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1. Introduction

About a decade ago, it was realized that the Internet has a power-law degree distribution [FFF99,
AJB99]. This observation led to the so-called preferential attachment model of Barab�asi and Albert
[BA99], which was later used to explain the observed power-law degree sequence of a host of real-
world networks, including social and biological networks, in addition to technological ones. The �rst
rigorous analysis of a preferential attachment model, in particular proving that it has small diameter,
was given by Bollob�as and Riordan [BR04]. Since these works there has been a tremendous amount
of study, both non-rigorous and rigorous, of the random graph models that explain the power-law
degree distribution; see [AB02] and [BR02] and references therein for some of the non-rigorous and
rigorous work, respectively.

Also motivated by the growing graphs appearing in real-world networks, for the past �ve years or so,
there has been much study in the mathematics community of notions of graph limits. In this context,
most of the work has focused on dense graphs. In particular, there have been a series of papers on
a notion of graph limits de�ned via graph homomorphisms [BCL+06b, BCL+06a, BCL+07, LS06];
these have been shown to be equivalent to limits de�ned in many other senses [BCL+06a, BCL+07].
Although most of the results in this work concern dense graphs, the paper [BCL+06b] also introduces
a notion of graph limits for sparse graphs with bounded degrees in terms of graph homomorphisms;
using expansion methods from mathematical physics, [BCL+] establishes some general results on
this type of limit for sparse graphs. Another recent work [BR07] concerns limits for graphs which
are neither dense nor sparse in the above senses; they have average degrees which tend to in�nity.
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Earlier, a notion of a weak local limit of a sequence of graphs with bounded degrees was given by
Benjamini and Schramm [BS01] (this notion was in fact already implicit in [Ald98]). Interestingly,
it is not hard to show that the Benjamini-Schramm limit coincides with the limit de�ned via
graph homomorphisms in the case of sparse graphs of bounded degree; see [Ele07] for yet another
equivalent notion of convergent sequences of graphs with bounded degrees.

As observed by Lyons [Lyo05], the notion of graph convergence introduced by Benjamini and
Schramm is meaningful even when the degrees are unbounded, provided the average degree stays
bounded. Since the average degree of the Barab�asi-Albert graph is bounded by construction, it
is therefore natural to ask whether this graph sequence converges in the sense of Benjamini and
Schramm.

In this paper, we establish the existence of the Benjamini-Schramm limit for the the Barab�asi-
Albert graph by giving an explicit construction of the limit process, and use it to derive various
properties of the limit. Our results cover the case of both uniform and preferential attachments
graphs. Moveover, our methods establish the �nite-volume corrections which give the approach to
the limit.

Our proof uses a representation which we �rst introduced in [BBCS05] to analyze processes which
model the spread of viral infections on preferential attachment graphs. Our representation expresses
the preferential attachment model process as a combination of several P�olya urn processes. The
classic P�olya urn model was of course proposed and analyzed in the beautiful work of P�olya and
Eggenberger in the early twentieth century [EP23]; see [Dur96] for a basic reference. Despite the fact
that our P�olya urn representation is a priori only valid for a limited class of preferential attachment
graphs, we give an approximating coupling which proves that the limit constructed here is the limit
of a much wider class of preferential attachment graphs.

Our alternative representation contains much more independence than previous representations of
preferential attachment and is therefore simpler to analyze. In order to demonstrate this, we also
give a few applications of the limit. In particular, we use the limit to calculate the degree distribution
and the joint degree distribution of a typical vertex with the vertex it attached to in the preferential
attachment process (more precisely, a vertex chosen uniformly from the ones it attached to).

2. Definition of the Model and Statements of Results

2.1. Definition of the Model

The preferential attachment graph we de�ne generalizes the model introduced by Barab�asi and
Albert [BA99] and rigorously constructed in [BR04]. Fix an integer m ≥ 2 and a real number
0 ≤ α < 1. We will construct a sequence of graphs (Gn) (where Gn has n vertices labeled 1, . . . , n)
as follows:

G1 contains one vertex and no edges, and G2 contains two vertices and m edges connecting them.
Given Gn−1 we create Gn the following way: We add the vertex n to the graph, and choose m
vertices w1, ..., wm, possibly with repetitions, from Gn−1. Then we draw edges between n and each
of w1, ..., wm. Repetitions in the sequence w1, ..., wm result in multiple edges in the graph Gn.

We suggest three di�erent ways of choosing the vertices w1, ..., wm. The �rst two ways, the inde-
pendent and the conditional, are natural ways which we consider of interest, and are the two most
common interpretations of the preferential attachment model. The third way, i.e. the sequential
model, is less natural, but is much easier to analyze because it is exchangeable, and therefore by
de-Finetti’s Theorem (see [Dur96]) has an alternative representation, which contains much more



Berger, Borgs, Chayes, Saberi /Preferential attachment limits 3

independence. We call this representation the P�olya urn representation because the exchangeable
system we use is the P�olya urn scheme.

1. The independent model: w1, ..., wm are chosen independently of each other conditioned on the
past, where for each i = 1, . . . ,m, we choose wi as follows: With probability α, we choose wi
uniformly from the vertices of Gn−1, and with probability 1 − α, we choose wi according to
the preferential attachment rule, i.e., for all k = 1, . . . , n− 1,

P (wi = k) =
degn−1(k)

Z

where Z is the normalizing constant Z =
∑n−1
k=1 degn−1(k) = 2m(n− 2).

2. The conditional model: Here we start with some predetermined graph structure for the �rst
m vertices. Then at each step, w1, ..., wm are chosen as in the independent case, conditioned
on them being di�erent from one another.

3. The sequential model: w1, ..., wm are chosen inductively as follows: With probability α, w1

is chosen uniformly, and with probability 1 − α, w1 is chosen according to the preferential
attachment rule, i.e., for every k = 1, . . . , n−1, we take w1 = k with probability (degn−1(k))/Z
where as before Z = 2m(n − 2). Then we proceed inductively, applying the same rule, but
with two modi�cations:

(a) When determining wi, instead of the degree degn−1(k), we use

deg′n−1(k) = degn−1(k) + #{1 ≤ j ≤ i− 1|wj = k}

and normalization constant

Z ′ =

n−1∑
k=1

(deg′n−1(k)) = 2m(n− 2) + i− 1.

(b) The probability of uniform connection will be

~α = α
2m(n− 1)

2m(n− 2) + 2mα+ (1− α)(i− 1).
= α+O(n−1) (1)

rather than α.

We will refer to all three models as versions of the preferential attachment graph, or PA-graph, for
short. Even though we consider the graph Gn as undirected, it will often be useful to think of the
vertices w1, . . . , wn as vertices which "received an edge" from the vertex n, and of n as a vertex
which "sent out m edges" to the vertices w1, . . . , wn. Note in particular, that the degree of a general
vertex v in Gn can be written as m+ q, where m is the number of edges sent out by v and q is the
(random) number of edges received by v.

2.2. Pólya Urn Representation of the Sequential Model

Our �rst theorem gives the P�olya urn representation of the sequential model. To state it, we use
the standard notation X ∼ β(a, b) for a random variable X ∈ [0, 1] whose density is equal to
1
Zx

a−1(1− x)b−1, where Z =
∫ 1

0
xa−1(1− x)b−1dx. We set

u =
α

1− α
.

Note that u ∈ [0,∞).
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Theorem 2.1. Fix m, α and n. Let ψ1 = 1, let ψ2, . . . , ψn be independent random variables with

ψj ∼ β (m+ 2mu, (2j − 3)m+ 2mu(j − 1)) , (2)

and let

ϕj = ψj

n∏
i=j+1

(1− ψi), Sk =

k∑
j=1

ϕj , and Ik = [Sk−1, Sk). (3)

Conditioned on ψ1, . . . , ψn, choose {Uk,i}k=1,...n, i=1,...,m as a sequence of independent random vari-
ables, with Uk,i chosen uniformly at random from [0, Sk−1]. Join two vertices j and k if j < k and
Uk,i ∈ Ij for some i ∈ {1, . . . ,m} (with multiple edges between j and k if there are several such i).
Denote the resulting random multi-graph by Gn.

