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Excitation models: Single Reed (Clarinet)

Dalmont, J.P., Gilbert J., and Ollivier, S. 2003.



Excitation models: Lips (Trumpet)

Adachi and Sato. 1996.



Excitation models: Air Jet (Flute)

de La Cuadra. 2006.
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SMITH, JULIUS O. 2010. Physical Audio Signal Processing.

http://ccrma.stanford.edu/˜jos/pasp/ 

(online book, accessed Jan 2014).
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Advantages

• Signal processing networks require expertise to design and ensure 
physical plausibility.

• Geometric manipulation is intuitive.

• Guaranteed physical plausibility.

• Lower expertise bar for musical experimentation.



Challenges

• System is driven non-linearly and has perceptually salient transients 
(note beginnings/ends).

• Direct time-domain finite-difference solution.

• Standard finite difference generates artifacts on changing geometry.

• Need millimeter-scale resolution.

• Numerical stability requires small time-steps for wave equation.

• ~3.8mm resolution at 128,000Hz on the GPU.



Linear Wave Equation

𝜕𝑝
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+ 𝜎′𝑝 = −𝜌𝑐2𝛻 ∙ 𝐯
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Perfectly matched layer (PML)
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Dynamic Geometry

Tone Holes, Valves, Slides, Mutes



Abrupt geometric changes: clicks



Our formulation (time-varying PML)

• 𝛽(𝒙, 𝑡) ∈ [0,1] introduces smoothly-varying dynamic geometry.

• 𝐯𝑏 enforces boundary conditions and input flow from mouthpiece.

• Handles all phenomena we model.

𝜕𝑝
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Our formulation (time-varying PML)
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Our formulation: natural transients

• The transition rate of β controls the smoothness of the transition.

• Results in a simple conditional-free update equation for the entire 
domain.

Off On



Wall losses

• 2D simulations support transverse resonances

• Wall loss modeling is required (unlike 1D models)

Off On



High-amplitude non-linearity

• Brass instruments have high amplitudes inside the bore.

• Makes brass sound brighter.

Off On
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GPU Implementation

• Solving Finite Difference uses a 
5-point 2D stencil.

• Neighbor pressures and 
velocities are used to update 
center pressure.
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GPU Implementation

R G B A

𝑝 𝐯𝑥 𝐯𝑦 state

Per Fragment

𝒗𝑦

𝒗𝑥𝑝

𝒗𝑦

𝑝 𝒗𝑥

State structure stores:

• 𝛽 value (boundary-ness)

• 𝜎 value (PML)

• Is Excitation?

• Is Listener?

• Values for each cell are stored 
in color channels.

• Simulation grid is represented 
as a 2D texture.

• Four copies of the simulation 
are stored in one large texture.

• Ping-pong with R/Ws on one 
texture.

• Output pressure written out in 
block in reserved space on FBO
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GPU Implementation

Framebuffer Texture

𝑡 − 2

𝑡𝑡 + 1

R G B A

𝑝 𝐯𝑥 𝐯𝑦 state

𝑡 − 1

• Values for each cell are stored 
in color channels.

• Simulation grid is represented 
as a 2D texture.

• Four copies of the simulation 
are stored in one large texture.

• Ping-pong with R/Ws on one 
texture.

• Write output pressure (sound) 
to reserved space on the FBO.



Clarinet

Chalumeau melody Altissimo melody (register key)



Saxophone

Simple melody Fast Squeaks



Flute

“Robot” Performer Wind Controller Interface



Bugle & Trumpet (brasses)

Lips Overblowing Valve System



Trumpet w/o Bell and w/ Mutes

Bell On/Off Straight, Cup and Harmon Mute



“Slide Whistle” and “Menorah”

Dynamic Bore Geometry Interlocking Valve System



“Tuba?” and “Hybrid”

Implausible-to-construct Instrument Reed, Lips, Valve, Tonehole, Bell



Comparisons to STK (Digital Waveguides)

Low note High note



Conclusions and Future Work

• First system for real-time 2D simulation of Aerophones

• Improving the control of excitation mechanisms

• Automatic tuning of geometry

• Generalized excitation model

• Modeling of larynx/syrinx (speech synthesis/bird song)



Thank You! Questions?

Special thanks for providing performances –

• Kyle Rowan, clarinetist

• Paul Hembree, trumpeter


