A Visual Programming Language for Biological Processes

Andrew Phillips with Luca Cardelli

Microsoft Research, Cambridge UK

Biological Computing

Systems Biology

- The Human Genome project: ●
	- Map out the complete genetic code in humans
	- To unravel the mysteries of how the human body functions \bigodot
	- The code raised many more questions than answers
- Systems Biology:
	- Understand and predict the behaviour of biological systems
- Two complementary approaches: 0
	- Look at experimental results and infer system properties
	- Build detailed models of systems and test these in the lab \bigodot
- Biological Modelling: 0
	- Conduct virtual experiments, saving time and resources
	- Clarify key mechanisms of how a biological system functions 0
	- Beginning to play a role in understanding disease \bigodot

Large, Complex, Biological Models

Biological Programming

- Complex Models:
	- Difficult to understand, maintain and extend
	- Hundreds of reactions, soon to be tens of thousands 0
	- Would not write a program as a list of 10000 instructions \bigodot
- Modularity: ●
	- Need a way of decomposing a model into building blocks 0
	- Not your average computer programs 0
	- Massive parallelism, each instruction has a certain probability \bigodot
	- Suggests a need for a biological programming language... \bigodot

Programming Languages for Biology

Languages for complex, parallel computer systems: Languages for complex, parallel biological systems:

 π -calculus by [Milner et al. 1989]. Stochastic version by [Priami et al. 1995] First used in a biological context by [Regev et al. 2001]

Language Development

Exact Stochastic Simulation Algorithm Graphical Representation and Execution Model

Graphical Editor and Simulator

and High()= (

GUI by Filippo Polo, MSR Cambridge

Phillips and Cardelli, 2004 Phillips, Cardelli and Castagna, 2006 Phillips and Cardelli, 2007

SPIM: Stochastic π for Biology

- A variant of stochastic π calculus
	- Supports expressive power of π
	- Graphical syntax and semantics
	- Biological constructs, e.g. complexation \bigodot
	- Efficient implementation \bigodot

Message-Passing Approach

Chemical Reactions

SPiM Processes

Compact, Modular Models

Chemical Reactions **SPIM Processes**

EGFR Model [Hornberg et. al 2005]