Then Gn has the same distribution as the sequential PA-graph.

Figure 1 illustrates this theorem.
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Fig 1. The Pólya-representation of the sequential model for m = 2, n = 4, and k = 4. The variables U4,1 and U4,2

are chosen uniformly at random from [0, S3].

It should be noted that the α = 0 case of the sequential model de�ned here di�ers slightly from the
model of Bollob�as and Riordan [BR04] in that they allow (self-)loops, while we do not. In fact, a
minor alteration of our P�olya urn representation models their graph, and we suspect that a minor
alteration of their pairing representation can model our graph.

2.3. Definition of the Pólya-point graph model.

2.3.1. Motivation

The Benjamini-Schramm notion [BS01] of weak convergence involves the view of the graph Gn from
the point of view of a \root" k0 chosen uniformly at random from all vertices in Gn. More precisely,
it involves the limit of the sequence of balls of radius 1, 2, . . . , about this root, see De�nition 2.1 in
Section 2.4 below for the details.

It turns out that for the sequential model, this limit is naturally described in terms of the random
variables Sk−1 introduced in Theorem 2.1. To explain this, it is instructive to �rst consider the ball
of radius 1 around the random root k0. This ball contains the m neighbors of k0 that were born
before k0 and received an edge from k0 under the preferential attachment rule described above, as
well as a random number q0 of neighbors that were born after k0 and send an edge to k0 at the time
they were born. We denote these neighbors by k01, . . . , k0m and k0,m+1, . . . , k0,m+q0 , respectively.
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Let

χ =
1 + 2u

2 + 2u
and ψ =

1− χ
χ

=
1

1 + 2u
, (4)

and note that 1
2 ≤ χ < 1 and 0 < ψ ≤ 1. As we will see, the random variables Sk−1 behave

asymptotically like (k/n)χ, implying in particular that the distribution of Sk0−1 tends to that
of a random variable x0 = yχ0 , where y0 is chosen uniformly at random in [0, 1]. The limiting
distribution of Sk01−1, . . . , Sk0m−1 turns out to be quite simple as well: in the limit these random
variables are i.i.d. random variables x0i chosen uniformly from [0, x0], a distribution which is more
or less directly inherited from the uniform random variables Uk,i ∈ [0, Sk0−1] from Theorem 2.1. The
limiting distribution of the random variables Sk0,m+1−1, . . . , Sk0,m+q0

−1 is slightly more complicated
to derive, and is given by a Poisson process in [x0, 1] with intensity

γ0
ψxψ−1

xψ0
dx.

Here γ0 is a random "strength" which arises as a limit of the β-distributed random variable ψk0 , and
is distributed according to �(m+ 2mu, 1). Here, as usual, �(a, b) is used to denote a distribution
on [0,∞) which has density 1

Zx
a−1e−bx, with Z =

∫∞
0
xa−1e−bxdx.

Next, consider the branching that results from exploring the neighborhood of a random vertex in
Gn in a ball of radius bigger than one. In each step of this exploration, we will �nd two kinds of
children of the current vertex k: those which were born before k, and were attached to k at the
birth of k, and those which were born after k, and were connected to k at their own birth. There
are always either m or m− 1 children of the �rst kind (if k was born after its parent, there will be
m − 1 such children, since one of the m edges sent out by k was sent out to k’s parent, otherwise
there will be m children of the �rst type). The number of children of the second kind is a random
variable.

In the limit n → ∞, this branching process leads to a random tree whose vertices, �a, carry three
labels: a \strength" γā ∈ (0,∞) inherited from the β-random variables ψk, a \position" xā ∈ [0, 1]
inherited from the random variables Sk−1, and a type which can be either L (for \left") or R (for
\right"), reecting whether the vertex k was born before or after its parent. While the strengths of
vertices of type R turns out to be again �(m+ 2mu, 1)-distributed, this is not the case for vertices
of type L, since a vertex with higher values of ψk has a larger probability of receiving an edge from
its child. In the limit, this will be reected by the fact that the strength of vertices of type L is
�(m+ 2mu+ 1, 1)-distributed.

2.3.2. Formal Definition

The main goal of the previous subsection was to give an intuition of the structure of the neigh-
borhood of a random vertex. We will show that asymptotically, the branching process obtained by
exploring the neighborhood of a random vertex k0 in Gn is given by a random tree with a certain
distribution. In order to state our main theorem, we give a formal de�nition of this tree.

Let F be the Gamma distribution �(m+ 2mu, 1), and let F ′ be the Gamma distribution �(m+ 2mu+ 1, 1).
We de�ne a random, rooted tree (T, 0) with vertices labeled by �nite sequences

�a = (0, a1, a2, . . . , al)

inductively as follows:



Berger, Borgs, Chayes, Saberi /Preferential attachment limits 6

• The root (0) has a position x0 = yχ0 , where y0 is chosen uniformly at random in [0, 1]. In the
rest of the paper, for notational convenience, we will write 0 instead of (0) for the root.
• In the induction step, we assume that �a = (0, a1, a2, . . . , al) and the corresponding variable
xā ∈ [0, 1] have been chosen in a previous step. De�ne (�a, j) as (0, a1, a2, . . . , al, j), j = 1, 2, . . . ,
and set

m−(�a) =

{
m if �a is the root or of type L
m− 1 if �a is of type R.

We then take

γā ∼
{
F if �a is the root or of type R
F ′ if �a is of type L.

independently of everything previously sampled, choose x(ā,1), . . . , x(ā,m−(ā)) i.i.d. uniformly
at random in [0, xā], and x(ā,m−(ā)+1) . . . , x(ā,m−(ā)+qā) as the points of a Poisson process with
intensity

ρā(x)dx = γā
ψxψ−1

xψā
dx (5)

on [xā, 1] (recall that 0 < ψ ≤ 1). The children of �a are the vertices (�a, 1), . . . , (�a,m−(�a)+qā),
with (�a, 1), . . . , (�a,m−(�a)) called of type L, and the remaining ones called of type R.

We continue this process ad in�nitum to obtain an in�nite, rooted tree (T, 0). We call this tree the
P�olya-point graph, and the point process {xā} the P�olya-point process.

2.4. Main Result

We are now ready to formulate our main result, which states that in all three versions, the graph
Gn converges to the P�olya-point graph in the sense of [BS01].

Let G be the set of rooted graphs, i.e., the set of all pairs (G, x) consisting of a connected graph G
and a designated vertex x in G, called the root. Two rooted graphs (G, x), (G′, x′) ∈ G are called
isomorphic if there is an isomorphism from G to G′ which maps x to x′. Given a �nite integer r,
we denote the rooted ball of radius r around x in (G, x) ∈ G by Br(G, x). We then equip G with
the σ-algebra generated by the events that Br(G, x) is isomorphic to a �nite, rooted graph (H, y)
(with r running over all �nite, positive integers, and (H, y) running over all �nite, rooted graphs),
and call (G, x) a random, rooted graph if it is a sample from a probability distribution on G. We
write (G, x) ∼ (G′, x′) if (G, x) and (G′, x′) are isomorphic.

Definition 2.1. Given a sequence of random, finite graphs Gn, let k
(n)
0 be a uniformly random

vertex from Gn. Following [BS01], we say that an infinite random, rooted graph (G, x) is the weak

local limit of Gn if for all finite rooted graphs (H, y) and all finite r, the probability that Br(Gn, k
(n)
0 )

is isomorphic to (H, y) converges to the probability that Br(G, x) is isomorphic to (H, y).

