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Abstract. In a network, identifying all vertices whose PageRank is more
than a given threshold value ∆ is a basic problem that has arisen in Web
and social network analyses. In this paper, we develop a nearly optimal,
sublinear time, randomized algorithm for a close variant of this problem.
When given a directed network G = (V,E), a threshold value ∆, and
a positive constant c > 3, with probability 1 − o(1), our algorithm will
return a subset S ⊆ V with the property that S contains all vertices
of PageRank at least ∆ and no vertex with PageRank less than ∆/c.
The running time of our algorithm is always Õ( n

∆
). In addition, our

algorithm can be efficiently implemented in various network access mod-
els including the Jump and Crawl query model recently studied by [6],
making it suitable for dealing with large social and information networks.

As part of our analysis, we show that any algorithm for solving this prob-
lem must have expected time complexity of Ω( n

∆
). Thus, our algorithm

is optimal up to logarithmic factors. Our algorithm (for identifying ver-
tices with significant PageRank) applies a multi-scale sampling scheme
that uses a fast personalized PageRank estimator as its main subroutine.
For that, we develop a new local randomized algorithm for approximat-
ing personalized PageRank which is more robust than the earlier ones
developed by Jeh and Widom [9] and by Andersen, Chung, and Lang [2].

1 Introduction

A basic problem in network analysis is to identify the set of its vertices that
are “significant.” For example, the significant nodes in the web graph defined
by a query could provide the authoritative content in web search; they could
be the critical proteins in a protein interaction network; and they could be the
set of people (in a social network) most effective to seed the influence for online
advertising. As the networks become larger, we need more efficient algorithms
to identify these “significant” nodes.
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1.1 Identifying Nodes with Significant PageRanks: Our Results

The meaning of ’significant’ vertices depend on the semantics of the network and
the applications. In this paper, we focus on a particular measure of significance
— the PageRanks of the vertices. PageRank was introduced by Page and Brin
in their seminal work for ranking webpages [11]. Mathematically, the PageRank
(with restart constant, also known as the teleportation constant, α) of a web-page
is proportional to the the probability that the page is visited by a random surfer
who explores the web using the following simple random walk: at each step, with
probability (1 − α) go to a random webpage linked to from the current page,
and with probability α, restarts the process from a randomly chosen page. For
reasons to be cleared shortly, we consider a normalization of the PageRank so
that the sum of the PageRank values over all vertices is equal to n, the number
of vertices in the network. In other words, suppose PageRank(u) denote the
PageRank of vertex u in the network G = (V,E). Then,∑

u∈V
PageRank(u) = n.

PageRank has been used by the Google search engine and has found applica-
tions in wide range of data analysis problems [4,7]. In this context, the problem
of identifying “significant” vertices could be illustrated by the following search
problem: Let Top PageRanks denote the problem of identifying all vertices
whose PageRanks in a network G = (V,E) are more than a given threshold
value 1 ≤ ∆ ≤ |V |.

In this paper, we consider for the following close variant of Top PageRanks:

Significant PageRanks: Given a network G = (V,E), a threshold
value 1 ≤ ∆ ≤ |V | and a positive constant c > 1, compute, with success
probability 1− o(1), a subset S ⊆ V with the property that S contains all
vertices of PageRank at least ∆ and no vertex with PageRank less than
∆/c.

We develop a nearly optimal, sublinear time randomized algorithm for Sig-
nificant PageRanks for any fixed c > 3. The running time of our algorithm is
always Õ( n∆ ). We show that any algorithm for Significant PageRanks must
have time complexity of Ω( n∆ ). Thus, our algorithm is optimal up to logarithmic
factors. Our Significant PageRanks algorithm applies a multi-scale sampling
scheme that uses a fast personalized PageRank estimator (see below) as its main
subroutine.

