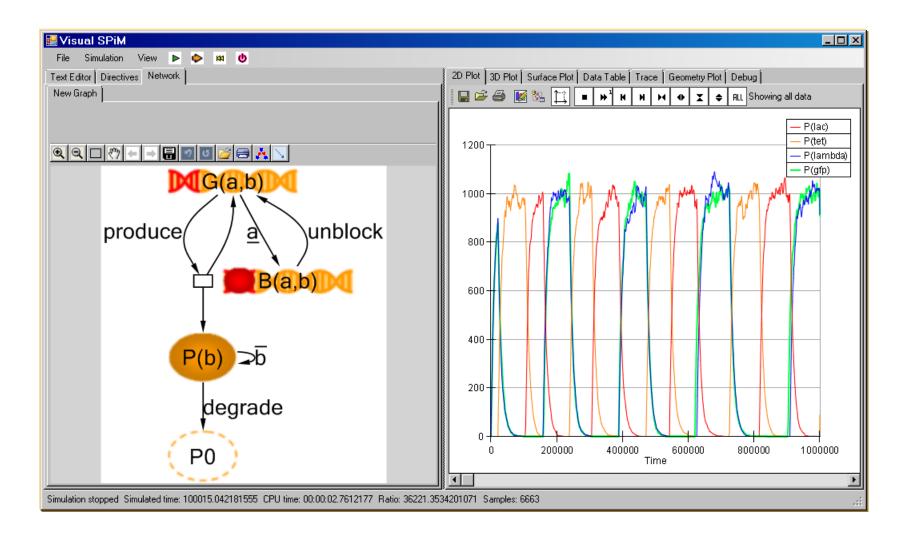


$$\begin{array}{ll} G(a,b) &= \underline{a}.B(a,b) + \text{produce.}(P(b) \mid G(a,b)) \\ B(a,b) &= \text{unblock.}G(a,b) \\ P(b) &= \overline{b}.P(b) + \text{degrade.}0 \end{array}$$

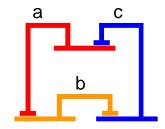
Gate	G(a,b)	a 1 🕞 b
Autoinhibitory	G(b,b)	b
Bistable	G(a,b) G(b,a)	a
Oscillator	G(a,b) G(b,c) G(c,a)	a c b

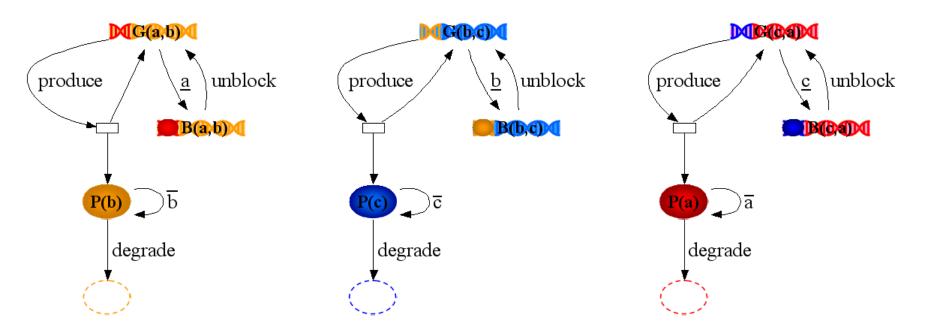

Repressilator [Elowitz and Leibler, 2000]

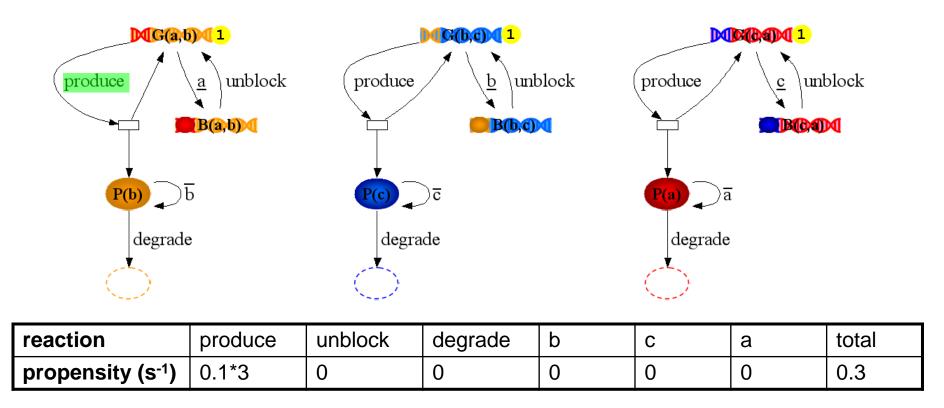

Modelled as a simple combination of gene gates:


© 2000 Elowitz, M.B., Leibler. S. A Synthetic Oscillatory Network of Transcriptional Regulators. Nature 403:335-338.

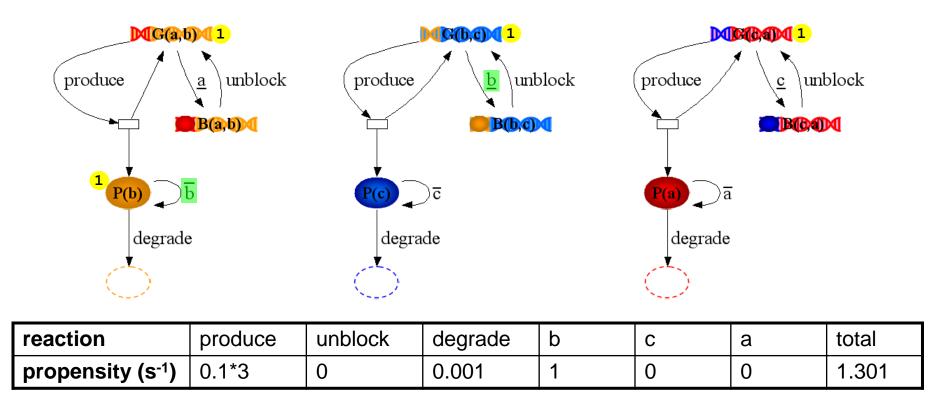
G(lac,tet) | G(tet,lambda) | G(lambda,lac) | G(tet,gfp)



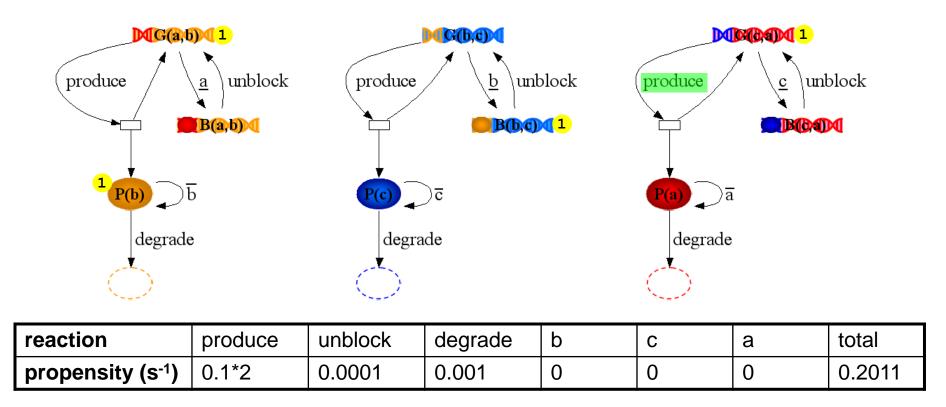

Graphical Programming


How does the oscillator work?

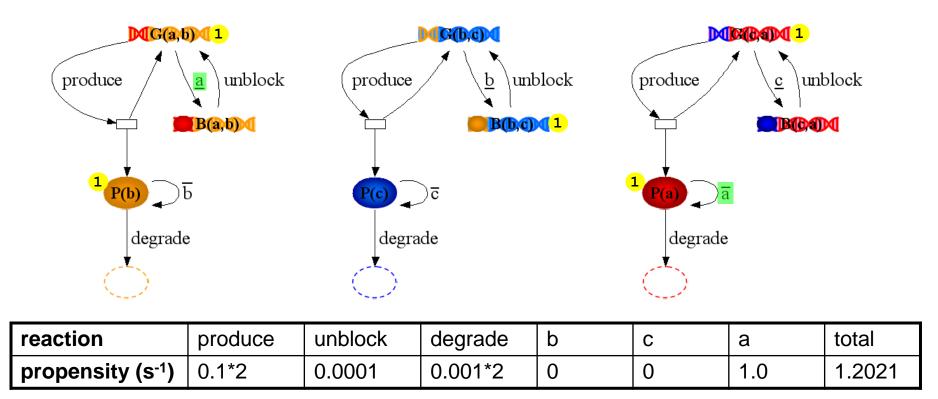
G(a,b) | G(b,c) | G(c,a)



Oscillator: Os


- Initially there is one copy of each gene
- Any one of the proteins can be produced at rate 0.1