 \top [EGFR]+[EGF] \leftrightarrow [EGF-EGFR] 2 [EGF-EGFR]+[EGF-EGFR] ↔ [(EGF-EGFR)2] 3 ((EGF-EGFR)21 ↔ ((EGF-EGFR*)21 4 ((EGF-EGFR*)2-GAP-Grb2]+[Prot] ↔ [(EGF-EGFR*)2-GAP-Grb2-Prot] 5 [(EGF-EGFR*)2-GAP-Grb2-Prot] → [(EGF-EGFRi*)2-GAP-Grb2]+[Proti] 6 $EGFRI \leftrightarrow [EGFRI]$ 7 $[(EGF-EGFR[*])2]$ \rightarrow $[(EGF-EGFR[*])2]$.
8 [(EGF-EGFR*)2]+[GAP] ↔ [(EGF-EGFR*)2-GAP]
9 [(EGF-EGFR*)2-GAP] → [(EGF-EGFRi*)2-GAP] 10 [EGFRI]+[EGFI] ↔ [EGF-EGFRi] 11 [EGF-EGFRI]+[EGF-EGFRI] ↔ [(EGF-EGFRi)2]
12 [(EGF-EGFRI)2] ↔ [(EGF-EGFRi*)2] 13 → [EGFR]
14 [(EGF-EGFRI*)2]+ [GAP] ↔ [(EGF-EGFRi*)2-GAP] 15 [Proti] → [Prot]
16 [(EGF-EGFR*)2-GAP]+[Grb2] ↔ [(EGF-EGFR*)2-GAP-Grb2] 18 ((EGF-EGFR*)2-GAP-Grb2-Sos]+[Ras-GDP] ↔ ((EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP) 19 ((EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP| ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos]+[Ras-GTP] 20 [Ras-GTP*]+[(EGF-EGFR*)2-GAP-Grb2-Sos] ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP] 21 ((EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP] → [(EGF-EGFR*)2-GAP-Grb2-Sos]+[Ras-GDP]
22 [(EGF-EGFR*)2-GAP]+[Shc] ↔ [(EGF-EGFR*)2-GAP-Shc] 23 [(EGF-EGFR*)2-GAP-Shc] ↔ [(EGF-EGFR*)2-GAP-Shc*] 24 (EGF-EGFR*)2-GAP-Shc*]+[Grb2] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2] 25 [(EGF-EGFR*)2-GAP-Shc*-Grb2]+[Sos] < → [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos] 26 ((EGF-EGFR*)2-GAP-Shc*-Grb2-Sos)+[Ras-GDP] → [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] 27 I/EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDPI ↔ I/EGF-EGFR*)2-GAP-Shc*-Grb2-Sosl + IRas-GTPI 28 Rafl+[Ras-GTP] ↔ [Raf-Ras-GTP] 29 [Raf-Ras-GTP] ↔ [Raf*]+[Ras-GTP*] 20 [Ras-GTP']+([EGF-EGFR')2-GAP-Shc*-Grb2-Sos] ↔ [(EGF-EGFR')2-GAP-Shc*-Grb2-Sos-Ras-GTP]
31 [(EGF-EGFR')2-GAP-Shc*-Grb2-Sos-Ras-GTP] ↔ [(EGF-EGFR')2-GAP-Shc*-Grb2-Sos]+[Ras-GDP] 32 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos] <> [(EGF-EGFR*)2-GAP]+[Shc*-Grb2-Sos] 33 [Shc*-Grb2-Sos] ↔ [Grb2-Sos]+[Shc*] 34 (EGF-EGFR*)2-GAP-Grb2-Sos) ↔ [(EGF-EGFR*)2-GAP]+[Grb2-Sos] 35 [Grb2-Sos] \leftrightarrow [Grb2] +[Sos] 36 [Shc*] \leftrightarrow [Shc] 