1.2 Matrix Sampling and Personalized PageRank Approximation

While the PageRank of a vertex captures the importance of the vertex collec-
tively assigned by all vertices in the network, as pointed out by Haveliwala [8],
one can use the distributions of the following random walk to define the pairwise
contributions of significances: Given a teleportation probability α and a starting
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vertex u in a network G = (V,E), at each step, with probability (1 − α) go
to a random neighboring vertex, and with probability α, restarts the process
from u. For v ∈ V , the probability that v is visited by this random process, de-
noted by PersonalizedPageRanku(v), is the u’s personal PageRank contribution
of significance to v. It is not hard to verify that

∀u ∈ V ,
∑
v∈V

PersonalizedPageRanku(v) = 1; and

∀v ∈ V , PageRank(v) =
∑
u∈V

PersonalizedPageRanku(v).

Personalized PageRanks has been widely used to describe personalized be-
havior of web-users [11] as well as for designing good network clustering tech-
niques [2]. As a result, fast algorithms for computing or approximating per-
sonalized PageRank can be very useful. One can approximate PageRanks and
personalized PageRanks by the power method [4], which involves costly matrix
multiplications for large scale networks. Applying effective truncation, Jeh and
Widom [9] and Andersen, Chung, and Lang [2] developed personalized PageR-
ank approximation algorithms that can find an ε-additive approximation in time
proportional to the product of ε−1 and the maximum in-degree in the graph.

Our sublinear-time algorithm for Significant PageRanks also requires
fast subroutines for estimating personalized PageRanks. It uses a multi-scale
sampling approach by selecting a set of precision parameters {ε1, ..., εh} where h
depends on n and ∆, εi = 1/2i. Then, for each i in range 1 ≤ i ≤ h, it computes
the εi-precise personalized PageRanks defined by a sample of Õ(εin/∆) vertices.
For networks with constant maximum degrees, we can simply use the Jeh-Widom
or Andersen-Chung-Lang personalized PageRank approximation algorithms in
our multi-scale sampling scheme. However, for networks such as web graphs
and social networks that may have nodes with large degrees, these two earlier
algorithms are not robust enough for our purpose.

We develop a new local algorithm for approximating personalized PageRank
that satisfies the desirable robust property that the multi-scale sample scheme
requires. Given ρ, ε > 0 and a starting vertex u in a network G = (V,E), our
algorithm estimates each entry in the personalized PageRank vector,

PersonalizedPageRanku(.)

defined by u to a multiplicative factor of at most (1+ρ) plus an additive precision

error of at most ε 4. The time complexity of our algorithm is O( log(|V |) log(ε−1)
ερ2 ).

Our algorithm requires a careful simulation of random walks from the starting
node u to ensure that its complexity does not depends on the degree of any node.

Our algorithms can be efficiently implemented in various network querying
models assuming no direct global access to the network. In particular, our algo-
rithms can be efficiently implemented in the Jump and Crawl query model [6],

4 Formally, estimated value ˆval of val would have the property that (1− ρ) · val− ε ≤
v̂al ≤ (1 + ρ) · val + ε.
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making the algorithm suitable for processing large social and information net-
works.

In particular, our sublinear algorithm for Significant PageRanks could
be used in Web search engines, which often need to build a core of web-pages
to be later used for web-search. It is desirable that pages in the core have high
PageRank values. These search engines usually apply crawling to discover new
significant pages and add them to the core. The property that our sublinear-
time algorithms have a natural implementation in the Jump and Crawl model
may make them useful in a search engine for selecting pages with high PageRank
values to update the current core by using them to replace the existing core pages
that have relatively low PageRank values. We anticipate that our algorithm for
Significant PageRanks will be useful for many other network analysis tasks.

1.3 Additional Related Work

For personalized PageRanks approximation, in addition to the work of [2, 4, 5,
9, 11], Andersen et al [1] developed a ’backward’ version of the local algorithm
of [2]. Their algorithm finds all nodes that contribute at least some fixed fraction
ρ to a page’s PageRank in time O(dmax-out/ρ) where dmax-out is the maximum
out-degree in the network. This algorithm can be used to provide some reliable
estimate to a node’s PageRank. For example, for a given k, in time Θ̃(k) it
can bound the total contribution from the k highest contributors to the node’s
PageRank. However, for networks with large dmax-out, its complexity may not
be sublinear.