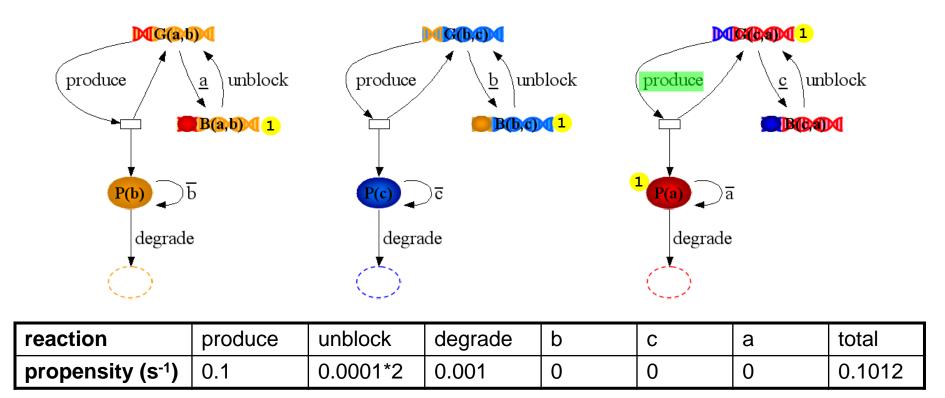
Oscillator: 5.568177s


• The *b* protein can block the *c* gene at rate 1

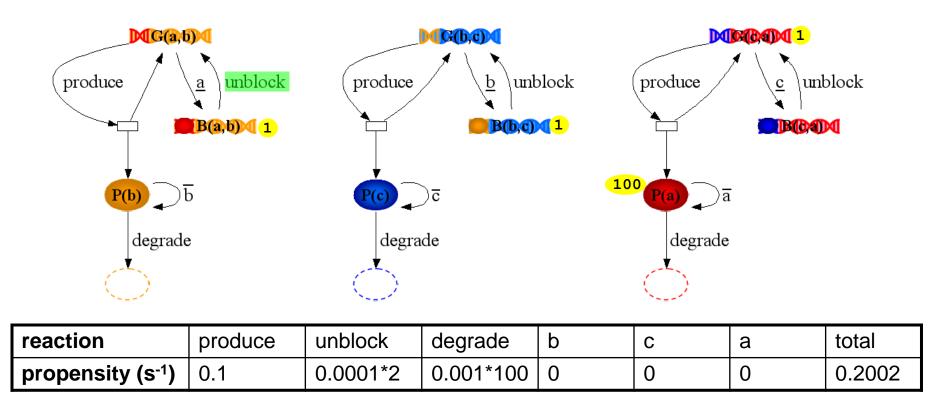
Oscillator: 6.329912s

- Now no *c* protein can be produced.
- But an a protein can still be produced at rate 0.1

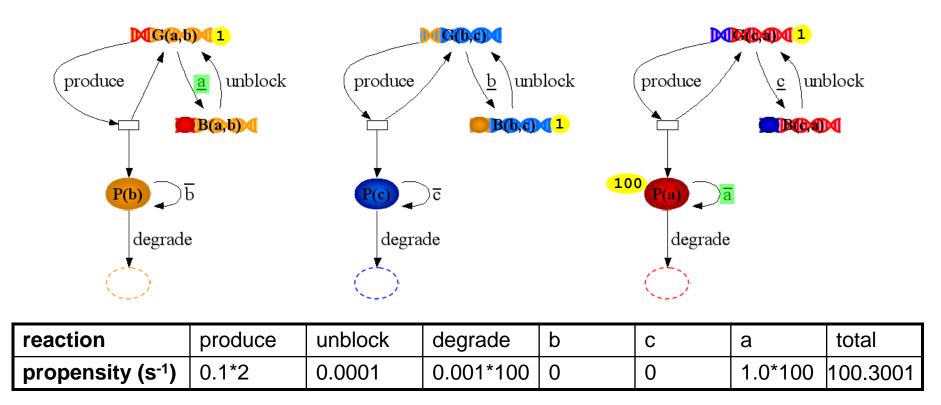
Oscillator: 11.62149s


The a protein can block the b gene at rate 1

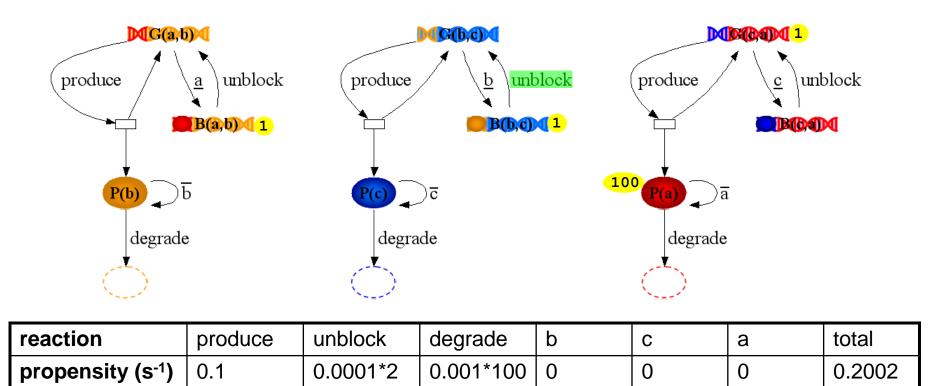
Oscillator: 13.21617s


- Now no b or c protein can be produced.
- A b protein can degrade at rate 0.001

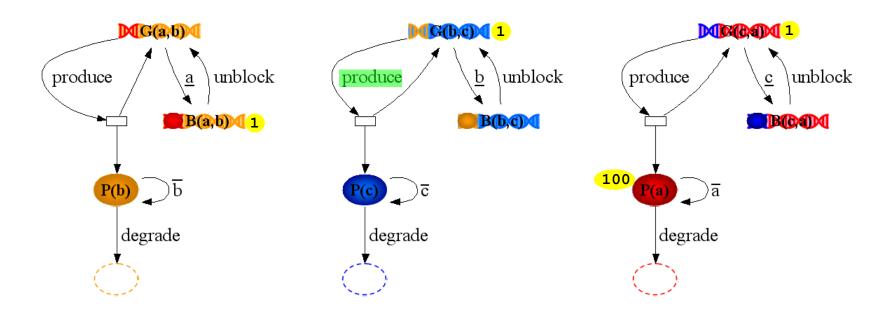
Oscillator


Meanwhile, lots of a protein is produced

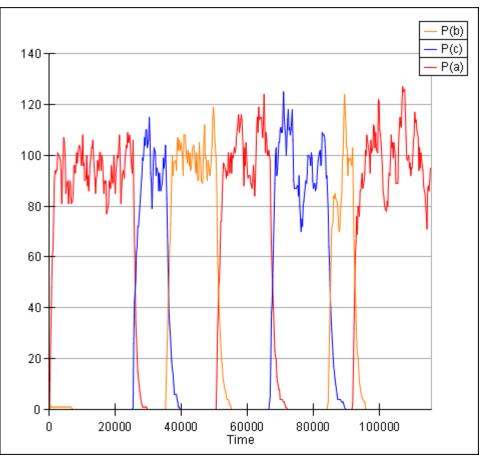
Oscillator


- The *a* protein dominates
- Equilibrium between transcription and degradation
- Eventually, the c or a gene unblocks at rate 0.0001

Oscillator

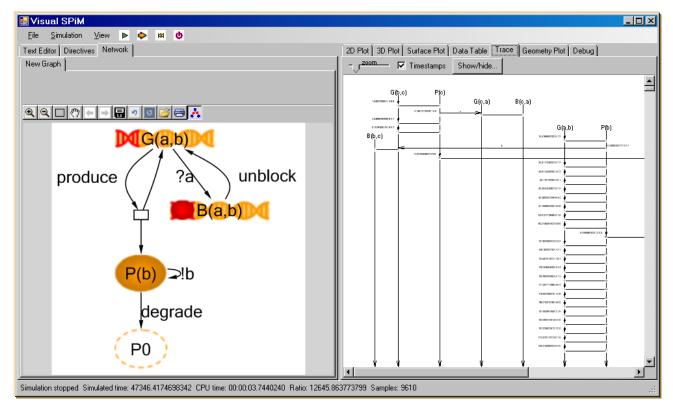

- Suppose the *a* gene unblocks
- There is a high probability that it will block immediately