37 ((EGF-EGFR*)2-GAP-Shc*] ↔ [(EGF-EGFR*)2-GAP]+[Shc*] 38 [Shc*]+[Grb2] ↔ [Shc*-Grb2] 39 [(EGF-EGFR*)2-GAP-Shc*-Grb2] ↔ [(EGF-EGFR*)2-GAP]+[Shc*-Grb2] 40 [Shc*-Grb2]+[Sos] ↔ [Shc*-Grb2-Sos] 41 [(EGF-EGFR^{*})2-GAP-Shc*] + [Grb2-Sos] \leftrightarrow [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos] 42 [Raf*]+[Phosphatase1] ↔ [Raf*-Phosphatase1] 43 [Raf*-Phosphatase1] \rightarrow [Raf]+[Phosphatase1]
44 [MEK] + [Raf*] \leftrightarrow [MEK-Raf*] 45 [MEK-Raf*] → [MEK-P] +[Raf*] 46 [MEK-P]+[Raf*] ↔ [MEK-P-Raf*] 47 [MEK-P-Raf*] → [MEK-PP] + [Raf*] 48 [MEK-PP]+[Phosphatase2] ↔ [MEK-PP-Phosphatase2] 49 [MEK-PP-Phosphatase2] → [MEK-P] + [Phosphatase2] 50 [MEK-P]+[Phosphatase2] ↔ [MEK-P-Phosphatase2] 51 [MEK-P-Phosphatase2] → [MEK]+[Phosphatase2] 52 [ERK]+[MEK-PP] ↔ [ERK-MEK-PP] 53 [ERK-MEK-PP] → [ERK-P]+[MEK-PP] 54 [ERK-P]+[MEK-PP] ↔ [ERK-P-MEK-PP] 55 [ERK-P-MEK-PP] → [ERK-PP]+[MEK-PP] 56 [ERK-PP]+[Phosphatase3] ↔ [ERK-PP-Phosphatase3] 57 [ERK-PP-Phosphatase3] -> [ERK-P]+[Phosphatase3] 58 [ERK-P] + [Phosphatase3] ↔ [ERK-P-Phosphatase3]
59 [ERK-P-Phosphatase3] → [ERK]+[Phosphatase3] 60 [EGFRi] \rightarrow [EGFRideg] 61 [EGFi]→ [EGFideg] 62 [(EGF-EGFRi*)2] → [(EGF-EGFRi*)2deg] 63 [(EGF-EGFRi*)2-GAP]+[Grb2] ↔ [(EGF-EGFRi*)2-GAP-Grb2] 64 (EGF-EGFRI*)2-GAP-Grb2]+[Sos] → [(EGF-EGFRi*)2-GAP-Grb2-Sos] 65 ((EGF-EGFRI*)2-GAP-Grb2-Sos]+[Ras-GDP] ↔ ((EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GDP] 66 (EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GDP] ↔ [(EGF-EGFRi*)2-GAP-Grb2-Sos]+[Ras-GTPi] 67 [Ras-GTPI*]+[(EGF-EGFRI*)2-GAP-Grb2-Sos] <> [(EGF-EGFRI*)2-GAP-Grb2-Sos-Ras-GTPi] 68 ((EGF-EGFRI*)2-GAP-Grb2-Sos-Ras-GTP] <> [(EGF-EGFRi*)2-GAP-Grb2-Sos]+[Ras-GDP] ou (LEGF-EGFRI*)2-GAP)+[Shq] ↔ [(EGF-EGFRI*)2-GAP-Shq]
70 [(EGF-EGFRI*)2-GAP)+[Shq] ↔ [(EGF-EGFRI*)2-GAP-Shq]
71 [(EGF-EGFRI*)2-GAP-Shq] ↔ [(EGF-EGFR')2-GAP-Shq")
146 [(EGF-EGFRI*)2-GAP-Gif)2-Sos-ERKi-PP] ↔ [(EGF-EGFRI*) 146 ((EGF-EGFN")2-GAP-Gîn2-Sos-EHKI-PPJ ↔ ((EGF-EGFRi*)2-GAP-Grb2-Sosjdeg+[ERKi-PP]
147 ((EGF-EGFRI*)2-GAP-Shc*-Grb2-Sos-ERKI-PP] ↔ ((EGF-EGFRi*)2-GAP-Shc*-Grb2-Sosjdeg+[ERKi-PP]
148 [Sos-ERK-PPI] ↔ [Sosi]+[ERK-PPi]