As suggested in [1], one can view the entire set of personalized PageRanks
(defined by all vertices in a network) as an |V |×|V |matrix, which is referred to as
the PageRank matrix of the graph. In the PageRank matrix, each row represents
the personalized PageRanks from a particular vertex, and each column represents
the contributions to its PageRank from all vertices in the network. Note that
the sum of each row is 1 and the sum of the uth column is the PageRank of u.

In light of this, the problem of Significant PageRanks can be viewed
as a matrix sparsification or matrix approximation problem. There has been a
large body of work of finding a low complexity approximation to a matrix that
preserves some of its properties. Perhaps the most relevant one to our goal is a
low rank matrix approximation under the l2 matrix norm.

All current methods for finding such low rank approximations runs in time
at least linear in the size of the input matrix. See [10] for a survey of recent
results.

Next, a linear time Monte Carlo based method to estimate PageRank of all
nodes is devised in [3]. The method is based on running constant number of
random walks from each of the nodes in the network.

Last, in the context of sublinear time graph algorithms, our research is re-
lated to the work of [12], in which sublinear time algorithms are presented for
estimating several quantities. Our implementation of the Jump and Crawl query
model can be viewed as a stringent type of the adjacency-list graph model used
in [12].
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1.4 Organization

Section 2 contains the needed definitions and notations. Section 3 presents our
multi-scale sampling algorithm for Significant PageRanks. In section 4 we
provide a lower bound construction for Significant PageRanks. In Section
5 we give a robust local algorithm for approximating personalized PageRank
vectors.

2 Preliminaries

We consider a network which is defined as a directed graph G = (V,E) with
n nodes and m edges. Usually, a network is massive. Our algorithms access a
network using a rather natural implementation of the Jump-and-Crawl query
model of [6] developed for processing large social and information networks. The
Jump and Crawl model is concerned with informational complexity of nodes,
where each node access reveal its full list of adjacent neighbors at no extra
cost. Our algorithms shall be designed to work under the following compelling
implementation of the Jump-and-Crawl query model. We allow two types of
queries:

– Jump: A call to the Jump query needs no input and returns a uniformly at
random node from the network.

– RandomCrawl: A call to the RandomCrawl query requires a vertex v as
input. RandomCrawl(v) returns a uniformly at random out-neighbor of v.

Note for example, that the random surfer procedure used in the definition of
PageRank is itself a natural algorithm under our implementation of the Jump-
and-Crawl query model.

We now move to define personalized PageRank as well as PageRank. Mathe-
matically, the personalized PageRank vector of a node v is the stationary point
of the following equation:

PersonalizedPageRankv(·) = α1v + (1− α)PersonalizedPageRankv(·) ·D−1A,

where α is the teleportation probability, A is the adjacency matrix of the directed
network G = (V,E) so A(i, j) = 1 iff (i, j) ∈ E. In this notation, D is a diagonal
matrix with dout(v) at entry (v, v) and 1v is the indicator vector of v. We will
follow the standard [4] by assuming that each node has at least one out-link 5.

Then, one can define the RageRank vector as

PageRank(·) =
∑
v∈V

PersonalizedPageRankv(·)

Note that in this definition, the sum of the all PageRank values is equal to n.
Following [1], we define a matrix PPR (short for personalized PageRank) to

be the n× n matrix, whose vth row is PersonalizedPageRankv(·).
Unless stated otherwise, for any x, log(x) would mean log2(x).