The main result of the paper is the following theorem.

Theorem 2.2. The weak local limit of the all three variations of the Preferential Attachment model
is the Pólya-point graph.

Recently, and independently of our work, Rudas et al. [RTV07] studied the random tree resulting
from the preferential attachment model when m = 1. They derived the asymptotic distribution of
the subtree under a randomly selected vertex which implies the Benjamini-Schramm limit. Note
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that when m = 1, there is no distinction between the independent, conditional, and the sequential
model.

As alluded to before, the points xā of the P�olya-point process represent the random variables Sk−1

of the vertices in Gn, which in turn behave like (k/n)χ as n → ∞. The variable yā = x
1/χ
ā thus

represents the birth-time of the corresponding vertex in Gn. This is made precise in the following
corollary to the proof of Theorem 2.2. As the theorem, the corollary holds for all three versions of
the Preferential Attachment model.

Corollary 2.3. Given r < ∞ and ε > 0 there exists a n0 < ∞ such that for n ≥ n0, there exists
a coupling µ between a sample T of the Pólya-point and an ensemble {Gn, v0} where Gn has the
distribution of the preferential attachment graph of size n, and v0 is a uniformly chosen vertex of
Gn, satisfying: with µ probability at least 1 − ε, there exists an isomorphism �a 7→ kā from the ball
of radius r about 0 in (T, 0) into the ball of radius r about v0 in Gn, with the property that∣∣∣∣yā − kā

n

∣∣∣∣ ≤ ε
for all �a with distance at most r from the root in (T, 0). Here yā is defined as yā = x

1/χ
ā .

The numerator xψā = y1−χ
ā in (5) thus expresses the fact that in the preferential attachment process,

earlier vertices are more likely to attract many neighbors than later vertices.

2.5. Subgraph Frequencies

A natural question concerning a sequence of growing graphs (Gn) is the question on how often a
small graph F is contained in Gn as a subgraph. This question can be formalized in several ways,
e.g., by considering the number of homomorphisms from F into Gn, or the number of injective
homomorphism, or the number of times F is contained in Gn as an induced subgraph.

For graph sequences with bounded degrees, this leads to an alternative notion of convergence, by
de�ning sequence of graphs to be convergent if the homomorphism density t(F,Gn) { de�ned as the
number of homomorphisms from F into Gn divided by the number of vertices in Gn { converges for
all �nite connected graphs F [BCL+06b, BCL+]. Indeed, for sequences of graphs Gn whose degree
is bounded uniformly in n, this notion can easily be shown to be equivalent to the notion introduced
by Benjamini and Schramm; moreover, the corresponding notions involving the number of injective
homomorphisms, or the number of induced subgraphs, are equivalent as well, see [BCL+06b], Section
2.2 for formulas expressing these various numbers in terms of each other.

But for graphs with growing maximal degree, this equivalence does not hold in general. Indeed,
consider a sequence of graphs with uniformly bounded degrees, augmented by a vertex of degree n1/2.
Such a vertex does not change the notion of convergence introduced by Benjamini and Schramm;
but the number of homomorphism from a star with 3 legs into this graph sequence grows like n3/2,
implying that the homomorphism density diverges.

To overcome this di�culty, we will consider maps � from V (F ), the vertex set of F , into V (Gn), the
vertex set of Gn which in addition to being homormorphisms also preserve degrees. More explicitly,
given a graph F and a map n : V (F ) → {0, 1, 2, ...}, we de�ne inj(F,n;Gn) as the number of
injective maps � : V (F )→ V (Gn) such that

1. If ij ∈ E(F ), then �(i)�(j) ∈ E(Gn) ;
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2. dΦ(i)(Gn) = di(F ) + n(i) for all i ∈ V (F ),

where E(F ) denotes the set of edges in F , and di(F ) denotes the degree of the vertex i in F .

The following lemma is due to Laci Lovasz.

Lemma 2.4. Let D < ∞, and let Gn be a sequence of graphs that converges in the sense of
Benjamini and Schramm. Then the limit

t̂(F,n) = lim
n→∞

1

|V (Gn)|
inj(F,n;Gn)

exists for all finite connected graphs F and all maps n : V (F )→ {0, 1, 2, ...}.

As stated, the lemma refers to sequences of deterministic graphs. For sequences of random graphs,
its proof gives convergence of the expected number of the subgraph frequencies 1

|V (Gn)| inj(F,n;Gn).

To prove convergence in probability for these frequencies, a little more work is needed. For the case
of preferential attachment graphs, we do this in Section 5.4.3, together with an explicit calculation
of the actual values of these numbers.

Remark 2.5. When Gn has multiple edges, the definition of inj(F,n;Gn) has to be modified. There
are a priory several possible definitions; motivated by the notions introduced in [BCL+06b] we chose
the definition

inj(F,n;Gn) =
∑
Φ

∏
ij∈E(F )

mΦ(i)Φ(j)(Gn)mij(H)

where the sum goes over injective maps � : V (H) → V (Gn) obeying the condition (2) above with
di(H) and dΦ(i)(Gn) denoting degrees counting multiplicities, and where mij(H) is the multiplicity
of the edge ij in H (and similarly for mΦ(i)Φ(j)(Gn)). With this definition, the above lemma holds
for graphs with multiple edges as well.

3. Proof of Weak Distributional Convergence for the Sequential Model

In this section we prove that the sequential model converge to the P�olya-point tree.

3.1. Pólya Urn Representation of the Sequential Model

In early twentieth century, P�olya proposed and analyzed the following model known as the P�olya
urn model (see [Dur96]). The model is described as follows. We have a number of urns, each holding
a number of balls, and at each step, a new ball is added to one of the urns. The probability that
the ball is added to urn i is proportional to Ni + u where Ni is the number of balls in the i-th urn
and u is a predetermined parameter of the model.

P�olya showed that this model is equivalent to another process as follows. For every i, choose at ran-
dom a parameter (which we call "strength" or "attractiveness") pi, and at each step, independently
of our decision in previous steps, put the new ball in urn i with probability pi. P�olya speci�ed the
distribution (as a function of u and the initial number of balls in each urn) for which this mimics
the urn model. A particularly nice example is the case of two urns, each starting with one ball and
u = 0. Then p1 is a uniform [0, 1] variable, and p2 = 1−p1. P�olya showed that for general values of u
and {Ni(0)}, the values of {pi} are determined by the β-distribution with appropriate parameters.
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It is not hard to see that there is a close connection between the the preferential attachment model
of Barab�asi and Albert and the P�olya urn model in the following sense: every new connection that
a vertex gains can be represented by a new ball added in the urn corresponding to that vertex.

To derive this representation, let us consider �rst a two urn model, with the number of balls in
one urn representing the degree of a particular vertex k, and the number of balls in the other
representing the sum of the degrees of the vertices 1, . . . , k − 1. We will start this process at the
point when n = k and k has connected to precisely m vertices in {1, . . . , k − 1}. Note that at this
point, the urn representing the degree of k has m balls, while the other one has (2k − 3)m balls.

