

The 42nd International Conference and Exhibition on Computer Graphics and Interactive Techniques

Aerophones in Flatland Interactive Wave Simulation of Wind Instruments

Research

Andrew Allen Nikunj Raghuvanshi

Wind Instruments

Excitation models: Single Reed (Clarinet)

Dalmont, J.P., Gilbert J., and Ollivier, S. 2003.

Excitation models: Lips (Trumpet)

Adachi and Sato. 1996.

Excitation models: Air Jet (Flute)

de La Cuadra. 2006.

Realtime synthesis: Digital Waveguides

SMITH, JULIUS O. 2010. *Physical Audio Signal Processing*.

+ http://ccrma.stanford.edu/˜jos/pasp/ (online book, accessed Jan 2014).

= frequency-dependent filter

Realtime synthesis: Digital Waveguides

= frequency-dependent filter

Our approach

Advantages

- Signal processing networks require expertise to design and ensure physical plausibility.
- Geometric manipulation is intuitive.
- Guaranteed physical plausibility.
- Lower expertise bar for musical experimentation.

Challenges

- System is driven non-linearly and has perceptually salient transients (note beginnings/ends).
- Direct time-domain finite-difference solution.
- Standard finite difference generates artifacts on changing geometry.
- Need millimeter-scale resolution.
- Numerical stability requires small time-steps for wave equation.
- ~3.8mm resolution at **128,000Hz on the GPU**.

Linear Wave Equation

• **V**

$$
\frac{\partial p}{\partial t} = -\rho c^2 \nabla
$$

$$
\frac{\partial \mathbf{v}}{\partial t} = \frac{-\nabla p}{\rho}
$$

Perfectly matched layer (PML)

$$
\frac{\partial p}{\partial t} + \sigma p = -\rho c^2 \nabla \cdot \mathbf{v}
$$

$$
\frac{\partial \mathbf{v}}{\partial t} + \sigma \mathbf{v} = -\frac{\nabla p}{\rho}
$$

$$
\sigma = 0
$$

$$
\sigma \neq 0
$$

Dynamic Geometry

Tone Holes, Valves, Slides, Mutes

Abrupt geometric changes: clicks

Our formulation (time-varying PML)

$$
\frac{\partial p}{\partial t} + (1 - \beta + \sigma)p = -\rho c^2 \nabla \cdot \mathbf{v}
$$

$$
\beta \frac{\partial \mathbf{v}}{\partial t} + (1 - \beta + \sigma)\mathbf{v} = \beta^2 \frac{-\nabla p}{\rho} + (1 - \beta + \sigma)\mathbf{v}_b
$$

- $\beta(x,t) \in [0,1]$ introduces smoothly-varying dynamic geometry.
- \cdot \mathbf{v}_h enforces boundary conditions and input flow from mouthpiece.
- Handles all phenomena we model.

Our formulation (time-varying PML)

Airring state in every cell

$$
\beta \frac{\partial \mathbf{v}}{\partial t} + (1 - \beta + \sigma) \mathbf{v} = \beta^2 \frac{-\nabla p}{\rho} + (1 - \beta + \sigma) \mathbf{v}_b
$$
\nSmoothly interpolates between **Bounding** and

\n
$$
\beta = 0: \text{Boundary}
$$
\n
$$
\mathbf{v} = \mathbf{v}_b
$$
\n
$$
\beta = 1: \text{Air}
$$
\n
$$
\frac{\beta = 1: \text{Air}}{\frac{\partial \mathbf{v}}{\partial t}} = \frac{-\nabla p}{\rho}
$$

Our formulation: natural transients

- The transition rate of β controls the smoothness of the transition.
- Results in a simple conditional-free update equation for the entire domain.

Wall losses

- 2D simulations support transverse resonances
- Wall loss modeling is required (unlike 1D models)

High-amplitude non-linearity

- Brass instruments have high amplitudes inside the bore.
- Makes brass sound brighter.

- Solving Finite Difference uses a 5-point 2D stencil.
- Neighbor pressures and velocities are used to update center pressure.

		ĸ	
n			state
$\mathbf{1}$ $\mathbf{1}$ $ -$ ----			

Per Fragment

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.

Framebuffer Texture

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.

- Values for each cell are stored in color channels.
- Simulation grid is represented as a 2D texture.
- Four copies of the simulation are stored in one large texture.
- Ping-pong with R/Ws on one texture.
- Write output pressure (sound) to reserved space on the FBO.

Clarinet

Chalumeau melody Altissimo melody (register key)

Saxophone

Simple melody Fast Squeaks

Flute

"Robot" Performer Wind Controller Interface

Bugle & Trumpet (brasses)

Lips Overblowing Valve System

Trumpet w/o Bell and w/ Mutes

Bell On/Off Straight, Cup and Harmon Mute

"Slide Whistle" and "Menorah"

Dynamic Bore Geometry **Interlocking Valve System**

"Tuba?" and "Hybrid"

Implausible-to-construct Instrument Reed, Lips, Valve, Tonehole, Bell

Comparisons to STK (Digital Waveguides)

Clarinet held note A3 (220Hz)

Clarinet register key C#6 (1109Hz)

Conclusions and Future Work

- First system for real-time 2D simulation of Aerophones
- Improving the control of excitation mechanisms
- Automatic tuning of geometry
- Generalized excitation model
- Modeling of larynx/syrinx (speech synthesis/bird song)

Thank You! Questions?

Special thanks for providing performances –

- Kyle Rowan, clarinetist
- Paul Hembree, trumpeter