5 Otherwise, as commonly done [4], consider that node as having out links into all
nodes in the network.
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3 Multi-scale Matrix Sampling and Approximation of
PageRank

In this section, we present our nearly optimal, sublinear time algorithm for Sig-
nificant PageRanks. Recall that

Significant PageRanks: Given a network G = (V,E), a threshold
value 1 ≤ ∆ ≤ |V | and a positive constant c > 1, compute, with probabil-
ity 1−o(1), a subset S ⊆ V with the property that S contains all vertices
of PageRank at least ∆ and no vertex with PageRank less than ∆/c.

Note that the PageRank value of each vertex is at least α and at most n.
Instrumental to our algorithm, we present a multi-scale algorithm for sampling
the PageRank matrix PPR that achieves, for any fixed c > 3, the following goals:
The algorithm makes Õ( n∆ ) total queries and updates, and with high probability,

1. For each vertex with PageRank value at least ∆, the sum of the sampled
entries of of the column corresponding to the vertex will provide a quality
estimate to the PageRank value of that vertex.

2. The algorithm does not return any vertex whose PageRank value is less than
∆/c.

In our algorithm, we will use a new local algorithm ApproxRow for per-
sonalized PageRank approximation. Algorithm ApproxRow takes three input
parameters: v ∈ V , an additive error factor ε ∈ (0, 1) and a multiplicative fac-
tor ρ ∈ (0, 1). It returns an approximation to PersonalizedPageRankv(·) such
that for every PPR(v, j) > ε, it returns a non-negative estimated value between
(1 − ρ)PPR(v, j) − ε to (1 + ρ)PPR(v, j) + ε. The running time of ApproxRow

is essentially O( log(n) log(ε−1)
ερ2 ). ApproxRow and its analysis will be presented in

Section 5.
We start with some high-level idea of our multi-scale sampling algorithm. To

assist our exposition, we will present our algorithm and its analysis for c = 6.
Both are easily extended to any other constant value c > 3. Our algorithm will
use O(log n) precision scales: εt = 2−t for 0 ≤ t ≤ log( 4n

∆ ). We conceptually di-
vide each column of the PPR matrix into chunks, where the chunk corresponding
to εt contains its entries with values between εt to 2εt. Thus, we ignore all entries
in the PPR matrix column of value less than ∆

4n , the finest scale. Note that en-

tries with value at most ∆
4n can contribute to at most a quarter to the PageRank

of a vertex whose PageRank value is least ∆.
If the sum of a chunk’s entries is at least ∆/(2 log(n)), we will refer to it

as a heavy chunk. The central idea of our algorithm is to efficiently generate
robust estimates of the sums for all heavy chunks, as we shall show that it is
also sufficient to only provide estimates to heavy chunks.

As the entries in each chunk are within a factor of 2 of each other, we then
reduce the task of estimating the sum in a chunk to the problem of approximately
counting the size of the chunk. Then conceptually, we estimate the size of each
heavy chunk at scale εt by taking Õ(εt4n/∆) random entries from its column
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and counting the numbers of samples in this chunk. The challenge we need to
overcome is to efficiently sample all heavy chunks at a scale simultaneously.

This is where we will use our local PageRank approximation algorithm Ap-

proxRow, which in O( log(n) log(ε−1)
ε ) time when given a vertex v, returns robust

estimates to all entries of values at least ε in v’s row in the PPR matrix. To
achieve Õ(n/∆) queries and running time, we call ApproxRow Θ̃( n∆εt) times at
scale εt, and we will show that it is sufficient to sample this much (or little).

In the last step of the algorithm, for each node j, we will simply sum up over
all scales εt, its estimated values weighted by a normalizing factor ∆

εt2 log2(n)
.

Then the algorithm will output only those j’s where the sum is at least ∆
4 and

their estimated PageRank values.

A detailed pseudo-code of our algorithm, ApproximatePageRank, is given
below.

Algorithm 1 ApproximatePageRank

Require: PageRank threshold ∆, a network G = (V,E) on n nodes accessible only by
Jump and RandomCrawl queries.
// First-Part //

1: Initialize a binary search tree, ChunkTree, indexed lexicographically by a two-tuple
key (nodeID, ε).