Consider a time in the evolution of the preferential attachment model when we have n− 1 ≥ k old
vertices, and i − 1 edges between the new vertex n and {1, . . . , k − 1}. Assume that at this point
the degree of k is dk, and the sum of the degrees of 1 . . . , k− 1 is d<k. At this point, the probability
that the ith edge from n to {1, . . . , n− 1} is attached to k is

~α
1

n− 1
+ (1− ~α)

dk
2m(n− 2) + (i− 1)

=
2mα+ (1− α)dk

2m(n− 2) + 2mα+ (1− α)(i− 1)
, (6)

while the probability that it is attached to one of the nodes 1, . . . , k − 1 is

~α
k − 1

n− 1
+ (1− ~α)

d<k
2m(n− 2) + (i− 1)

=
2mα+ (1− α)d<k

2m(n− 2) + 2mα+ (1− α)(i− 1)
. (7)

Thus, conditioned on connecting to {1, . . . , k}, the probability that the ith edge from n to {1, . . . , n−
1} is attached to k is

1

Z

(
2mu+ dk

)
while the conditional probability that it is attached to one of the nodes 1, . . . , k − 1 is

1

Z

(
2mu(k − 1) + d<k

)
.

where Z is an appropriate normalization constant. Note that the constant ~α in (1) was chosen in
such a way that the factor u appearing in these expressions does not depend on i, which is crucial
to guaranty exchangeability.

Taking into account that the two urns start with m and (2k − 3)m balls, respectively, we see that
the evolution of the two bins is a P�olya urn with strengths ψk and 1 − ψk, where ψk ∼ Bk =
β (m+ 2mu, (2k − 3)m+ 2mu(k − 1)).

Proof of Theorem 2.1. Using the two urn process as an inductive input, we can now easily construct
the P�olya graph de�ned in Theorem 2.1. Indeed, let Xt ∈ {1, 2, . . . , d tme} be the vertex receiving
the tth edge in the sequential model (the other endpoint of this edge being the vertex d tme+ 1). For
t ≤ m, Xt is deterministic (and equal to 1), but starting at t = m + 1, we have a two urn model,
starting with m balls in each urn. As shown above, the two urns can be described as P�olya-urns with
strengths 1 − ψ2 and ψ2. Once t > 2m, Xt can take three values, but conditioned on Xt ≤ 2, the
process continues to be a two urn model with strengths 1−ψ2 and ψ2. To determine the probability
of the event that Xt ≤ 2, we now use the above two urn model with k = 3, which gives that the
probability of the event Xt ≤ 2 is 1 − ψ3, at least as long as t ≤ 3m. Combining these two urn
models, we get a three urn model with strengths (1− ψ2)(1− ψ3), ψ2(1− ψ3), and ψ3. Again, this
model remains valid for t > 3m, as long as we condition on Xt ≤ 3.

Continuing inductively, we see that the sequence Xt evolves in stages:



Berger, Borgs, Chayes, Saberi /Preferential attachment limits 10

• For t = 1, . . . ,m, the variable Xt is deterministic: Xt = 1.
• For t = m + 1, . . . , 2m, the distribution of Xt ∈ {1, 2} is described by a two urn model with

strengths 1− ψ2 and ψ2, where ψ2 ∼ B2.
• In general, for t = m(k− 1) + 1, . . . , km, the distribution of Xt ∈ {1, . . . , k} is described by a
k urn model with strengths

ϕ
(k)
j = ψj

k∏
i=j+1

(1− ψi), j = 1, . . . k. (8)

Here ψk ∼ Bk is chosen at the beginning of the kth stage, independently of the previously
chosen strengths ψ1, . . . , ψk−1 (for convenience, we set ψ1 = 1).

Note that the random variables ϕ
(k)
j can be expressed in terms of the random variables introduce

in Theorem 2.1 as follows: by induction on k, it is easy to show that

Sk =

n∏
j=k+1

(1− ψk). (9)

This implies that

ϕ
(k)
j =

ψj
Sk
,

which relates the strengths ϕ
(k)
j to the random variables de�ned in Theorem 2.1, and shows that

the process derived above is indeed the process given in the theorem.

In order to apply Theorem 2.1, we will use two technical lemmas, whose proofs will be deferred to
a later section. The �rst lemma states a law of large numbers for the random variables Sk.

Lemma 3.1. For every ε there exist K <∞ such that for n ≥ K, we have that with probability at
least 1− ε,

max
k∈{1,...,n}

∣∣∣∣Sk − (kn
)χ∣∣∣∣ ≤ ε

and

max
k∈{K,...,n}

∣∣∣∣Sk − (kn
)χ∣∣∣∣ ≤ ε(kn

)χ
.

The second lemma concerns a coupling of the sequence {ψk}k≥1 and an i.i.d. sequence of �-random
variables {χk}k≥1, where χk ∼ �(m + 2mu, 1). To describe the coupling, we de�ne a sequence of
functions fk : [0,∞)→ [0, 1) by

P(ψk ≤ fk(x)) = P(χk ≤ x). (10)

Then fk(χk) has the same distribution as ψk, implying that ({χk}k≥1, {fk(χk)}k≥1) de�nes a cou-
pling between {χk}k≥1 and {ψk}k≥1.

Lemma 3.2. Let fk be as in (10), and let {χk}k≥1 i.i.d. random variables with distribution �(m+
2mu, 1). Given ε > 0 there exist a K <∞ so that the following holds:

(i) With probability at least 1− ε,

χk ≤ log2 k for all k ≥ K; (11)
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(ii) For k ≥ K and x ≤ log2 k,

1− ε
2mk(1 + u)

x ≤ fk(x) ≤ 1 + ε

2mk(1 + u)
x. (12)

We defer the proof of Lemmas 3.1 and 3.2 to Section 3.6.

3.2. The Exploration Tree of Gn

Let Kr = Kr(Gn, k0) be the set of vertices in Gn which have distance at most r from the random
root k0, and let B̂r(Gn, k0) be the graph on Kr that contains all edges in Gn for which at most
one endpoint has distance ≤ r from k0. When proving that the preferential model converges to
the P�olya-point graph, we will use the notion of convergence given in De�nition 2.1, but instead of
the standard ball of radius r, we will use the ball modi�ed ball B̂r(Gn, k0). (It is obvious that this
de�nition is equivalent).

We will prove our results by induction on r, using the exploration procedure outlined in Section 2.3.1
in the inductive step. To this end, it will be convenient to endow the rooted graph (Gn, k0) with
a structure which is similar to the one de�ned for the P�olya-point graph. More precisely, we will

inductively de�ne a rooted tree (T
(n)
r , 0) on sequence of integers �a = (0, a1, a2, . . . , al), and a homo-

morphism
k(r) : T (n)

r → B̂r(Gn, k0) : �a 7→ kā

as follows.

We start our inductive de�nition by mapping 0 into a vertex k0 chosen uniformly at random from

the vertex set {1, . . . , n} of Gn. Given a vertex �a = (0, a1, a2, . . . , al) ∈ T (n)
r and its image kā in

Gn, let dā be the degree of kā in Gn, and let kā− , k1, . . . , kdā−1 be the neighbors of kā in Gn,
where �a− = (0, a1, a2, . . . , al−1). Recalling that edges were created one by one during the sequential
preferential attachment process, we order k1, . . . , kdā−1 in such a way that for all i = 1, . . . , dā − 2,
the edge (kā, ki) was born before the edge (kā, ki+1). We then de�ne the children of �a to be the

points (�a, 1), . . . , (�a, dā− 1). This de�nes T
(n)
r+1. The map k(r+1) is the extension of k(r) which maps

(�a, 1), . . . , (�a, dā − 1) to the vertices k1, . . . , kdā−1, respectively. We call a vertex (�a, i) early or of
type L if ki < kā− and late or of type R otherwise. Note that the root and vertices of type L have
m children of type L, while vertices of type R have m− 1 children of type L.

To make the dependence on Gn explicit, we often use the notation Tr(Gn) for the tree T
(n)
r , and the

notation k(r)(Gn) for the map k(r). Note that k(r) does not, in general, give a graph isomorphism

between T
(n)
r and B̂r(Gn, k0). But if the map is injective when restricted to T

(n)
r , it is a graph

isomorphism. To prove Theorem 2.2, it is therefore enough to show that for all r, the map k(r) is

injective and the tree T
(n)
r converges in distribution to Tr, the ball of radius r in the P�olya-point

graph (T, 0).