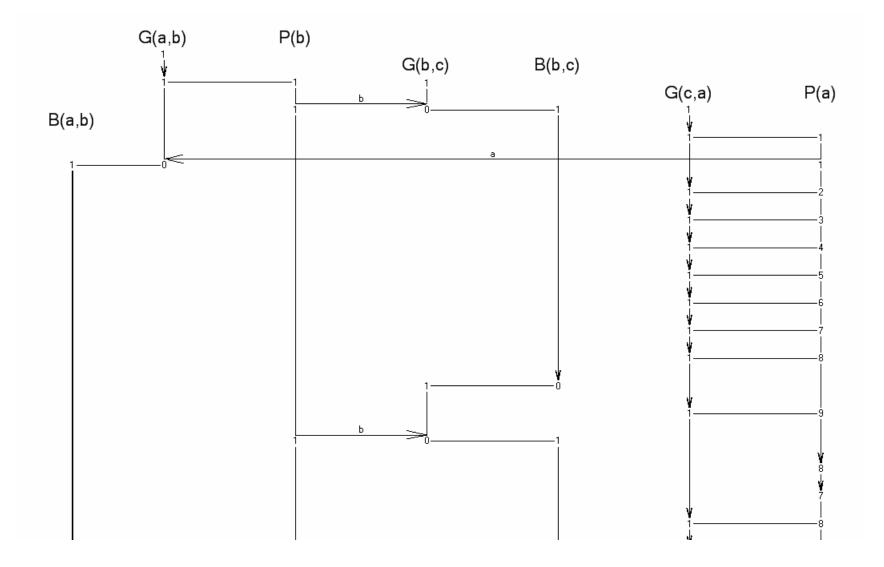
Oscillator: 11039.31s


Eventually, the c gene unblocks at rate 0.0001

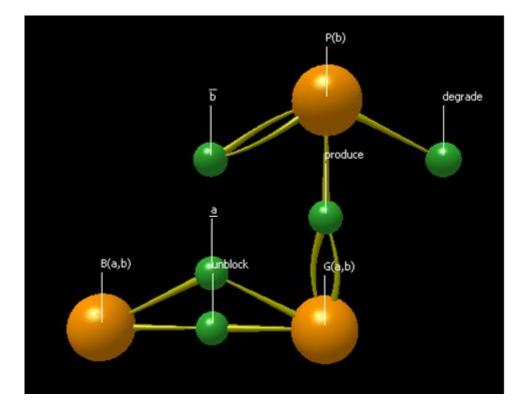
Oscillator: 11039.77s

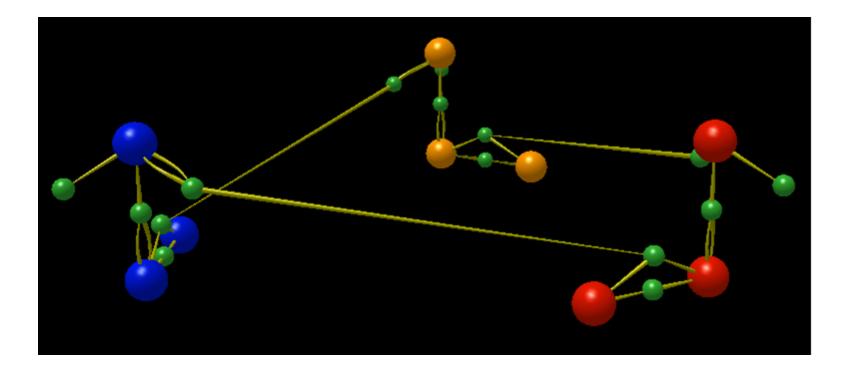
- There is nothing to block the *c* gene.
- The *c* protein can now take over...
- Eventually...

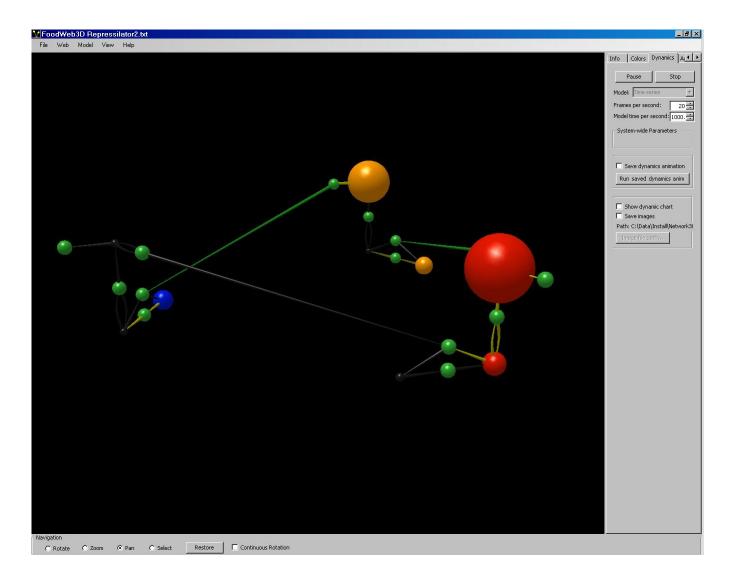

Oscillator Simulation


- Alternate oscillation of proteins: b, c, a, b
- Oscillations in a particular order

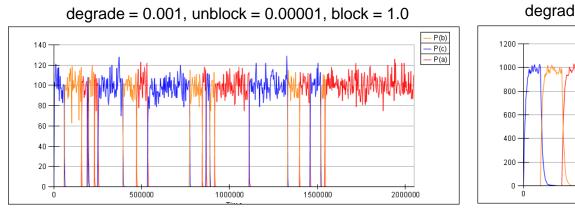
Analysing Simulation Traces

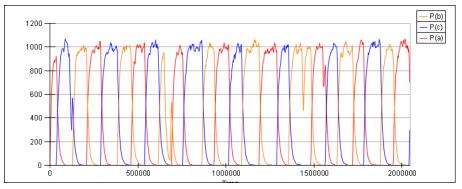

- A simulation trace can be visualised as a sequence of messages exchanged between parallel processes.
- Can debug a biological system in a similar way to a communication protocol. Causality, critical paths...

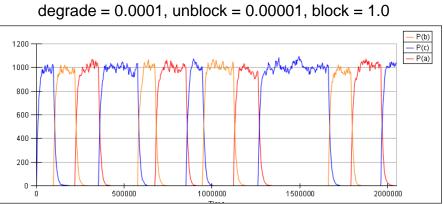

Repressilator Trace


A Gene Gate in 3D

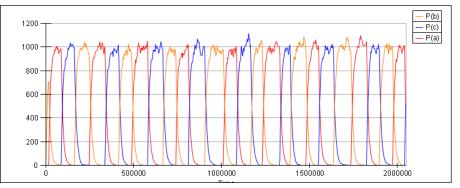
The Repressilator in 3D


Graphical Debugging

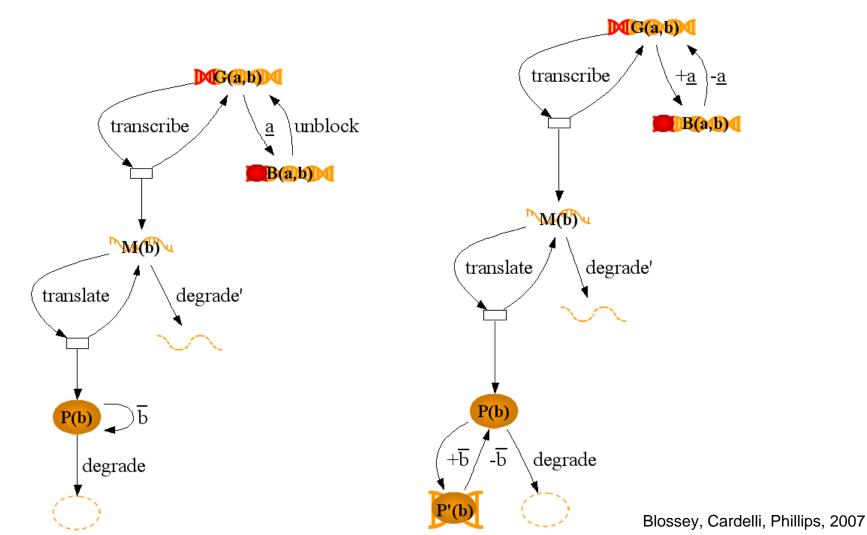

GUI by Rich Williams, MSR Cambridge


Parameter Analysis

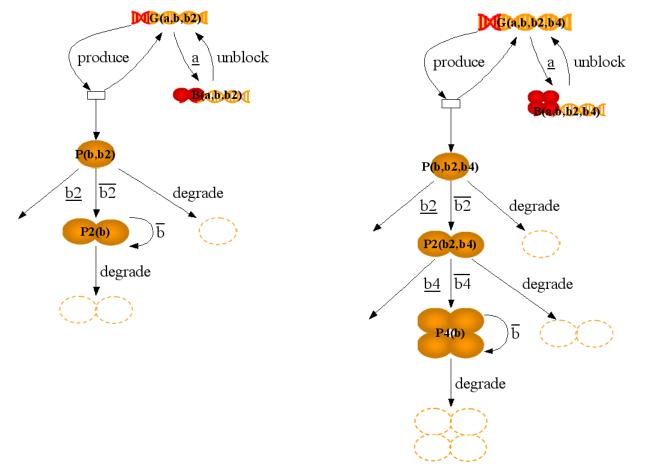
Range of parameters for good oscillations (produce=0.1): produce/degrade > 1000, unblock > degrade, block > 100*produce