72 [(EGF-EGFRi*)2-GAP-Shc*-Grb2]+[Sos] \leftrightarrow [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] 73 [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos]+[Ras-GDP] <> [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] 74 ((EGF-EGFRI*)2-GAP-Shc*-Grb2-Sos-Ras-GDPI → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] + [Ras-GTPi] 75 [Raf]+[Ras-GTPi] ↔ [Raf-Ras-GTPi] 76 IRaf-Ras-GTPil ↔ IRafi*1+IRas-GTPi*1 77 [Ras-GTPi*]+[(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] ↔ [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GTP] 78 ((EGF-EGFRI*)2-GAP-Shc*-Grb2-Sos-Ras-GTP] \leftrightarrow ((EGF-EGFRI*)2-GAP-Shc*-Grb2-Sos)+[Ras-GDP]
79 ((EGF-EGFRI*)2-GAP-Shc*-Grb2-Sos-Ras-GTP] \leftrightarrow [(EGF-EGFRI*)2-GAP-Shc*-Grb2-Sos)+[Ras-GDP] Part Contract Part of the State Contract 82 (EGF-EGFRi*)2-GAP-Shc*-Grb2 + [(EGF-EGFRi*)2-GAP]+[Shc*-Grb2] 83 [(EGF-EGFRi*)2-GAP-Shc*] + [Grb2-Sos] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] 84 [Rafi*]+[Phosphatase1] ↔ [Rafi*-Phosphatase1] 85 [Rafi*-Phosphatase1] → [Raf]+[Phosphatase1] 86 [MEK] + [Rafi*] ↔ [MEK-Rafi*] 87 [MEK-Rafi*] → [MEKi-P] +[Rafi*] 88 [MEKi-P]+[Rafi*] ↔ [MEK-P-Rafi*] 89 [MEK-P-Rafi*] → [MEKi-PP] + [Rafi*] 90 [MEKi-PP]+[Phosphatase2] ↔ [MEKi-PP-Phosphatase2] 91 [MEKi-PP-Phosphatase2] → [MEKi-P] + [Phosphatase2] 92 [MEKi-P]+[Phosphatase2] ↔ [MEKi-P-Phosphatase2] 93 [MEKi-P-Phosphatase2] → [MEK]+[Phosphatase2] 94 [ERK]+[MEKi-PP] ↔ [ERK-MEKi-PP] 95 [ERK-MEKi-PP] → [ERKi-P]+[MEKi-PP]
96 [ERKi-P]+[MEKi-PP] → [ERKi-P]+[MEKi-PP] 97 [ERKi-P-MEKi-PP] → [ERKi-PP]+[MEKi-PP] 99 [ERKi-PP]+[Phosphatase3] ↔ [ERKi-PP-Phosphatase3]
99 [ERKi-PP]+[Phosphatase3] → [ERKi-P]+[Phosphatase3] 100 [ERKi-P] + [Phosphatase3] ↔ [ERKi-P-Phosphatase3] 101 [ERKi-P-Phosphatase3] → [ERK]-[Phosphatase3]
101 [ERKi-P-Phosphatase3] → [ERK]-[Phosphatase3]
102 [(EGF-EGFR*)2-GAP] → [(EGF-EGFRi*)2-GAP]
103 [(EGF-EGFR*)2-GAP-Shc] → [(EGF-EGFRi*)2-GAP-Shc] 104 [(EGF-EGFR*)2-GAP-Shc*] → [(EGF-EGFRi*)2-GAP-Shc*] 105 (EGF-EGFR*)2-GAP-Grb2-Sos) → [(EGF-EGFRi*)2-GAP-Grb2-Sos] 106 [(EGF-EGFR*)2-GAP-Grb2-Sos]+[Prot] ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos-Prot] 107 [(EGF-EGFR*)2-GAP-Grb2-Sos-Prot] → [(EGF-EGFRi*)2-GAP-Grb2-Sos]+[Proti] 198 ((EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP] → ((EGF-EGFR)*)2-GAP-Grb2-Sos-Ras-GDP]
108 ((EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP]→ ((EGF-EGFR)*)2-GAP-Grb2-Sos-Ras-GDP-Prot]
109 ((EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP]+[Prot] ↔ ((EGF-EGFR 110 ((EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP-Prot] → [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GDP]+[Proti] 111 (EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP] → [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GTP] 112 [(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP|+[Prof] ↔ [(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP-Prof] 113 [(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP-Prot] → [(EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GTP]+[Proti] 114 (EGF-EGFR*)2-GAP-Shc*-Grb2] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2] 115 [(EGF-EGFR*)2-GAP-Shc*-Grb2]+[Prot] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Prot] 116 (EGF-EGFR*)2-GAP-Shc*-Grb2-Prot] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2]+[Proti] 117 ((EGF-EGFR*)2-GAP-Shc*-Grb2-Sos) → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos] 118 ((EGF-EGFR*)2-GAP-Shc*-Grb2-Sos)+[Prot] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Prot] 119 ((EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Prot] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos]+[Proti]
120 ((EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos]+[Proti] 121 (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP|+|Prot| ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP-Prot| 122 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GDP-Prot] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GDP]+[Proti] 123 (EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GTP] 124 [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP]+[Prot] ↔ [(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP-Prot] 125 ((EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-Ras-GTP-Prot] → [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GTP]+[Proti] 126 ((EGF-EGFR*)2-GAP-Grb2-Sos]+[ERK-PP] → [(EGF-EGFR*)2-GAP-Grb2-Sos-ERK-PP]
126 ((EGF-EGFR*)2-GAP-Grb2-Sos]+[ERK-PP] → [(EGF-EGFR*)2-GAP-Grb2-Sos-ERK-PP] 128 I(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos1+IERK-PPI → I(EGF-EGFR*)2-GAP-Shc*-Grb2-Sos-ERK-PPI 129 ((EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos]+[ERKi-PP] ↔ [(EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-ERKi-PP] 130 [Sos]+[ERK-PP] ↔ [Sos-ERK-PP]
131 [Sos]+[ERK-PP] ↔ [Sos-ERK-PP] 132 ((EGF-EGFRi*)2-GAP) → [(EGF-EGFRi*)2deg]
133 ((EGF-EGFRi*)2-GAP-Grb2) → [(EGF-EGFRi*)2deg] 134 I(EGF-EGFRI*)2-GAP-Grb2-SosI → I(EGF-EGFRI*)2deal 135 (EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GDP] → [(EGF-EGFRi*)2deg] 136 ((EGF-EGFRi*)2-GAP-Grb2-Sos-Ras-GTP) → [(EGF-EGFRi*)2deg] 137 ((EGF-EGFRi*)2-GAP-Shc] → [(EGF-EGFRi*)2deg] 138 [(EGF-EGFRi*)2-GAP-Shc*] → [(EGF-EGFRi*)2deg] 139 ((EGF-EGFRI*)2-GAP-Shc*-Grb2] → [(EGF-EGFRI*)2deg]
140 [(EGF-EGFRI*)2-GAP-Shc*-Grb2] → [(EGF-EGFRI*)2deg] 141 (EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GDP] → [(EGF-EGFRi*)2deg] 142 ((EGF-EGFRi*)2-GAP-Shc*-Grb2-Sos-Ras-GTPI → [(EGF-EGFRi*)2deq] 143 ((EGF-EGFR*)2-GAP-Grb2-Sos-ERK-PP) <> ((EGF-EGFR*)2-GAP-Grb2-Sos]deg+[ERK-PP]
144 ((EGF-EGFR*)2-GAP-Srb2-Grb2-Sos-ERK-PP) <> ((EGF-EGFR*)2-GAP-Shc*-Grb2-Sos]deg+[ERK-PP]
145 (Sos-ERK-PP) <> [Sos]+[ERK-PP]