3.3. Regularity Properties of the Pólya-Point Process

In order to prove Theorem 2.2, we will use some simple regularity properties of the P�olya-point
process.

Recall the de�nition of the P�olya-point graph (T, 0) and the P�olya-point process {xā} from Sec-
tion 2.3.2, as well as the notation ρā(x)dx for the intensity de�ned in (5). As usual, we de�ne the
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height of a vertex �a = (0, a1, a2, . . . , al) in T as its distance l from the root. We denote the rooted
subtree of height r in (T, 0) by (Tr, 0).

Lemma 3.3. Fix 0 ≤ r < ∞ and ε > 0. Then there are constants δ > 0, C < ∞, K < ∞ and
N <∞ such that with probability at least 1− ε, we have that

• xā ≥ δ for all vertices �a in Tr
• γā ≤ C
• ρā(·) ≤ K
• |Tr| ≤ N

Proof. The proof of the Lemma is easily obtained by induction on r. We leave it to the reader.

Corollary 3.4. For all ε > 0 and all r <∞ there is a constant δ > 0 such that with probability at
least 1− ε, we have

min
ā,b̄∈Tr
ā 6=b̄

|xb̄ − xā| ≥ δ.

Proof. This is an immediate consequence of the continuous nature of the random variables xā and
the statements of Lemma 3.3.

3.4. The Neighborhood of Radius One

Before proving our main theorem, Theorem 2.2, for the sequential model, we establish the following
lemma, which will serve as the base in an inductive proof of our main theorem.

Lemma 3.5. Let Gn be the sequential preferential attachment graph, let k0 be chosen uniformly at
random in {1, . . . , n}, and let k01, . . . , k0,m+q0 be the neighbors of k0, ordered as in Section 3.2 by
the birth times of the edges {k0, k0i}. Then (Gn, k0) and the Pólya-point process {xā} can be coupled
in such a way that for all ε > 0 there are constants C,N < ∞, δ > 0 and n0 < ∞ such that for
n ≥ n0, with probability at least 1− ε, we have that

i. T1
∼=T1(Gn) and |T1(Gn)| ≤ N ;

ii. |xā − Skā−1| ≤ ε for all �a ∈ T1,
iii. k0, k01, . . . , k0m+q0 are pairwise distinct and kā ≥ δn for all �a ∈ T1;
iv. χkā = γā ≤ C for all �a ∈ T1.

Proof. (i–ii): We start by proving the �rst two statements. Choose y0 uniformly at random in
[0, 1], let x0 = yχ0 , and let x0,1, . . . , x0,m+q′0

be the positions of the children of 0 in (T, 0). De�ne
k0 = dny0e, so that k0 is distributed uniformly in {1, . . . , n}, and for i = 1, . . . ,m, de�ne k0i by

Sk0i−1 ≤
x0,i

x0
Sk0−1 < Sk0i

By Theorem 2.1 and the observation that Uk0,1 =
x0,1

x0
, . . . , Uk0,m =

x0,m

x0
are i.i.d. random variables

chosen uniformly at random from [0, 1], we have that indeed, with large probability, k01, . . . , k0m

are close enough to the x0,i-s.

Indeed, given ε > 0 choose δ, C, K and N in such a way that the statements of Lemma 3.3 and
Corollary 3.4 hold for r = 1, and let ε′ = min{ε, δ/4}. By Lemma 3.1 there exists a constant n0 <∞
such that for n ≥ n0, we have that

|Sk0−1 − x0| ≤ ε′ and |Sk0i−1 − x0i| ≤ ε′ for all i = 1, . . . ,m (13)
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with probability at least 1− 2ε.

To understand the limiting distribution of the remaining neighbors, k0,m+1, . . . , k0,m+q0 , of k0, we
observe that conditioned on the random variables ψ1, . . . , ψn, each vertex k > k0 has m independent
chances of being connected to k0, corresponding to the m independent events {Xk,i = k0}, i =
1, . . . ,m, where we used the shorthand Xk,i for the interval containing the endpoint of the ith edge
sent out from k (it is related to the random variables Xt introduced in the proof of Theorem 2.1
via Xk,i = X(k−2)m+i). Let

Pk→k0 = ϕk0

1

Sk−1
=

Sk0

Sk−1
ψk0 (14)

be the probability of the event {Xk,i = k0}, and let Ny0
(y) =

∑m
i=1

∑dnye
k=k0

I(Xk,i = k0) where I(A)
is the indicator function of the event A. We want to show that Ny0(·) converges to a Poisson process
on [y0, 1].

By Lemma 3.3, we have that k0 ≥ nx0 ≥ nδ with probability at least 1−ε, which allows us to apply
Lemmas 3.1 and 3.2 to show that for n large enough, with probability at least 1− 2ε, we have

P̂k→k0
(1− ε) ≤ Pk→k0

≤ (1 + ε)P̂k→k0
where P̂k→k0

=
1

nm

χk0

2(1 + u)

n

k0

(k0

k

)χ
.

For y > y0, let N̂y0
(y) =

∑m
i=1

∑dnye
k=k0

Ŷ
(i)
k→k0

where {Ŷ (i)
k→k0

} are independent random variables such

that Ŷ
(i)
k→k0

= 1 with probability P̂k→k0 and Ŷ
(i)
k→k0

= 0 with probability 1− P̂k→k0 . It follows from
standard results on convergence to Poisson processes (and the fact that γ0 has the same distribution

as χk0
) that N̂y0

(·) converges weakly to a Poisson process with density γ0

2(u+1)y0

(
y0

y

)χ
on [y0, 1]. A

change of variables from y to x = yχ now leads to the Poisson process with density

γ0

2(1 + u)χ

xψ−1

xψ0
= γ0

ψxψ−1

xψ0

on [x0, 1]. Combined with a last application of Lemma 3.1 to bound the di�erence between Sk0i−1

and (k0i/n)χ, this proves that x0,m+1, . . . , xm+q′0
∈ [x0, 1] and k0,m+1, . . . , k0,m+q0 can be coupled

in such a way that for n large enough, with probability at least 1− 3ε, we have that q0 = q′0 ≤ Q =
N −m− 1, χk0

= γ0 ≤ C and

|x0,i − Sk0,i−1| ≤ ε′ for i = m+ 1, . . . ,m+ q0. (15)

Since ε > 0 was arbitrary, this completes the proof of the �rst two statements of the lemma.

(iii) To prove the third statement, we use the bounds (13) and (15), and a �nal application of
Lemma 3.1, to establish the existence of two constants δ′ > 0 and n′0 < ∞ such that for n ≥ n′0,
with probability at least 1− 4ε,

kā ≥ δ′n for all �a ∈ T1(Gn) (16)

and
|kā − kb̄| ≥ δ′n for all �a,�b ∈ T1(Gn) with �a 6= �b,

implying in particular that k0, k01, . . . , k0m+q0 are pairwise distinct.

(iv) To prove the last statement, let us assume that that γ0 ≤ C, and that k01, . . . , k0,m+q are
pairwise distinct, with k0i < k0 for i ≤ m, k0i > k0 for i > m, min k0i ≥ nδ′ and q ≤ Q. Let A be
the event that we have chosen k0 as the uniformly random vertex and that the neighbors of k0 are
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the vertices k01, . . . , k0,m+q. Let χA,γ0 be the collection of random variables {χk}k 6=k0
conditioned

on χk0
= γ0 and A. We will want to show that χA,γ0 can be coupled to a collection of independent

random variables {χ̂k}k 6=k0
such that χA,γ0 = {χ̂k}k 6=k0

with probability at least 1− ε, and

χ̂k ∼

{
F ′k if k ∈ {k01, . . . , k0m}
Fk otherwise

(17)

Let ρ(· | A,χk0) be the density of the (multi-dimesional) random variable χA,γ0 , and let P(·) be the
joint distribution of Gn and the random variables χ1, . . . , χn. By Bayes’ theorem,

ρ(· | A,χk0
= γ0) =

P(A | ·, χk0
= γ0)

P(A | χk0
= γ0)

ρ0(·), (18)

where ρ0 is the original density of the random variables {χk}k 6=k0 (we denote the corresponding
probability distribution and expectations by P0 and E0, respectively).