2: for t = 0 to log( n
4∆

) do
3: Set the additive error εt = 2−t.
4: for ( n

∆
εt4 log2(n)) times do

5: Jump to a random node, call it v.
6: Call list = ApproxRow(v, εt

2
, 1
2
) and update the chunk size estimate affiliated

vertices in list as the following:
7: for each pair (nodeID, εt) in the list do
8: if there exists an entry e with key (nodeID, εt) in ChunkTree then
9: Update entry e’s value by adding 1 to its current value.

10: else
11: Create an entry in ChunkTree with key (nodeID, εt) and value 1.
12: end if
13: end for
14: end for (at scale εt).
15: end for (for all scales)

// Second-Part //
16: Initialize a final tree, called TreeofPageRankValues, indexed by key (nodeID).
17: for all elements (chunks) in ChunkTree that all belong to same node i (namely,

have i as the first part of their key) do
18: if chunk has value, val, at least 1

2
log(n) then

19: Let ε be the second part of the chunk’s key.
20: Add ∆

2ε log2(n)
to the entry indexed by (i) in TreeofPageRankValues.

21: end if
22: Output all elements in TreeofPageRankValues with at least ∆/4
23: end for
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In the proofs for the following two theorems, we will analyze the performance
of this algorithm. Note that we will ignore the dependence of the running time on
α as for all standard PageRank computations, it is taken to be a fixed constant
independent of input size [4].

Theorem 1 (Complexity of ApproximatePageRank). The runtime of al-
gorithm ApproximatePageRank is upper bounded by Õ(n/∆).

Proof The algorithm uses O(log(n/∆)) scales. In First-Part of the algorithm,
for scale εt, it makes n

∆εt4 log2(n) Jump queries and for each query it runs
ApproxRow(v, εt/2, 1/2), where v represents the random vertex returned by the

query. ApproxRow then has a runtime of O(
log(n) log(ε−1

t )
εt

). Thus, the total run-

time complexity is Õ( n∆ ) as the finest scale is ∆/n and there are at most log n
scales. In addition to the time spent on querying the network, the algorithm
takes Θ(log(n)) per step overhead for each access/update in its data structure.

In Second-Part of the algorithm, it makes no new queries. As there are only
Õ(n/∆) items in the data structure ChunkTree and then TreeofPageRankValues,
the complexity of this summation part is Õ(n/∆). The last step of outputting
all nodes in the tree with value bigger than a threshold can easily be done in
linear time in the size of the tree, which is Õ(n/∆). ut

Theorem 2 (Correctness of ApproximatePageRank). Given ∆ and con-
stant c > 3, ApproximatePageRank outputs, with probability 1 − o(1), all nodes
with PageRank at least ∆ but no node with PageRank smaller than6 ∆/c.

Proof For v ∈ V , let (pv1, p
v
2, . . . , p

v
n) be v’s column in the PPR matrix. Let

ChunkSet(v, ε) = {i : ε ≤ pvi < 2ε}, ChunkSize(v, ε) = |ChunkSet(v, ε)|, and
ChunkSum(v, ε) =

∑n
i=1 {pvi : ε ≤ pvi < 2ε}.

Recall a chunk is heavy is its chunksum ∆/log(n). We now prove that at the
end of First-Part in Algorithm ApproximatePageRank, all heavy chunks are well
approximated.

To focus on the essence of the proof for multi-scale matrix sampling, we first
assume that all the values returned by ApproxRow are exact (with no error at
all). We call this assumption, the perfect row approximation assumption. We will
later show that when removing this assumption the approximation scheme would
only be affected by a multiplicative factor of three, namely the effective value of
c in Significant PageRanks would be one third its value under perfect row
approximations.

Lemma 1 (key lemma). Let εt = 2−t, for 1 ≤ t ≤ n
4∆ . The following holds

with probability 1− o(1):

– If ChunkSum(v, εt) ≥ ∆
2 log(n) then at the end of First-Part in the algorithm

the entry in ChunkTree with key (v, εt), namely the algorithm’s approxima-

tion of ChunkSize(v, εt), is at least log n/2 and is between ChunkSize(v,εt)
∆ ·

εt2 log2(n) to ChunkSize(v,εt)
∆ · εt8 log2(n).