EGFR Model [Hornberg et. al 2005]

 $\begin{tabular}{|c|c|c|c|} \hline \multicolumn{3}{|c|}{\textbf{0.078}} & \multicolumn{3}{|c|}{\textbf{0.078}} & \multicolumn{3}{|c|}{\textbf{0.078}} \\ \hline \multicolumn{3}{|c|}{\textbf{0.078}} & \multicolumn{3}{|c|}{\textbf{0.078}} & \multicolumn{3}{|c|}{\textbf{0.078}} \\ \hline \multicolumn{3}{|c|}{\textbf{0.078}} & \multicolumn{3}{|c|}{\textbf{0.078}} & \multicolumn{3}{|c|}{\textbf{0.07$

 $\frac{1}{\ln(\ln\ln t)}$

 $rac{1}{\sqrt{\sin^2 2\sin^2 2}}$

 $\frac{1}{\left[\frac{1}{2}\right]\left[\frac{1}{2}\right]\left[\frac{1}{2}\right]}\left[\frac{1}{2}\right]$

 $\overbrace{ \text{norm} \text{norm} }$

 $\begin{picture}(120,115) \put(0,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150$

 $\frac{1}{15\hbar B}$

Modular EGFR

Outline

Basic Examples 0

Gene Networks ●

C. elegans Development

Immune System Modelling \bigcirc

Basic SPiM Examples

Protein Production Protein Interaction Protein Binding

Production: $G \rightarrow$ produce $G + P$ $P \rightarrow$ degrade \emptyset

- A protein *P* can be produced with propensity 0.1
- Probability of a reaction depends on propensity
- Exact simulation: what happens next?

- Another protein *P* can be produced ●
- 100 times more likely to produce than degrade

And another...

- A protein *b* can be degraded at rate 0.001
- Low probability, but still possible

Eventually... 0

- Equilibrium at about 100 proteins.
- Propensities of both reactions are equal.

Gene Simulation

- Simulation results show evolution over time $\color{red} \bullet$
- Level of protein *P* fluctuates around 100

$$
Xp = \overline{a}. X \qquad Y = \underline{a}. Yp
$$

$$
X = \underline{d}. Xp \qquad Yp = \overline{d}. Y
$$

- *Xp* and *Y* can interact on channel *a*
- *Xp* activates *Y* by sending its phosphate group

X and *Yp* can interact on channel *d* 0

Interactions can continue indefinitely...

Interaction: $Xp + Y$ $\rightarrow^a X + Yp$

- What happens if we mix 100*Xp* and 100*Y* ?
- Assume *rate*(*a*) = $100s^{-1}$ and *rate*(*d*) = $10s^{-1}$
- An *Xp* and *Y* protein can interact on channel *a*.

An additional *Xp* and *Y* protein can interact.

An *X* and *Yp* protein can interact 0

Eventually an equilibrium is reached...

At equilibrium when rate(*a*) \cdot [*Xp*][*Y*] \approx rate(*d*) \cdot [*X*][*Yp*]

- At equilibrium: 100s⁻¹⋅[*Xp*][Y] ≈ 10s⁻¹⋅[*X*][Y*p*] ●
- Approximately 24*Xp* and 76*X*

$$
X = \overline{b} \cdot X'
$$

\n
$$
Y = \overline{b} \cdot Y'
$$

\n
$$
Y' = \overline{b} \cdot Y'
$$

\n
$$
Y' = \overline{b} \cdot Y'
$$

X and *Y* can bind on channel $+b$ ●

X' and *Y'* can unbind on channel -*b*

Binding and unbinding can continue indefinitely...

- What happens if we mix 100*X* and 100*Y* ?
- Assume *rate*($+b$) = 100s⁻¹ and *rate*($-b$) = 10s⁻¹
- An *X* and *Y* protein can bind on channel ⁺*b*.

An additional *X* and *Y* protein can bind.
Binding: $X + Y = b \leftrightarrow^{+b} XY'$

An *X'* and *Y'* protein can unbind on channel -*b*

Binding: $X + Y = b \leftrightarrow^{+b} XY'$

Eventually...

Binding: $X + Y = b \leftrightarrow^{+b} XY'$

At equilibrium when rate($+b$) \cdot [X][Y] \approx rate($-b$) \cdot ($-b$) ([X'][Y'])

Binding: $X + Y = b \leftrightarrow^{+b} XY'$

- At equilibrium: 100s*-*¹ [*X*][*Y*] = 10s*-*¹ [*X'Y'*] ●
- Approximately 3*X* and 97*X'Y'*

Programming Gene Networks

with Luca Cardelli (MSR Cambridge) Ralf Blossey (IRI Lille)

Repressilator [Elowitz and Leibler, 2000]

A gene network engineered in live bacteria.