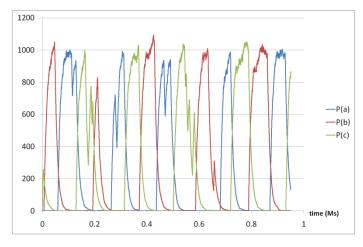
degrade = 0.0001, unblock = 0.0001, block = 1.0

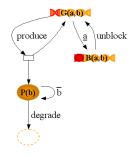

degrade = 0.0001, unblock = 0.0001, block = 10.0

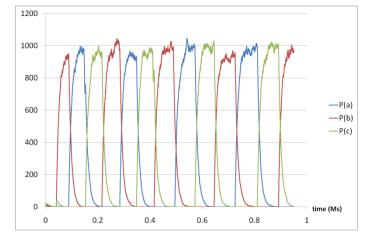
Blossey, Cardelli, Phillips, 2007

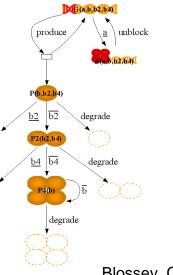

Model Refinement:

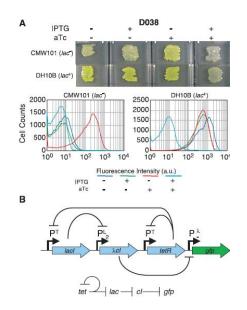
Different behaviour, same network G(a,b) | G(b,c) | G(c,a)


Cooperativity improves robustness

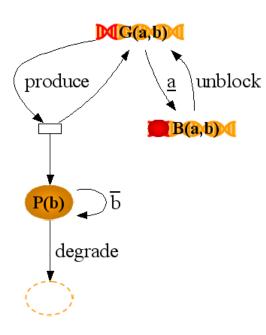

Proteins form complexes before repressing

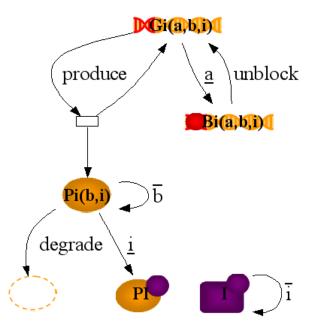

Cooperativity Simulations

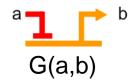

Monomers

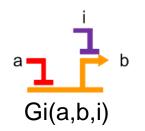

Tetramers

Blossey, Cardelli, Phillips, 2007

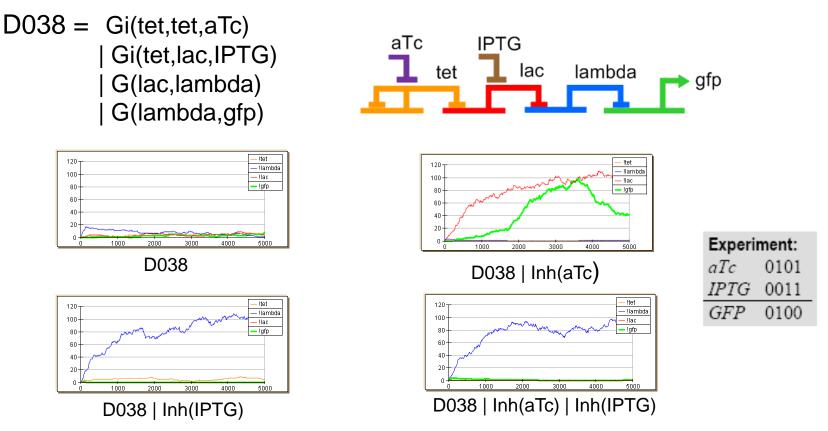

Bacteria Logic Gates [Guet et al., 2002]




© 2002 AAAS. Reprinted with permission from Guet et al. Combinatorial Synthesis of Genetic Networks. Science 296 (5572): 1466 - 1470


- 3 genes: tetR, lacl, λ cl
- 5 promoters: PL1, PL2, PT, Pλ-, Pλ+
- 125 possible networks consisting of 3 promoter-gene units
- 2 inputs: IPTG (represses Lac), aTc (represses Tet)
- I output: GFP (linked to Pλ-)

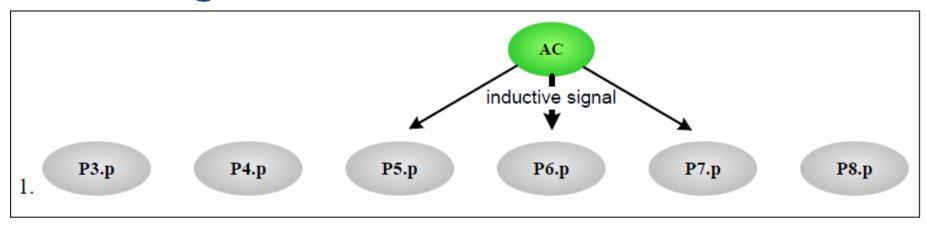
Gene with protein inhibitor

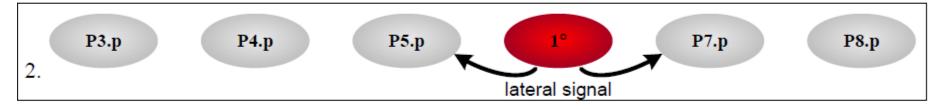


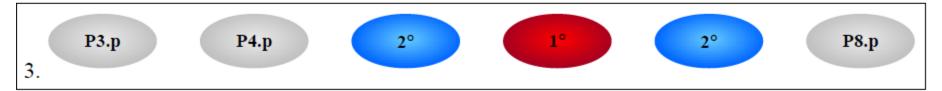
Bacteria Logic Gates

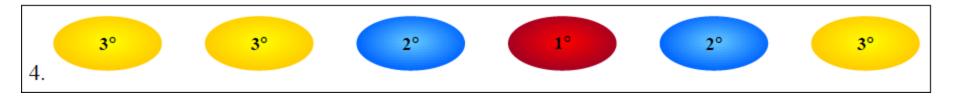
- Model 125 networks using just 2 modules:
- Enables modular simulation and analysis
- Can easily refine the modules without rewiring the networks.

A Computational Model of C. elegans Vulval Development

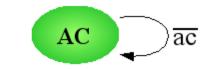

with Rosie Bloxsom (Cambridge University) Tim Labeeuw (Cambridge University) Jasmin Fisher (MSR Cambridge) Hillel Kugler (MSR Cambridge)

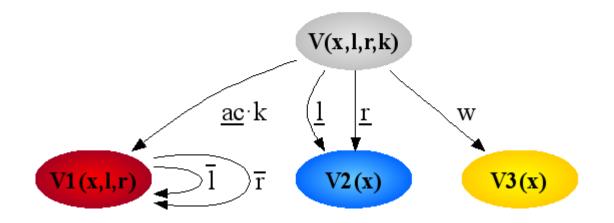

C. elegans Nematode Worm

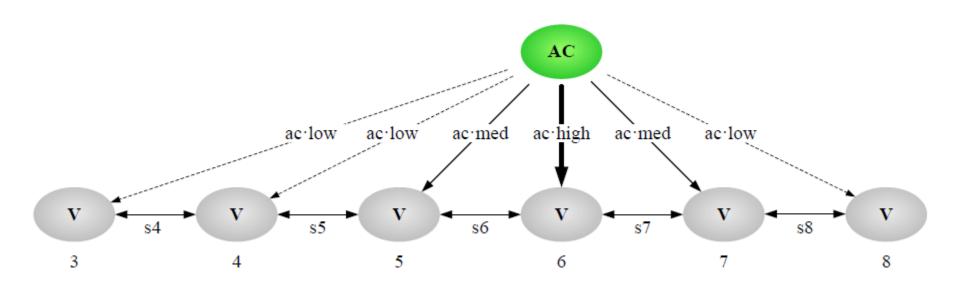

- Model organism for development
- 1mm long, about 1000 cells
- Completely transparent, can observe growth