6 Again for exposition, we present our algorithm and its analysis for c = 6. We later
show that the theorem on a slightly modified algorithm holds for any constant c > 3.
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– If ChunkSum(v, εt) ≤ ∆
4 log(n) then at the end of First-Part in the algorithm

the entry in ChunkTree with key (v, εt), namely the algorithm’s approxima-

tion of ChunkSize(v, εt), is smaller than log(n)
2 .

Proof Note that 1
2εt

ChunkSum(v, εt) ≤ ChunkSize(v, εt) ≤ 1
εt

ChunkSum(v, εt).

So, if ChunkSum(v, εt) ≥ ∆
2 log(n) then ChunkSize(v, εt)/n ≥ ∆/(4εtn log n).

Thus, when sampling 4εtn log2(n)/∆ random rows (as in line 5 of the algo-
rithm), the expected number of entries in the chunk that ApproxRow discovers
is at least ChunkSize(v, εt)εt4 log2(n)/∆ ≥ log(n). By a standard multiplicative
Chernoff bound (see appendix), with probability 1− o(1), after multiplying the
count by ∆/(2εt log2 n), we can approximate ChunkSize(v, εt) within a multi-
plicative factor of 2. Moreover, if ChunkSum(v, εt) ≤ ∆

4 log(n) then, its estimated

value is at most twice its value, namely smaller than log(n)
2 . ut

Lemma 2. The following holds with probability 1 − o(1) under the perfect row
approximation assumption:

– If PageRank(v) ≥ ∆, then the algorithm will output v and will estimate its
PageRank value to a value between PageRank(v)/4 to 2PageRank(v).

– If PageRank(v) < ∆/8, then the algorithm will not output v.
– If ∆/8 ≤ PageRank(v) < ∆, then the algorithm might output v. If v is

outputted, then its estimated PageRank value is between PageRank(v)/16 to
2PageRank(v).

Proof By lemma 1, that the sums of each heavy chunk are well estimated to
within a multiplicative factor of 2.

Since there are at most log n chunks in column, the contribution from all
non-heavy chunks is at most log n(∆/(2 log n)) = ∆/2. Thus, if v’s PageRank
is at least ∆, then the contribution from its heavy chunks is at least ∆/2. Con-
sequently, and the algorithm’s approximation to v’s PageRank will be at least
∆/4 and at most 2∆, and this vertex will be outputted.

We can similarly establish the other two cases as stated in the lemma. ut
We now turn to discuss the effect of having only approximate values com-

puted in ApproxRow calls on the guarantees of ApproxmatePageRank.

Lemma 3. Given parameters 0 < ε, ρ < 1, removing the perfect row approxi-
mation assumption changes the approximation constant c by at most 3 times its
value as well as changes the estimated PageRank values computed by Approxi-
matePageRank to be at most three times their value.

Proof The PPR matrix is effectively computed using calls to ApproxRow by
the algorithm.

Given ε > 0, consider an element ε ≤ PPR(v, j) ≤ 2ε for some nodes v, j.
There are two sources for having this element estimator differ from it real value.
First, ApproxRow (with parameters ε = ε/2 and ρ = 1/2) computes approximate
values so the estimated value is between (1− ρ− 1/4) its real value to (1 + ρ+
1/4) (we could put the additive ε/4 error in the multiplicative approximation