We thus have to determine the probability of A conditioned on χ1, . . . , χn. With the help of Theo-
rem 2.1, this probability is easily calculated, and is equal to

P(A | {χk}) = m!

m∏
i=1

Pk0→k0i

q∏
j=1

mPk0,m+j→k0

(
1− Pk0,m+j→k0

)m−1

×
∏

k>k0:k/∈{k0,m+1,...,k0,m+q}

(
1− Pk→k0

)m
= m!

m∏
i=1

Pk0→k0i

q∏
j=1

mPk0,m+j→k0

1− Pk0,m+j→k0

∏
k>k0

(
1− Pk→k0

)m
where Pk→k′ is the conditional probability de�ned in (14). By Lemma 3.1, this implies that given
any ε′ > 0, we can �nd n0 <∞ such that for n ≥ n0, we have that with probability at least 1− ε′
with respect to P0,

(1−ε′)P(A | {χk}) ≤ m!

 m∏
i=1

ψk0i

(
k0i

k0

)χ m+q∏
j=m+1

mψk0

(
k0

k0j

)χ exp
(
−mψk0

∑
k>k0

(k0

k

)χ)
≤ (1 + ε′)P(A | {χk})

To estimate P(A | χk0
) = E0[P(A | {χk})], we combined this bound with the deterministic upper

bound

P(A | {χk}) ≤ m!

m∏
i=1

Pk0→k0i

q∏
j=1

mPk0,m+j→k0
≤ 1

n
(mψk0

)q
m∏
i=1

ψk0i

≤ C ′m!

 m∏
i=1

ψk0i

(
k0i

k0

)χ m+q∏
j=m+1

mψk0

(
k0

k0j

)χ exp
(
−mψk0

∑
k>k0

(k0

k

)χ)
where C ′ = (δ′)−(m+Q) supn≥1 e

mnfδ′n(C).

These bounds imply that given any ε′ > 0, we can �nd an n0 < ∞ such that for n ≥ n0, with
probability at least 1− ε′/2 with respect to P0, we have

√
1− ε′

m∏
i=1

ψk0i

E0(ψk0i)
≤ P(A | {χk})

P(A | χk0)
≤
√

1 + ε′
m∏
i=1

ψk0i

E0(ψk0i)
.
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With the help of Lemma 3.2, this shows that for n large enough, with probability at least 1 − ε′,
we have

(1− ε′)
m∏
i=1

χk0i

E0(χk0i
)
≤ P(A | {χk})

P(A | χk0
)
≤ (1 + ε′)

m∏
i=1

χk0i

E0(χk0i
)
.

Recalling (18) and the de�nition of the random variables {χ̂k}k 6=k0
, we therefore have shown that

with probability at least 1− ε′ with respect to P0,

(1− ε′)ρ̂(·) ≤ ρ(· | A,χk0
= γ0) ≤ (1 + ε′)ρ̂(·) (19)

where ρ̂ is the density of the random variables {χ̂k}k 6=k0 . (We denote the corresponding product

measure by P̂ ).

To continue, we need to transform statement which happen with high probability with respect to
P0 into statement which happen with high probability with respect to P̂ . To this end, we consider
the general case of two probability measures µ and ν such that ν is absolutely continuous with
respect to µ, ν = fµ for some non-negative function f ∈ L2(µ). Let 
0 be an event which happens
with probability 1− ε′ with respect to µ. Then

ν(
c0) =

∫
f1Ωc0

≤
√
Eµ(f2)µ(
c0) =

√
ε′Eµ(f2), (20)

implying that 
0 happens with probability at least 1−
√
ε′Eµ(f2) with respect to ν.

Applying this bound to the probability measures P0 and P̂ , we see that the bound (19) holds with
probability at least 1−

√
2ε′ with respect to P̂ , provided n (and hence k01, . . . , k0m) is large enough.

Using this fact, one than easily shows that

‖ρ̂− ρ(· | A,χk0 = γ0)‖1 ≤ 2ε′ + 2
√

2ε′.

Choosing ε′ su�ciently small (ε′ = ε2/32 is small enough), we see that the right hand side can be
bounded by ε, which proves that χA,γ0 and {χ̂k}k 6=k0 can be coupled in such a way that they are
equal with probability at least 1− ε, as required.

3.5. Proof of Convergence for the sequential model

In this section we show that the sequential model converges to the P�olya-point graph. Indeed, we
prove slightly more, namely the following proposition.

Proposition 3.6. Given ε > 0 and r <∞, there are constants C,N <∞, δ > 0 and n0 <∞ such
that for n ≥ n0, the rooted sequential attachment graph (Gn, k0) and the Pólya-point process {xā}
can be coupled in such a way that with probability at least 1− ε, the following holds

1. Tr(Gn)∼=Tr and |Tr(Gn)| ≤ N ;
2. |xā − Skā−1| ≤ ε for all �a ∈ Tr;
3. k(r)(Gn) is injective, and kā ≥ δn for all �a ∈ Tr;
4. γā = χkā ≤ C for all �a ∈ Tr.

Proof. For r = 1, this follows from Lemma 3.5 and Lemma 3.3.

Assume by induction that the lemma holds for r < ∞, and �x Tr, k(r)(Gn), {xā}ā∈Tr , {γā}ā∈Tr
and {χkā}ā∈Tr in such a way that 1{4 hold (an event which has probability at least 1 − ε by our
inductive assumption).
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Consider a vertex �a ∈ ∂Tr = Tr \ Tr−1. We want to explore the neighborhood of kā in Gn. To
this end, we note that for all �b ∈ Tr−1, the neighborhood of kb̄ is already determined by our
conditioning on k(r)(Gn), implying in particular that none of the edges sent out from kā can hit a
vertex k ∈ Kr−1, unless, of course, �a is of type R and k happens to be the parent of kā | in which
case the edge between k and kā is already present. To determine the children of type L of the vertex
kā, we therefore have to condition on not hitting the set Kr−1. But apart from this, the process of
determining the children of kā is exactly the same as that of determining the children of the root k0.
Since |Kr| ≤ N , k ≥ δn for all k ∈ Kr, and χk ≤ C for all k ∈ Kr, we have that

∑
k∈Kr ϕk ≤ C

′/n
for some C ′ <∞, implying that conditioning on k /∈ Kr−1 ⊂ Kr has only a negligible inuence on
the distribution of the children of kā. We may therefore proceed as in the proof of Lemma 3.5 to
obtain a coupling between a sequence of i.i.d. random variables xā,i distributed uniformly in [0, xā]
and the children kā,i of kā that are of type L. As before, we obtain that for n large enough, with
probability at least 1− ε, we have |Skā,i−1 − xā,i| ≤ ε.
Repeating this process for all kā ∈ ∂Kr = Kr \Kr−1, we obtain a set of vertices Lr+1 consisting of
all children of type L with parents in ∂Kr. It is easy to see that with probability tending to one as
n→∞, the set Lr+1 has no intersection with Kr, so we will assume this for the rest of this proof.

Next we continue with the vertices of type R. Assume that we have already determined all children
of type R for a certain subset Ur ⊂ ∂Kr, and denote the set children obtained so far by Rr+1. We

decompose this set as Rr+1 =
⋃m
i=1R

(i)
r+1, where R

(i)
r+1 = {k ∈ Rr+1 : Xi,k ∈ Ur}.