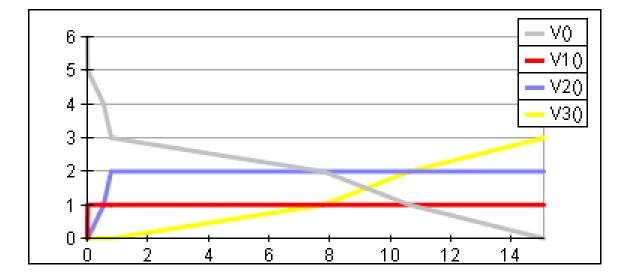
C. elegans VPC Differentiation



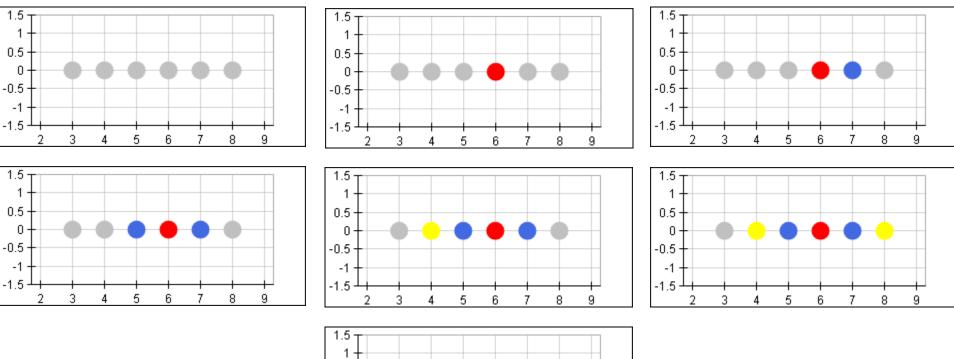


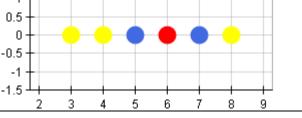


Simplified Model of AC and VPC

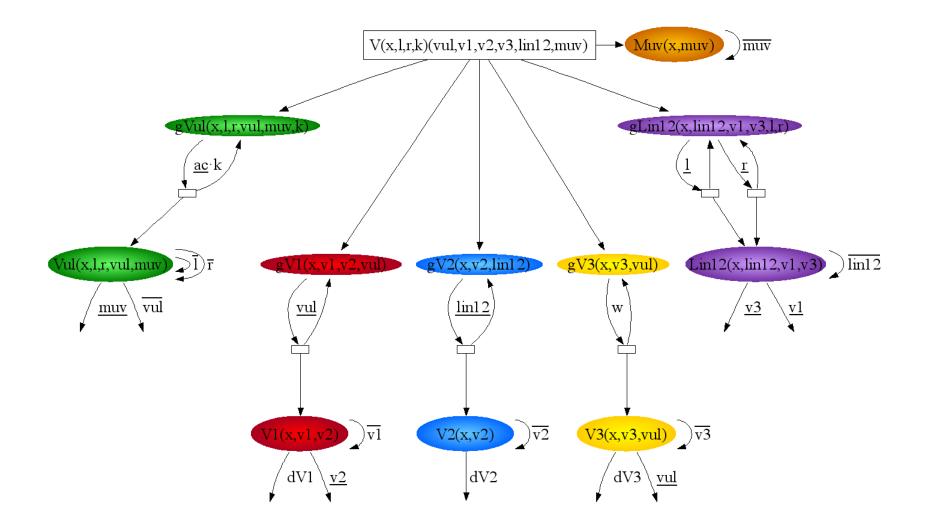


Network of AC and 6 VPC

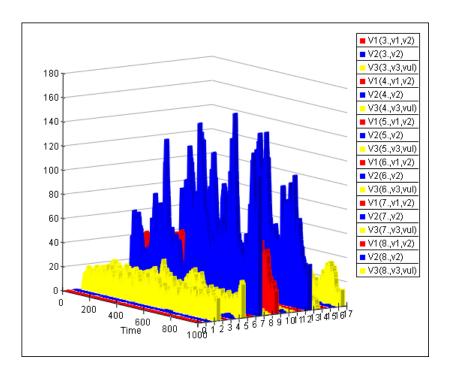


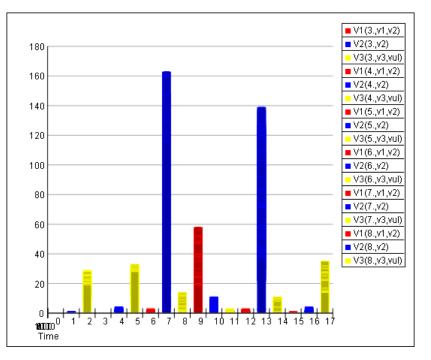

AC | V(3,s3,s4,low) | V(4,s4,s5,low) | V(5,s5,s6,med) | V(6,s6,s7,high) | V(7,s7,s8,med) | V(8,s8,s9,low)

Population Plot



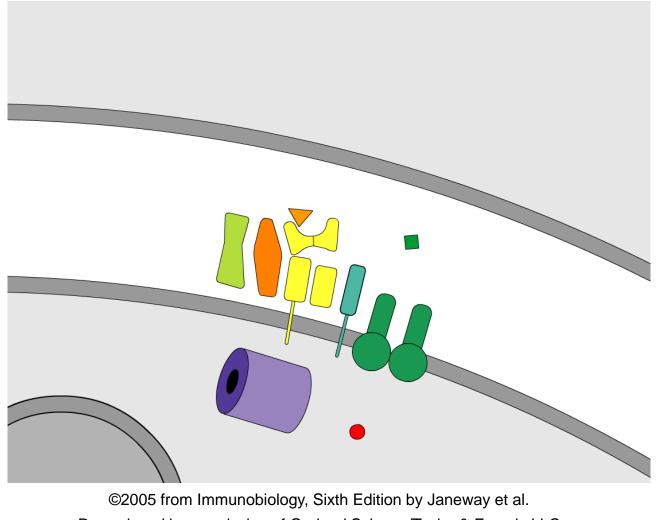
Geometric Plot





Refined VPC Model

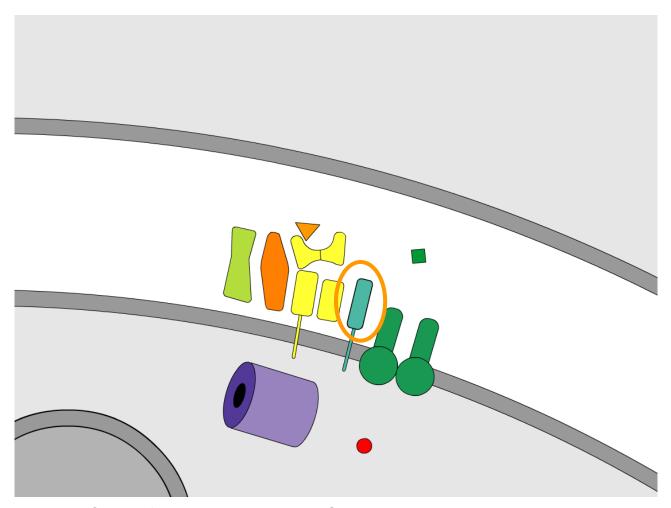
Simulation Results



A Computational Model of MHC class I Antigen Presentation

with Luca Cardelli (MSR Cambridge) Leonard Goldstein (Cambridge University) Tim Elliott (Southampton University) Joern Werner (Southampton University)

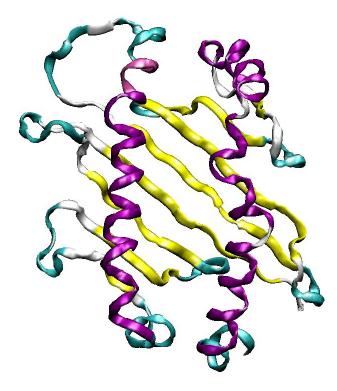
MHC: A Biological Virus Scanner

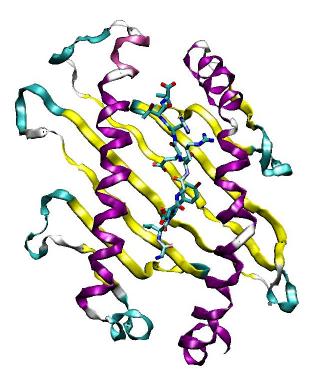


Reproduced by permission of Garland Science/Taylor & Francis LLC.

MHC: A Biological Virus Scanner

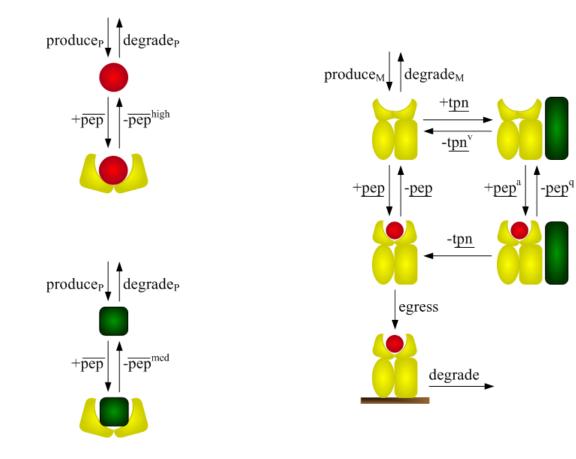
©2005 from Immunobiology, Sixth Edition by Janeway et al. Reproduced by permission of Garland Science/Taylor & Francis LLC.

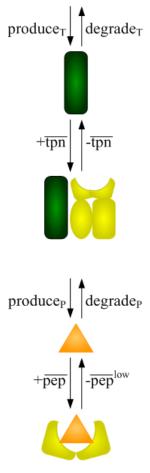

Investigate the Role of Tapasin



©2005 from Immunobiology, Sixth Edition by Janeway et al. Reproduced by permission of Garland Science/Taylor & Francis LLC.