10 Borgs et al.

factor since ε ≤ PPR(v, j) ≤ 2ε). In particular, in the algorithm we pick ρ =
1/2. However, one could replace both ρ and ε with smaller values to get an
approximation that gets closer to the true value: Replacing ρ by k1ρ and ε by
k2ε for any integral k1, k2 would increase the total runtime by only a factor of

k21k2
log (k2)
log(ε−1) . The second source why the estimator differs from its true value is

double counting. An element with a true value between ε/2 to ε as well as one
with a true value between 2ε to 4ε could appear in a realization as an element
with a value between ε to 2ε. However (by applying Chernoff bound), elements
with true value smaller than ε/2 as well as those with value bigger than 4ε would
not appear as such. Thus due to double counting the sum of elements in each
column can be at most three times its real value. If we denote the PageRank of
node j by ∆(j) and the value it gets from the realized column values by ∆′(j)
then,

(1− k1ρ− k2/2)∆(j) ≤ ∆′(j) ≤ 3(1 + k1ρ+ k2/2)∆(j).

In particular, algorithm ApproximatePageRank uses ρ = 1
2 , k1 = 1 and k2 = 1

2
which gives

1

4
∆(j) ≤ ∆′(j) < 6∆(j).

ut
This ends the proof of Theorem 2. ut

4 Lower Bound Construction for PageRank
Approximations

We now turn to prove a corresponding lower bound for PageRank approxima-
tions.

The lower bound construction will show that, any algorithm, making less
than Ω( n∆ ) Jump and Crawl queries, will fail, with constant probability, to find
any node with PageRank at least ∆ on the graph. This holds true for any type
of implementation of a Crawl query (including the RandomCrawl one). Given
positive integers n and ∆ < n

2 −1, we construct an undirected graph on n nodes
made of a path subgraph on n − d − 1 nodes and an isolated star subgraph on
d + 1 nodes, where d = 2∆. See figure 1 for an illustration. Fix 0 < α < 1, the
teleportation probability. By solving the PageRank equations it is not hard to
check that each node on the path subgraph has PageRank value of 1, the hub
of the subgraph has PageRank d

2 + 1
2(1−α) and each leaf of the star subgraph

has PageRank of 1
d (d+ 1− d

2 −
1

2(1−α) ) ≤
1
2 + 1

d . As ∆ = d
2 , the only node with

PageRank at least ∆ is the hub of the star subgraph. However, for any ε > 0,
in order to find any node that belongs to the star subgraph one needs to make,
with probability at least 1− 1

e − ε, at least n
d = Ω( n∆ ) Jump queries.
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Fig. 1. An example illustrating the path-star graph of the lower bound construction
for PageRank computations.

5 Local Robust Computation of Personalized PageRank

We now describe a method, ApproxRow, based only on local computations that
approximates a node’s personalized PageRank vector. The pseudo-code is given
on the next page.

Theorem 3 (Complexity of ApproxRow). For any node v and values 0 <

ε, ρ < 1, the runtime of ApproxRow(v, ε, ρ) is upper bounded by O( log(n) log(ε−1)

ερ2 log2(
1

1−α )
).

Proof The algorithm performs 1
ερ2 · 16 log(n) rounds where at each round it

simulates a random walk with termination probability of α for at most length
steps. Each step is simulated by taking a Jump (’termination’ step) with proba-
bility α and taking a RandomCrawl step with probability 1− α. Thus the total

number of queries used is 16 log(n)
ερ2 · log 1

(1−α)
( 3
ε ) = O( log(n) log(ε−1)

ερ2 log2(
1

1−α )
). ut

Theorem 4 (Correctness of ApproxRow). For any node v and values 0 <
ε, ρ < 1, with probability of at least 1 − Θ( 1

n2 ), ApproxRow(v, ε, ρ) computes a
list l with the following properties:

– Every node j that is outputted in the list l has an estimated value which is
non-negative and lies between (1− ρ)PPR(v, j)− ε

4 to (1 + ρ)PPR(v, j).
– Every node not in the list l has PPR(v, j) ≤ ε/2.

Proof We start with an observation. The personalized PageRank contribution
from a node v to node j is exactly the probability that a random walk that starts
at v, and at each time step terminates with probability α, and with probability
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Algorithm 2 ApproxRow

Require: A node v in G = (V,E), additive error parameter 0 < ε < 1, multiplicative
approximation parameter 0 < ρ < 1, teleportation probability 0 < α < 1.