Consider a vertex �a ∈ ∂Kr \ Ur. Conditioning on the graph explored so far is again not di�cult,
and now amounts to two conditions:

1. Xk,i 6= kā if k ∈ Kr ∪ R(i)
r+1, since all the edges sent out from this set have already been

determined.
2. For k /∈ Kr ∪ R(i)

r+1, the probability that kā receives the ith edge from k is di�erent from the
probability given in (14), since the random variables Xk,i has been probed before: we know
that Xk,i /∈ Kr−1 since otherwise k had sent out an edge to a vertex in Kr−1, which means
that k would have been a child of type R in Kr. We also know that Xk,i /∈ Ur, since otherwise

k ∈ R(i)
r+1. Instead of (14), we therefore have to use the modi�ed probability

Pk→kā = ϕkā
1

~Sk−1

where
S̃k−1 =

∑
k′>kā:

k′ /∈Kr−1∪Ur

ϕk′

Since ~Sk−1 ≤ Sk−1 ≤ ~Sk−1 + C ′/n by our inductive assumption, we can again refer to Lemma 3.1
to approximate Pk→kā by

P̂k→kā =
1

nm

χkā
2(1 + u)

n

kā

(kā
k

)χ
.

From here on the proof of our inductive claim is completely analog to the proof of Lemma 3.5. We
leave it to the reader to �ll in the (straightforward but slightly tedious) details.

3.6. Estimates for the Pólya Urn Representation

In this section we complete the work started in Section 3.1 by proving Lemmas 3.1 and 3.2.
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Proof of Lemma 3.1. Fix ε, and recall that

χ =
1 + 2u

2 + 2u
∈
[1

2
, 1
)
.

Writing Sk as

Sk =

n∏
j=k+1

(1− ψj) = exp

 n∑
j=k+1

log(1− ψj)

 ,

we use the fact that if 0 < x < 1 then x ≤ − log(1− x) ≤ x+ x2/(1− x) to bound∣∣∣∣∣∣E
 n∑
j=k+1

log(1− ψj)

+

n∑
j=k+1

E[ψj ]

∣∣∣∣∣∣ ≤
n∑

j=k+1

E

[
ψ2
j

1− ψj

]
.

On the other hand, by Kolmogorov’s inequality and the fact that

Var(log(1− ψj)) ≤ E[(log(1− ψk))2] ≤ E[ψ2
j (1− ψj)−2],

we have

P

 max
K≤k≤n

∣∣∣∣∣∣
n∑

j=k+1

log(1− ψj)− E

 n∑
j=k+1

log(1− ψj)

∣∣∣∣∣∣ ≥ ε
 ≤ 1

ε2

n∑
j=K+1

E

[
ψ2
j

(1− ψj)2

]
.

We will use that for any βa,b distributed random variable ψ, we have

E[ψ] =
a

a+ b
, E

[ ψ2

1− ψ

]
=

a(a+ 1)

(a+ b)(b− 1)
, and E

[ ψ2

(1− ψ)2

]
=

a(a+ 1)

(b− 2)(b− 1)
.

Using these relations for a = m+ 2mu and b = (2j − 3)m+ 2mu(j − 1), we get

E(ψj) =
m+ 2mu

(2j − 2)m+ 2jmu
=
χ

j
+O

(
1

j2

)
, (21)

E[ψ2
j ] ≤ E

[
ψ2
j

1− ψj

]
= O

(
1

j2

)
and E

[
ψ2
j

(1− ψj)2

]
= O

(
1

j2

)
. (22)

Putting these bounds together, and observing that
∑n
j=k+1

1
j = log(n/k) + O(k−1), we get that

there exists a constant K(ε) not depending on n such that with probability at least 1− ε, we have
that (

k

n

)χ
e−ε < Sk <

(
k

n

)χ
eε for all K(ε) ≤ k ≤ n.

For k < K(ε), we bound Sk ≤ SK to conclude that with probability at least 1− ε,∣∣∣∣Sk − (kn)χ
∣∣∣∣ = O

((K
n

)χ)
.

The lemma now follows.
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Proof of Lemma 3.2. (i) Let a = m+ 2mu, so that χk ∼ �(a, 1). Then

P(χk ≥ log2 k) ≤ E[e
1
2χk ]e−

1
2 log2 k = 2ak−

1
2 log k.

Since the right hand side is sumable, this implies the �rst statement of the lemma through the
Borel-Cantelli Lemma.

(ii) Let bk = (2k − 3)m+ 2mu(k − 1)− 1, and let χ′k = χk/bk. Then fk can be de�ned by

P(ψk ≤ fk(x)) = P(χ′k ≤ x/bk)

In order to prove the second statement of the lemma, it is clearly enough to prove that for all
su�ciently large k, we have

(1− ε) x
bk
≤ fk(x) ≤ x

bk
for x ≤ log2 k,

which in turn is equivalent to showing that

P
(
ψk ≤ (1− ε)x

)
≤ P

(
χ′k ≤ x

)
≤ P

(
ψk ≤ x

)
for x ≤ log2 k

bk
(23)

provided k is large enough.

We start by proving that
�(x) := P(ψk ≤ x)−P(χ′k ≤ x) ≥ 0.

To this end, we rewrite

P(ψk ≤ x) =
1

Zβ

∫ x

0

ya−1(1− y)bdy,

and

P(χ′k ≤ λ) =
1

Zγ

∫ λ

0

ya−1e−bydy,

where a = m + 2mu, b = bk, and Zγ =
∫∞

0
ya−1e−bydy and Zβ =

∫ 1

0
ya−1(1 − y)bdy are the

appropriate normalization factors. For x ≤ 1, we express �(x) as

�(x) =
1

Zγ

∫ x

0

dyya−1e−by

(
eδ exp

(
−b

∞∑
k=2

yk

k

)
− 1

)
,

where eδ = Zγ/Zβ . Note that δ > 0 by the fact that (1− x) ≤ e−x. It is also easy to see that δ → 0
as k →∞; indeed, we have δ = O(b−1) = O(k−1).

Consider the derivative

d�(x)

dx
=
xa−1e−bx

Zγ

(
eδ exp

(
−b

∞∑
k=2

xk

k

)
− 1

)
,

and let x0 be the unique root, i.e., let x0 ∈ (0, 1) be the solution of the equation

δ = b

∞∑
k=2

xk0
k
.
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Then �(x) is monotone increasing for 0 < x < x0 and monotone decreasing for all x > x0. Together
with the observation that �(x) > 0 for all su�ciently small x, and �(x) → 0 as x → ∞, we
conclude that �(x) ≥ 0 for 0 ≤ x <∞. This proves that P(χ′k ≤ x) ≤ P(ψk ≤ x)) for all x ≥ 0.

To prove the lower bound in (23), we will prove that

~�(x) = P
(
χ′k ≤ x

)
−P

(
ψk ≤ (1− ε)x

)
≥ 0 if x ≤ ε

4
≤ 1

8
.

We decompose the range of x into two regions, depending on whether x ≥ 4a
bε or x ≤ 4a

εb .

In the �rst region, we express ~�(x) as

~�(x) = P
(
ψk ≥ (1− ε)x

)
−P

(
χ′k ≥ x

)
=

eδ

Zγ

∫ 1

x(1−ε)
dyya−1(1− y)b − 1

Zγ

∫ ∞
x

dyya−1e−by.

We then bound ∫ ∞
x

dy(2y)a−1e−by ≤
∫ 2x

x

dyya−1e−by
∫ ∞

2x

dyya−1e−by

≤
∫ 2x

x

dyya−1e−by + 2a−1e−bx
∫ ∞
x

dyya−1e−by

proving that∫ ∞
x

dy(2y)a−1e−by ≤ (1− 2a−1e−bx)−1

∫ 2x

x

dyya−1e−by ≤ 2

∫ 2x

x

dyya−1e−by, (24)

where we have used bx ≥ a log 2 in the last step.