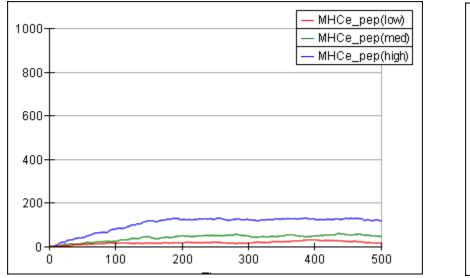
MHC I Structure


Interaction of MHC I with peptide



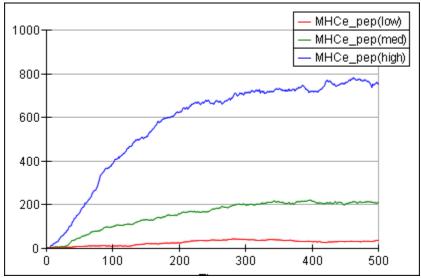
SPiM Peptide Editing Model

- Graphs describe the behaviour components
- Assume low, medium and high affinity peptides


Model Parameters

MHC spends < 2h on average in the ER.</p>

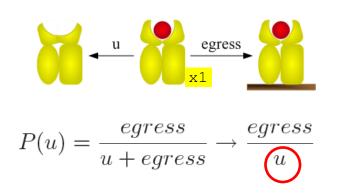
Name	Rate min ⁻¹	Time min	Range min ⁻¹	Description
gPep	50	0.02		Active transport of peptides into the ER
dPep	10	0.1		Degradation of free peptides inside the ER
bind	1	1		Binding of peptides to MHC (per molecule)
low	3	0.33		Unbinding of low affinity peptides from MHC
med	1.2	0.83		Unbinding of medium affinity peptides from MHC
high	0.5	2		Unbinding of high affinity peptides from MHC
gMHC	10	0.1		Assembly of MHC complexes inside the ER
dMHCo	0.01	100	0.01 - 100	Degradation of free MHC inside the ER
dMHCe	0.01	100		Degradation of loaded MHC at the cell surface
egress	1	1	0.01 - 1	Egression of loaded MHC from the ER
gTPN	10	0.1		Production of tapasin inside the ER
dTPN	0.01	100		Degradation of free tapasin inside the ER
bindT	100	0.01	1 - 1000	Binding of tapasin to MHC (per molecule)
uT	1	1	0.01 - 1	Unbinding of tapasin from loaded MHC

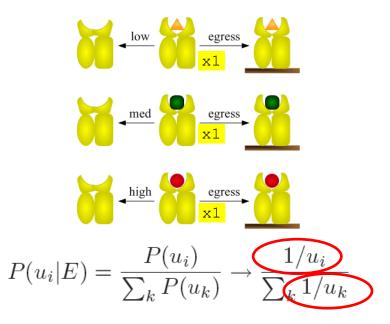

Simulations Match Experiments

- MHC needs to present stable peptides
- Improved selection with tapasin. How?

Time/mins

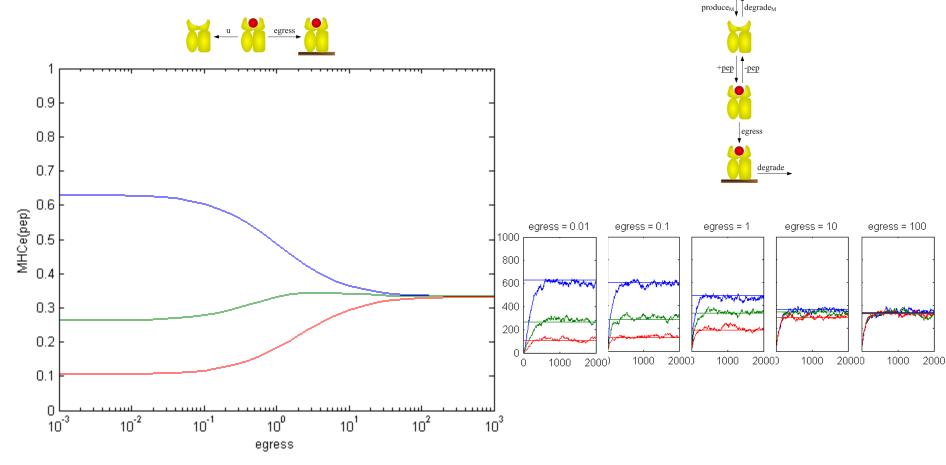
No Tapasin ×

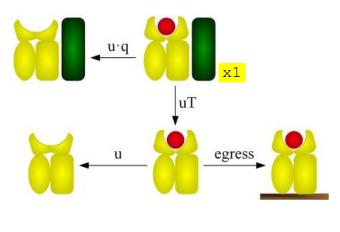


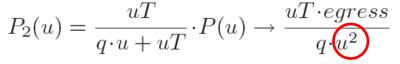

Time/mins

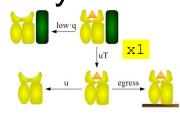
Tapasin 🗸

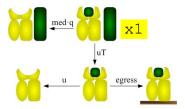
Peptide Discrimination

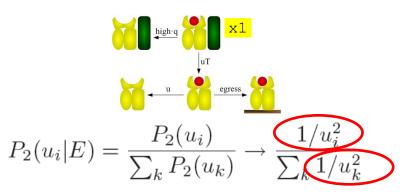

- Consider a loaded peptide with unbinding rate *u*
- Competition between unbinding and egression
- Egression probability determined by off-rate
- Maximal discrimination as egress tends to 0

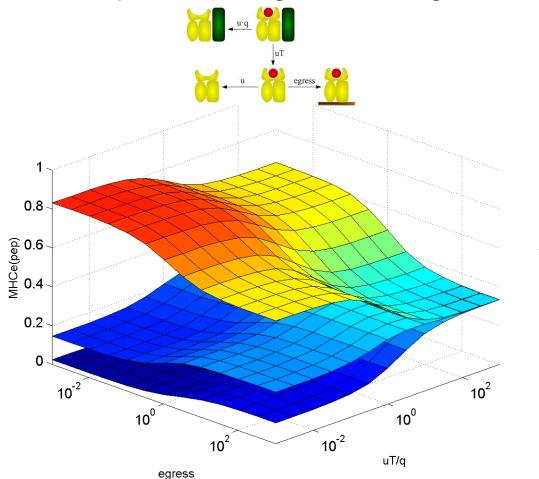

Parameter Space

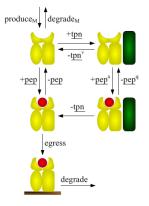

- Maximal discrimination determined by off-rate
- High peptide turnover is a key factor

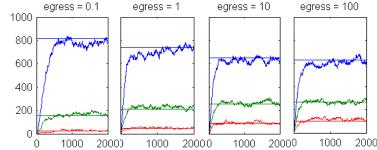



Peptide Discrimination


- Tapasin adds a second filtering stage
- Egression probability determined by off-rate²

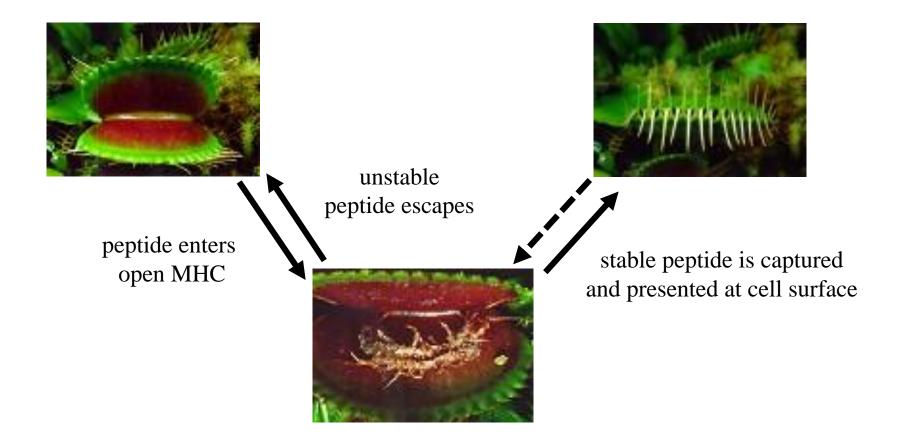


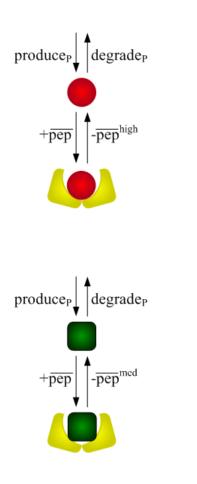


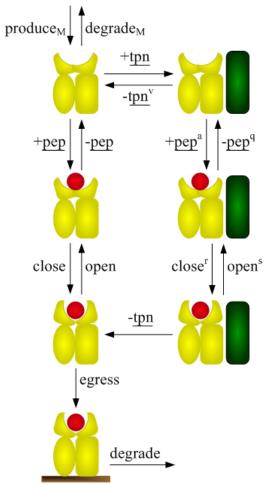


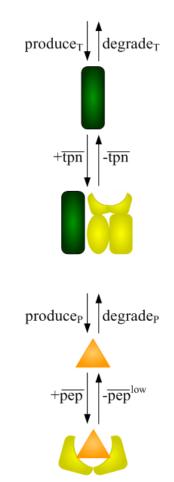
Parameter Space

- Tapasin improves upper bound on discrimination
- Peptide editing is a 2-stage filter process