© 2000 Elowitz, M.B., Leibler. S. A Synthetic Oscillatory Network of Transcriptional Regulators. Nature 403:335-338.

Parameterised Gene Gate

\n- (a,b) =
$$
\underline{a} \cdot B(a,b) + \text{produce.} (P(b) | G(a,b))
$$
\n- (a,b) = $\underline{u} \cdot B(b) + \underline{d} \cdot B(a,b)$
\n- (b) = $\overline{b} \cdot P(b) + \underline{d} \cdot B(a,b)$
\n

Repressilator [Elowitz and Leibler, 2000]

Modelled as a simple combination of gene gates: ●

© 2000 Elowitz, M.B., Leibler. S. A Synthetic Oscillatory Network of Transcriptional Regulators. Nature 403:335-338.

G(lac,tet) | G(tet,lambda) | G(lambda,lac) | G(tet,gfp)

Graphical Programming

How does the oscillator work?

 $G(a,b) | G(b,c) | G(c,a)$ \bigcirc

Oscillator: 0s

- Initially there is one copy of each gene 0
- Any one of the proteins can be produced at rate 0.1 0

Oscillator: 5.568177s

The *b* protein can block the *c* gene at rate 1 0

Oscillator: 6.329912s

- Now no *c* protein can be produced. 0
- But an *a* protein can still be produced at rate 0.1 0

Oscillator: 11.62149s

The *a* protein can block the *b* gene at rate 1 0

Oscillator: 13.21617s

- Now no *b* or *c* protein can be produced. 0
- A *b* protein can degrade at rate 0.001 0

Oscillator

Meanwhile, lots of *a* protein is produced 0

Oscillator

- The *a* protein dominates 0
- Equilibrium between transcription and degradation ●
- Eventually, the *c* or *a* gene unblocks at rate 0.0001

Oscillator

- Suppose the *a* gene unblocks ●
- There is a high probability that it will block immediately

Oscillator: 11039.31s

Eventually, the *c* gene unblocks at rate 0.0001

Oscillator: 11039.77s

- There is nothing to block the *c* gene. 0
- The *c* protein can now take over... ●
- Eventually... 0

Oscillator Simulation

- Alternate oscillation of proteins: *b*, *c*, *a*, *b* ●
- Oscillations in a particular order

Analysing Simulation Traces

- A simulation trace can be visualised as a sequence of messages exchanged between parallel processes.
- Can debug a biological system in a similar way to a 0 communication protocol. Causality, critical paths...

Repressilator Trace

A Gene Gate in 3D

The Repressilator in 3D

Graphical Debugging

GUI by Rich Williams, MSR Cambridge

Parameter Analysis

Range of parameters for good oscillations (produce=0.1): produce/degrade > 1000, unblock > degrade, block > 100*produce

Blossey, Cardelli, Phillips, 2007

Model Refinement:

Different behaviour, same network G(a,b) | G(b,c) | G(c,a) 0

Cooperativity improves robustness

Proteins form complexes before repressing 0

Blossey, Cardelli, Phillips, 2007

Cooperativity Simulations

$\color{red} \bullet$

Monomers **Canadian Career** Tetramers

Blossey, Cardelli, Phillips, 2007

Bacteria Logic Gates [Guet et al., 2002]

© 2002 AAAS. Reprinted with permission from Guet et al. Combinatorial Synthesis of Genetic Networks. Science 296 (5572): 1466 - 1470

- 3 genes: tetR, lacI, λ cI ●
- 5 promoters: PL1, PL2, PT, $P\lambda$ -, $P\lambda$ + ⊖
- 125 possible networks consisting of 3 promoter-gene units
- 2 inputs: IPTG (represses Lac), aTc (represses Tet) \bigodot
- 1 output: GFP (linked to $P_{\lambda-}$) ●

Gene with protein inhibitor

Bacteria Logic Gates

- Model 125 networks using just 2 modules: 0
- Enables modular simulation and analysis
- Can easily refine the modules without rewiring the networks. ●

A Computational Model of C. elegans Vulval Development

with Rosie Bloxsom (Cambridge University) Tim Labeeuw (Cambridge University) Jasmin Fisher (MSR Cambridge) Hillel Kugler (MSR Cambridge)

C. elegans Nematode Worm

- Model organism for development ⊖
- 1mm long, about 1000 cells
- Completely transparent, can observe growth

C. elegans VPC Differentiation

Simplified Model of AC and VPC

Network of AC and 6 VPC

AC | V(3,s3,s4,low) | V(4,s4,s5,low) | V(5,s5,s6,med) | V(6,s6,s7,high) | V(7,s7,s8,med) | V(8,s8,s9,low)

Population Plot

Geometric Plot

Refined VPC Model

Simulation Results

A Computational Model of MHC class I Antigen Presentation

with Luca Cardelli (MSR Cambridge) Leonard Goldstein (Cambridge University) Tim Elliott (Southampton University) Joern Werner (Southampton University)

MHC: A Biological Virus Scanner

Reproduced by permission of Garland Science/Taylor & Francis LLC.