1: Initialize a binary search tree NodeCountTree where the key is a node’s identity.
2: Set length = log 1

(1−α)
( 4
ε
).

3: Set r = 1
ερ2
· 16 log(n).

4: for r times do
5: Run one realization of a random walk with restart probability α: the walk starts

at v and at each time makes, with probability α a ’termination’ step by returning
to v and terminating, and with probability 1−α a RandomCrawl step. The walk
is artificially stopped after length steps if it has not terminated already.

6: if the walk visited a node u just before making a termination step then
7: Add 1 to the count stored at u’s entry in NodeCountTree.
8: end if
9: Output all nodes in NodeCountTree together with their average count (over the

r rounds).
10: end for

1 − α moves to a random out-link of the node it is currently at, was at node
j one step before termination. Define 1v to be the indicator vector of v. The
proof of the observation follows from a series of algebraic manipulations on the
definition of the PersonalizedPageRankVector of v:

PersonalizedPageRankv(·) = α1v + (1− α)PersonalizedPageRankv(·) ·D−1A.

Solving the system gives PersonalizedPageRankv(·) = α1v(I−(1−α)D−1A)−1 =
α1v

∑∞
i=0 ((1− α)D−1A)i. This last equation makes the observation clear.

Given a node j, denote by pk(v, j) the contribution to v’s Personalized PageR-
ank vector from walks that are of length at most k. By the above observation,
pk(v, j) = α1v

∑k
i=0 ((1− α)D−1A)i.

We ask how much is contributed to j’s entry in the Personalized PageRank
vector of v from walks of length bigger or equal to k. The contribution is at most
(1 − α)k since the walk needs to survive at least k consecutive steps. Taking
(1− α)k ≤ ε

4 will guarantee that at most ε
4 is lost by only considering walks of

length smaller than k, namely: PPR(v, j)− ε
4 ≤ pk(v, j) ≤ PPR(v, j).

For that it suffices to take k = log 1
(1−α)

( 4
ε ). This is exactly length, the length

of each walk the algorithm simulates, is set to.

Next, the algorithm provide a estimate of pk(v, j) by realizing walks of length
at most k. The algorithm does so by taking the average count over 1

ερ2 ·16 log(n)

trials. Denote the algorithm’s output by p̂k(v, j). Then, if pk(v, j) ≥ ε
4 , by the

multiplicative Chernoff bound, Pr(p̂k(v, j) > (1 + ρ)pk(v, j)) ≤ exp(−2 log(n))
and Pr(p̂k(v, j) < (1− ρ)pk(v, j)) ≤ exp(−2 log(n)).

We can conclude that (1− ρ)(PPR(v, j)− ε
4 ) ≤ p̂k(v, j) ≤ (1 + ρ)PPR(v, j).

In particular, nodes with PPR(v, j) > ε will be estimated to a positive value
and outputted as claimed.
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Similarly, if pk(v, j) ≤ ε
4 then by the multiplicative Chernoff bound,

Pr(p̂k(v, j) > ε
2 ) ≤ exp(−2 log(n)). In this case we conclude that p̂k(v, j) ≤ ε

2 .
Also, PPR(v, j) ≤ ε

4 + ε
4 ≤

ε
2 so |PPR(v, j)− p̂k(v, j)| ≤ ε

2 . ut
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Appendix: Concentration Bounds

Lemma 4 (multiplicative Chernoff bound). Let Xi be i.i.d. Bernoulli ran-
dom variables with expectation µ each. Define X =

∑n
i=1Xi. Then,

– For 0 < λ < 1, P r[X < (1− λ)µn] < exp(−µnλ2/2).
– For 0 < λ < 1, P r[X > (1 + λ)µn] < exp(−µnλ2/4).
– For λ ≥ 1, P r[X > (1 + λ)µn] < exp(−µnλ/2).