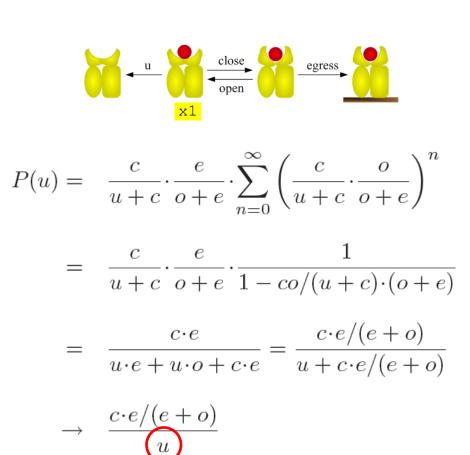

Peptide Loading: Flytrap Model

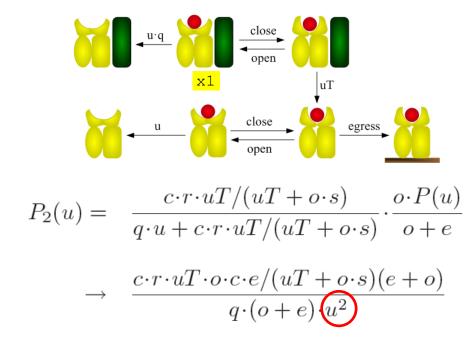

• MHC I captures peptides like a Venus Flytrap.



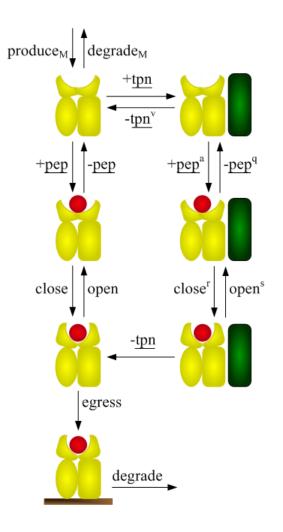
Flytrap Peptide Editing Model

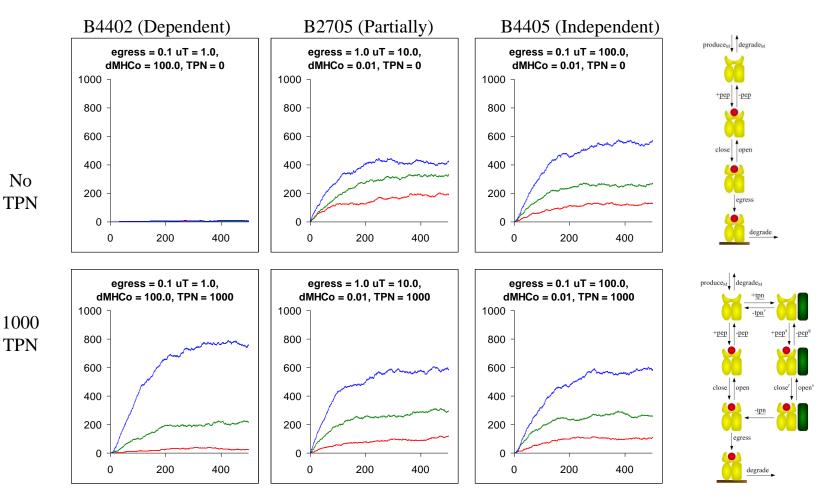
 Extend the model with conformational change of MHC



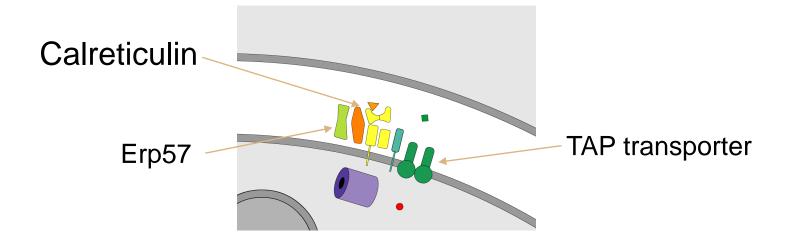


Peptide Discrimination: Flytrap

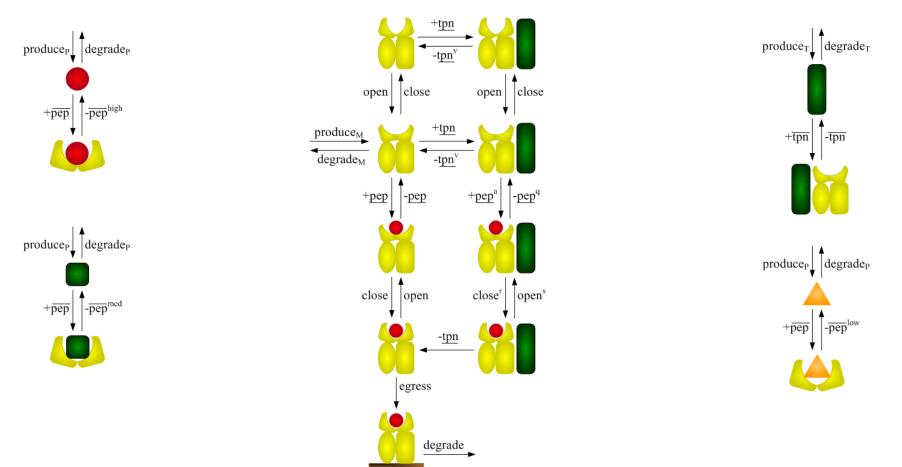

- MHC can open and close several times
- But same upper bound on discrimination


Key mechanisms identified

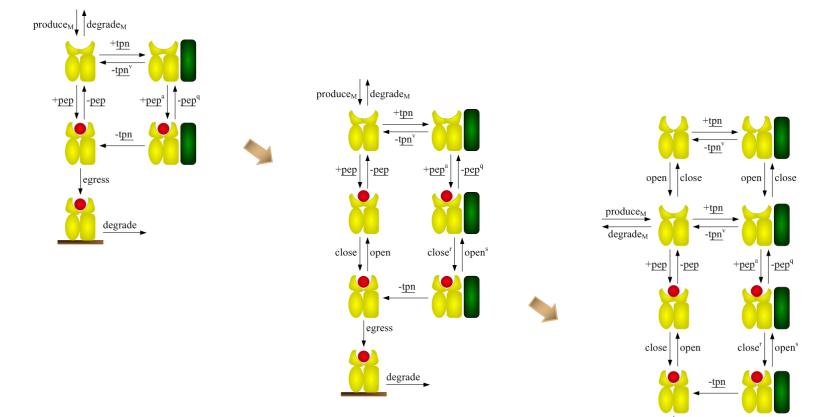
- MHC can delay egression to sample a wider range of peptides
- High peptide turnover is needed to maintain peptide distribution inside ER
- Tapasin holds open MHC and increases peptide off-rate to quickly select high affinity peptides
- Tapasin stabilises MHC to prevent degradation and increase presentation
- Tapasin increases peptide on-rate by anchoring MHC at entrance to ER?
- Tapasin shifts equilibrium to open conformation as a way of delaying egression?


MHC Alleles: Model Predictions

Explanation for immune system variability


Extending the Model

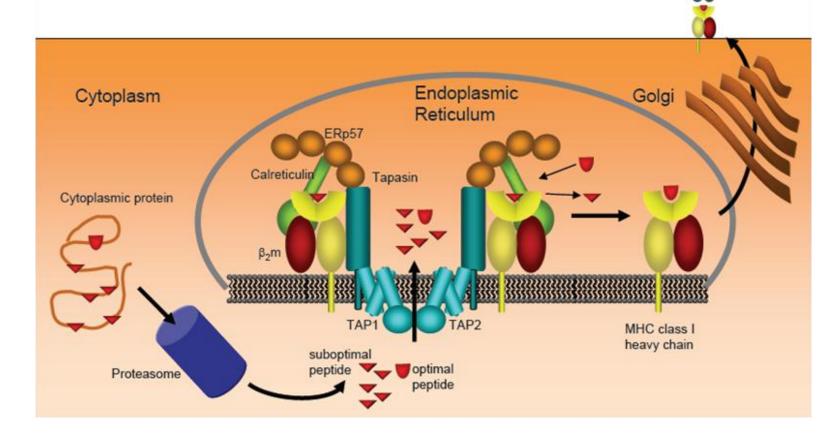
Include function of additional chaperones.


Extendable, Maintainable Models

Build complex models by composing simpler components. The models are easier to extend and maintain.