MHC: A Biological Virus Scanner

©2005 from Immunobiology, Sixth Edition by Janeway et al. Reproduced by permission of Garland Science/Taylor & Francis LLC.

Investigate the Role of Tapasin

©2005 from Immunobiology, Sixth Edition by Janeway et al.

Reproduced by permission of Garland Science/Taylor & Francis LLC.

MHC I Structure

Interaction of MHC I with peptide \bigodot

SPiM Peptide Editing Model

Graphs describe the behaviour components Assume low, medium and high affinity peptides

Model Parameters

MHC spends < 2h on average in the ER. \bigodot

Simulations Match Experiments

- MHC needs to present stable peptides
- Improved selection with tapasin. How?

Time/mins Time/mins

No Tapasin \star Tapasin \checkmark

Peptide Discrimination

- Consider a loaded peptide with unbinding rate *u*
- Competition between unbinding and egression
- Egression probability determined by off-rate
- Maximal discrimination as egress tends to 0 ●

Parameter Space

- Maximal discrimination determined by off-rate
- High peptide turnover is a key factor

Peptide Discrimination

- Tapasin adds a second filtering stage
- Egression probability determined by off-rate²

Parameter Space

- Tapasin improves upper bound on discrimination
- Peptide editing is a 2-stage filter process

Peptide Loading: Flytrap Model

MHC I captures peptides like a Venus Flytrap. ●

Flytrap Peptide Editing Model

Extend the model with conformational change of **MHC**

Peptide Discrimination: Flytrap

- MHC can open and close several times 0
- But same upper bound on discrimination

Key mechanisms identified

- MHC can delay egression to sample a wider range of peptides
- High peptide turnover is needed to maintain peptide distribution inside ER
- Tapasin holds open MHC and increases peptide off-rate to quickly select high affinity peptides
- Tapasin stabilises MHC to prevent degradation and increase presentation
- Tapasin increases peptide on-rate by anchoring MHC at entrance to ER?
- Tapasin shifts equilibrium to open conformation as a way of delaying egression?

MHC Alleles: Model Predictions

Explanation for immune system variability $\color{red} \bullet$

No TPN

 TPN

Extending the Model

Include function of additional chaperones. ●

Extendable,Maintainable Models

Build complex models by composing simpler components. The models are easier to extend and maintain.

Verifying Biological Models

Can we replace one model with another?

MHC(bind,bindT)

degrade

Modelling Immunodominance

- How peptides induce a dominant response
- From molecular mechanisms to global response patterns

T cell

TCR

References

- [Blossey et al., 2007] Blossey, R., Cardelli, L., and Phillips, A. (2007). Compositionality, 0 Stochasticity and Cooperativity in Dynamic Models of Gene Regulation. HFSP Journal.
- [Blossey et al., 2006] Blossey, R., Cardelli, L., and Phillips, A. (2006). A compositional approach to Ο the stochastic dynamics of gene networks. Transactions in Computational Systems Biology, 3939:99–122.
- [Borgstroem et al., 2007] Borgstroem, J. Gordon, A., and Phillips, A. (2007). A Chart Semantics for 0 the Pi-calculus. In Proceedings of Expressiveness in Concurrency.
- [Gillespie, 1977] Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. \bullet J. Phys. Chem., 81(25):2340–2361.
- [Guet et al., 2002] Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. (2002) Combinatorial synthesis \bullet of genetic networks. Science 296 1466-1470.
- [Huang and Ferrel, 1996] Huang, C.-Y. F. and Ferrel, J. E. (1996). Ultrasensitivity of the mitogen-0 activated protein kinase cascade. PNAS, 93:10078–10083.
- [Lecca and Priami, 2003] Lecca, P. and Priami, C. (2003). Cell cycle control in eukaryotes: a biospi 0 model. In proceedings of Concurrent Models in Molecular Biology.
- [Phillips and Cardelli, 2007] Phillips, A. and Cardelli, L. (2007). Efficient, Correct Simulation of \bullet Biological Processes in the Stochastic Pi-calculus. In Proceedings of Computational Methods in Systems Biology, 4695:184–199.
- [Phillips et al., 2006] Phillips, A., Cardelli, L., and Castagna, G. (2006). A graphical representation \bigodot for biological processes in the stochastic pi-calculus. Transactions in Computational Systems Biology, 4230:123–152.

References

- [Priami, 1995] Priami, C. (1995). Stochastic π -calculus. The Computer Journal, 38(6):578–589. 0 Proceedings of PAPM'95.
- [Priami et al., 2001] Priami, C., Regev, A., Shapiro, E., and Silverman, W. (2001). Application of a Ο stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters, 80:25–31.
- [Regev et al., 2001] Regev, A., Silverman, W., and Shapiro, E. (2001). Representation and 0 simulation of biochemical processes using the pi- calculus process algebra. In Altman, R. B., Dunker, A. K., Hunter, L., and Klein, T. E., editors, Pacific Symposium on Biocomputing, volume 6, pages 459–470, Singapore. World Scientific Press.
- [Sangiorgi and Walker, 2001] Sangiorgi, D. and Walker, D. (2001). The pi-calculus: a Theory of \bigodot Mobile Processes. Cambridge University Press.
- [Silverman et al., 1987] Silverman, W., Hirsch, M., Houri, A., and Shapiro, E. (1987). The logix \bullet system user manual, version 1.21. In Shapiro, E., editor, Concurrent Prolog: Collected Papers (Volume II), pages 46–77. MIT Press, London.
- Mark Howarth, Anthony Williams, Anne B. Tolstrup, and Tim Elliott. Tapasin enhances mhc class i \bigodot peptide presentation according to peptide half-life. PNAS, 101(32):11737–11742, 2004.
- Sebastian Springer, Klaus Doring, Jonathan C. A. Skipper, Alain R. M. Townsend, and Vincenzo \bullet Cerundolo. Fast association rates suggest a conformational change in the mhc class i molecule h-2db upon peptide binding. Biochemistry, 37:3001–3012, 1998.
- A. Williams, C. Au Peh, and T. Elliott. The cell biology of mhc class i antigen presentation. Tissue \bigodot Antigens, 59:3–17, 2002.

SPiM Definition

Syntax Semantics Graphics

SPiM Syntax

x _ x _ r **Delay** at rate *r* $M{:=}$ $\pi_1.P_1 + ... + \pi_N$ $(x_1,...,x_N)$ *D*::= *P* **Definition** of a process $E ::= X_1(m_1) = D_1$ $X_N(m_N) = D_N$

 $\pi ::= x(m)$ **Receive** value *m* on channel *x n* **Send** value *n* on channel *x* (*m*) **Send** restricted value *m* on channel *x* **Choice** between actions $P ::=$ $P_1 | ... | P_M$ **Parallel** composition of processes *X*(*n*) **Species** *X* with parameters *n P* **Restriction** of channels x_1, \ldots, x_N to *P M* **Definition** of a choice **Definitions** for X_i with parameters m_i

S::= *E*,*P* **System** of *E* and *P*

Graphical Syntax: Environment *E*

Graphical Syntax: Process *P*

Graphical Semantics: Delay

$$
X(m) = r.P1 + ... + \piN.PN
$$

$$
X(m)
$$

Graphical Semantics: Delay

$$
X(m) = r.P1 + ... + \piN.PN
$$

$$
X(m) \longrightarrow P1
$$

Graphical Semantics: Interaction

 $X(n) = \overline{x}$ *_* $P_1 + ... + \pi_N P_N$, $Y(m) = \underline{x} . Q_1 + ... + \pi_M Q_M$ *X*(*n*) | *Y*(*m*)
Graphical Semantics: Interaction

 $X(n) = \overline{x}$ *_* $P_1 + ... + \pi_N P_N$, $Y(m) = \underline{x} . Q_1 + ... + \pi_M Q_M$ $X(n)$ | $Y(m) \longrightarrow P_1/Q_1$

Graphical Semantics: Binding

 $X(n) = \overline{x}$ *_* $Y(u) \cdot P_1 + \ldots + \pi_N \cdot P_N$, $Y(m) = \underline{x}(u) \cdot Q_1 + \ldots + \pi_M \cdot Q_M$ *X*(*n*) | *Y*(*m*)

Graphical Semantics: Binding

 $X(n) = \overline{x}$ *_* $Y(u) \cdot P_1 + \ldots + \pi_N \cdot P_N$, $Y(m) = \underline{x}(u) \cdot Q_1 + \ldots + \pi_M \cdot Q_M$ $X(n) \mid Y(m) \longrightarrow (u) (P_1 / Q_1)$

Graphical Syntax