Verifying Biological Models

Can we replace one model with another?


egress

degrade

MHC(bind,bindT)

Modelling Immunodominance

- How peptides induce a dominant response
- From molecular mechanisms to global response patterns

T cell

TCR

References

- [Blossey et al., 2007] Blossey, R., Cardelli, L., and Phillips, A. (2007). Compositionality,
 Stochasticity and Cooperativity in Dynamic Models of Gene Regulation. HFSP Journal.
- [Blossey et al., 2006] Blossey, R., Cardelli, L., and Phillips, A. (2006). A compositional approach to the stochastic dynamics of gene networks. Transactions in Computational Systems Biology, 3939:99–122.
- [Borgstroem et al., 2007] Borgstroem, J. Gordon, A., and Phillips, A. (2007). A Chart Semantics for the Pi-calculus. In Proceedings of Expressiveness in Concurrency.
- [Gillespie, 1977] Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.
 J. Phys. Chem., 81(25):2340–2361.
- [Guet et al., 2002] Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. (2002) Combinatorial synthesis of genetic networks. Science 296 1466-1470.
- [Huang and Ferrel, 1996] Huang, C.-Y. F. and Ferrel, J. E. (1996). Ultrasensitivity of the mitogenactivated protein kinase cascade. PNAS, 93:10078–10083.
- [Lecca and Priami, 2003] Lecca, P. and Priami, C. (2003). Cell cycle control in eukaryotes: a biospi model. In proceedings of Concurrent Models in Molecular Biology.
- [Phillips and Cardelli, 2007] Phillips, A. and Cardelli, L. (2007). Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus. In Proceedings of Computational Methods in Systems Biology, 4695:184–199.
- [Phillips et al., 2006] Phillips, A., Cardelli, L., and Castagna, G. (2006). A graphical representation for biological processes in the stochastic pi-calculus. Transactions in Computational Systems Biology, 4230:123–152.

References

- [Priami, 1995] Priami, C. (1995). Stochastic π -calculus. The Computer Journal, 38(6):578–589. Proceedings of PAPM'95.
- [Priami et al., 2001] Priami, C., Regev, A., Shapiro, E., and Silverman, W. (2001). Application of a stochastic name-passing calculus to representation and simulation of molecular processes.
 Information Processing Letters, 80:25–31.
- [Regev et al., 2001] Regev, A., Silverman, W., and Shapiro, E. (2001). Representation and simulation of biochemical processes using the pi- calculus process algebra. In Altman, R. B., Dunker, A. K., Hunter, L., and Klein, T. E., editors, Pacific Symposium on Biocomputing, volume 6, pages 459–470, Singapore. World Scientific Press.
- [Sangiorgi and Walker, 2001] Sangiorgi, D. and Walker, D. (2001). The pi-calculus: a Theory of Mobile Processes. Cambridge University Press.
- [Silverman et al., 1987] Silverman, W., Hirsch, M., Houri, A., and Shapiro, E. (1987). The logix system user manual, version 1.21. In Shapiro, E., editor, Concurrent Prolog: Collected Papers (Volume II), pages 46–77. MIT Press, London.
- Mark Howarth, Anthony Williams, Anne B. Tolstrup, and Tim Elliott. Tapasin enhances mhc class i peptide presentation according to peptide half-life. PNAS, 101(32):11737–11742, 2004.
- Sebastian Springer, Klaus Doring, Jonathan C. A. Skipper, Alain R. M. Townsend, and Vincenzo Cerundolo. Fast association rates suggest a conformational change in the mhc class i molecule h-2db upon peptide binding. Biochemistry, 37:3001–3012, 1998.
- A. Williams, C. Au Peh, and T. Elliott. The cell biology of mhc class i antigen presentation. Tissue Antigens, 59:3–17, 2002.

SPiM Definition

Syntax Semantics Graphics

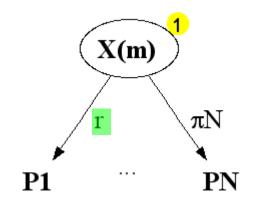
SPiM Syntax

 $\pi ::= \underline{x}(m)$ $\bar{x}\langle n \rangle$ $\bar{x}(m)$ r $M::= \pi_1 . P_1 + ... + \pi_N . P_N$ $P ::= P_1 | \dots | P_M$ X(n) $(x_1,...,x_N) P$ D ::= PM $E::= X_1(m_1) = D_1, ...,$ $X_N(m_N) = D_N$ S::= E.P

Receive value *m* on channel *x* **Send** value *n* on channel *x* **Send** restricted value *m* on channel *x* **Delay** at rate r **Choice** between actions **Parallel** composition of processes **Species** *X* with parameters *n* **Restriction** of channels x_1, \dots, x_N to P **Definition** of a process **Definition** of a choice **Definitions** for X_i with parameters m_i

System of *E* and *P*

Graphical Syntax: Environment E

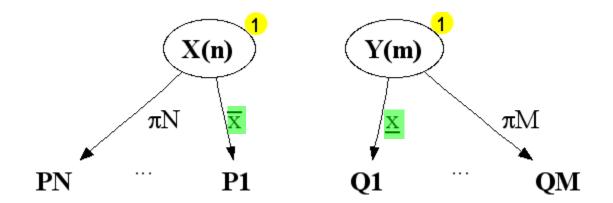

	Choice		Parallel	Species	Restriction
M	$\pi_1.P_1 + + \pi_N.P_N$	P	$P_1 \dots P_M$	X(n), if $X(m) = D$	$(x_1,x_N) P$
м	$ \begin{array}{c} \pi 1 \\ \pi N \\ P1 \\ P1 \\ PN \end{array} $	Р	P1 ^{···} PM	↓ m:=n X(m)	^(x1,,xN) P

	Definitions
E	$X_1(m_1) = D_1,, X_N(m_N) = D_N$
Е	D1*X1(m1) DN*XN(mN)

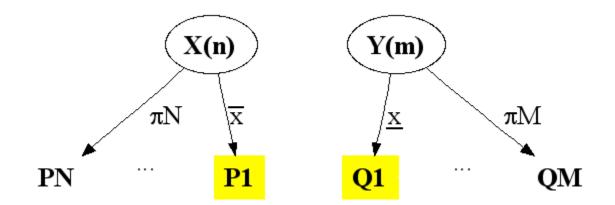
Graphical Syntax: Process P

	Parallel	Species	Restriction	
P	$P_1 \mid \ldots \mid P_M$	X(n), if $X(m) = D$	$(x_1,,x_N) (X_1(n_1) \mid \mid X_N(n_N))$	
Р	P1 PM	m:=n X(m)	x1,,xN m1:=n1 mN:=nN X1(m1) XN(mN)	

Graphical Semantics: Delay


$$X(m) = r.P_1 + \dots + \pi_N P_N$$
$$X(m)$$

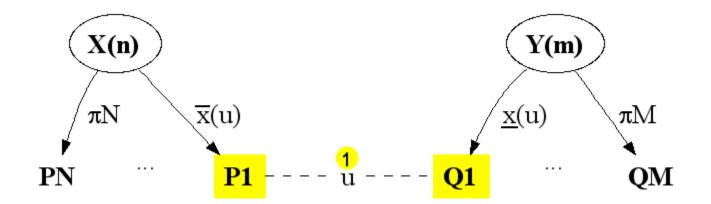
Graphical Semantics: Delay


$$X(m) = r.P_1 + \dots + \pi_N P_N$$
$$X(m) \longrightarrow P_1$$

Graphical Semantics: Interaction

 $X(n) = \bar{x} \cdot P_1 + \ldots + \pi_N \cdot P_N \quad , \quad Y(m) = \underline{x} \cdot Q_1 + \ldots + \pi_M \cdot Q_M$ $X(n) \mid Y(m)$

Graphical Semantics: Interaction


 $\begin{aligned} X(n) &= \bar{x} \cdot P_1 + \ldots + \pi_N \cdot P_N \quad , \quad Y(m) = \underline{x} \cdot Q_1 + \ldots + \pi_M \cdot Q_M \\ X(n) \mid Y(m) \longrightarrow P_1 / Q_1 \end{aligned}$

Graphical Semantics: Binding

 $X(n) = \bar{x}(u).P_1 + ... + \pi_N P_N , \quad Y(m) = \underline{x}(u).Q_1 + ... + \pi_M Q_M$ $X(n) \mid Y(m)$

Graphical Semantics: Binding

 $X(n) = \bar{x}(u) \cdot P_1 + \dots + \pi_N \cdot P_N , \quad Y(m) = \underline{x}(u) \cdot Q_1 + \dots + \pi_M \cdot Q_M$ $X(n) \mid Y(m) \longrightarrow (u) (P_1 / Q_1)$

Graphical Syntax

ſ		Choice		Parallel	Species	Restriction
	M	$\pi_1.P_1 + + \pi_N.P_N$	P	$P = P_1 \dots P_M$	X(n), if X(m) = D	$(x_1,x_N) P$
	М	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	I	P1 PM	↓ m:=n X(m)	^(x1,,xN) P

	Species	Restriction
P	X(n), if $X(m) = D$	$(x_1,,x_N) (X_1(n_1) \mid \mid X_N(n_N))$
Р	m:=n X(m)	1 x1,,xN <u>m1:=n1</u> mN:=nN X1(m1) ··· XN(mN)