On the other hand, using that (1− y)b ≥ e−by(1+x) if y ≤ 2x ≤ 1/2, we have that

eδ
∫ 1

x(1−ε)
dyya−1(1− y)b ≥

∫ 2x(1−ε)

x(1−ε)
dyya−1e−by(1+x)

=

∫ 2x

x

dyya−1(1− ε)ae−by(1+x)(1−ε)

≥ (1− ε)ae−2bx2

eεbx
∫ 2x

x

dyya−1e−by

≥ 2

∫ 2x

x

dyya−1e−by.

Combined with (24), this proves that ~�(x) ≥ 0 if εbx ≥ 4a.
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For εbx ≤ 4a, we bound

~�(x) =
1

Zγ

(∫ x

0

dyya−1e−by − eδ
∫ x(1−ε)

0

dyya−1(1− y)b

)

≥ 1

Zγ

(∫ x

0

dyya−1e−by − eδ
∫ x(1−ε)

0

dyya−1e−by

)

=
1

Zγ

(∫ x

(1−ε)x
dyya−1e−by − (eδ − 1)

∫ x(1−ε)

0

dyya−1e−by

)

≥ 1

Zγ

(
εx[(1− ε)x]a−1e−bx − (eδ − 1)xa

)
≥ xa

Zγ

(
ε21−ae−4a/ε − (eδ − 1)

)
.

Since δ → 0 as b→∞, we see that the right hand side becomes positive if k ≥ K for some K <∞
that depends on a and ε (it grows exponentially in a/ε).

4. Approximating Coupling for the Independent and the Conditional Models.

In this section we prove that the sequential and the independent model have the same weak limit.
To this end we construct a coupling between the two models such with probability tending to 1, the
balls around a randomly chosen vertex in {1, . . . , n} are identical in both models. This will imply
that both models have the same weak local limit.

We only give full details for the coupling between the independent and the sequential model. The
approximating coupling between the conditional and the sequential model is very similar, and the
proof that it works is identical.

We construct the coupling inductively as follows: Let V = 1, 2, . . . be the vertices of the preferential
attachment graph. For 1 6= n ∈ V and i = 1, . . . ,m let ein < n and f in < n be the i-th vertex that n
is connected to in, respectively, the sequential and the independent models. We use the symbol en
to denote the vector {ein}1≤i≤m, and the symbol fn to denote the vector {f in}mi=1.

By construction, ei2 = f i2 = 1 for all i. Once we know el and fl for every l < n , we determine en
and fn as follows: Let D1 be the distribution of en, based on the sequential rule and conditioned
on {el}l<n, and let D2 be the distribution of fn based on the independent rule and conditioned on
{fl}l<n. Let D be an (arbitrarily chosen) coupling of D1 and D2 that minimizes the total variation
distance. Then we choose en and fn according to D.

Our goal is to prove the following proposition:

Proposition 4.1. Let (Gn) and (G′n) be the sequence of preferential attachment graphs in the
sequential and the conditional model, respectively, coupled as above. Let ε > 0 and let r be an
arbitrary positive integer. Then there exists an integer n0 such that for n ≥ n0, with probability at
least 1 − ε, a uniformly chosen random vertex k0 ∈ {1, . . . , n} has the same r-neighborhood in Gn
and G′n.

The proof of the proposition relies on following two lemmas, to be proven in Sections 4.2 and 4.3,
respectively.
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Lemma 4.2. Consider the coupling defined above, and fix k ≥ 2. For n > k, let An = A
(k)
n be the

event that there exists an i ∈ {1, . . . ,m} such that ein = k 6= f in or ein 6= k = f in. Then

P

(
An

∣∣∣∣∣
n−1⋂
h=k+1

Ach, dn−1(k)

)
= O

(
dn−1(k)

n2

)
(25)

Note that under the conditioning, dn−1(k) is the same in both models.

Lemma 4.3. For the sequential preferential attachment model, for every n and k such that n > k,
let dn(k) be the degree of vertex k when the graph contains n vertices. Then

E[dn(k)] = m
[
1 +

χ

1− χ

((n
k

)1−χ
− 1
)]

+O
(n1−χ

k2−χ

)
(26)

where the constant implicit in the O-symbol depends on m and u.

4.1. Proof of Proposition 4.1

Fix ε and r, let Br(k) and Br(k)′ be the ball of radius r about k in Gn and G′n, respectively, and
let B be the set of vertices k ∈ {1, . . . , n} for which Br(k) 6= Br(k)′. Then the probability that a
uniformly chosen vertex in {1, . . . , n} is in B is just 1/n times the expected size of B. We thus have
to show that

E[|B|] ≤ εn.

In a preliminary step note that Br(k) = Br(k)′ unless there exists a vertex k′ ∈ Br(k) such that
ein′ = k′ 6= f in′ or ein′ 6= k′ = f in′ for some i = 1, . . . ,m and some n′ > k′.

To prove this fact, let us consider the event A(k) =
⋃
n>k A

(k)
n . It is easy to see that this event is the

event that at least one of the edges received by k is di�erent in (Gn) and (G′n). Using this fact, one
easily shows that the ball of radius 1 around a vertex k must be identical in Gn and G′n unless A(k′)

happens for at least one vertex k′ in the 1-neighborhood of k in Gn. By induction, this implies that
Br(k) = Br(k)′ unless there exists a vertex k′ ∈ Br(k) such that the event A(k′) happens, which is
what we claimed in the previous paragraph.

Next we note that by Proposition 3.6, there exist δ > 0 and N <∞ such that with probability at
least 1− ε/2, a random vertex k ∈ {1, . . . , n} obey the two following two conditions:

1. the ball of radius 2r around k in the sequential graph Gn contains no more than N vertices;
2. the oldest vertex (the vertex with the smallest index) in this ball is no older than δn.

If we denote the set of vertices satisfying these two conditions by W , we thus have that

E[|W |] ≥ (1− ε

2
)n.

As a consequence, it will be enough to show that

E[W ∩B|] ≤ ε

2
n.

If k ∈W ∩B, there must be a vertex k′ ∈ Br(k) such that the event A(k) happens. But k′ ∈ Br(k)
if and only if k ∈ Br(k′), and since Br(k

′) ⊂ B2r(k), we must further have that |Br(k′| ≤ N and
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k′ ≥ δn. As a consequence,

|W ∩B| =
∑
k∈W

I(k ∈ B) ≤
∑
k∈W

∑
k′∈Br(k)

I(A(k′))

=
∑
k′

I(A(k′))
∑

k∈Br(k′)

I(k ∈W )

≤ N
n∑

k′=δn

I(A(k′)),

where we used the symbol I(A) to denote the indicator function of the event A.

Finally by Lemmas 4.2 and 4.3,

P (A(k)) ≤ O(1)
∑
n>k

1

n2

(n
k

)1−χ
= O

(1

k

)
.

As a consequence we can �nd a constant C such that

E[|W ∩B|] ≤ N
n∑

k′=nδ

C

k′
≤ CN/δ.

For n large enough, the right hand side is smaller than ε
2n, which is the bound we had to establish.

4.2. Proof of Lemma 4.2

Proof. Let us the shorthand d for the degree dkn−1. In the independent model the probability of
having r connections to k and h = m− r connections to other vertices in {1, . . . , n− 1} is(

m

r

)
pr(1− p)h with p =

α

n− 1
+

(1− α)d

2m(n− 2)
,

while in the sequential model it is (
m

r

) r−1∏
l=0

pl

m−1∏
l=r

(1− pl)

with

pl = pl(r) =


2mα+ (1− α)(d+ l)

2m(n− 2) + 2mα+ (1− α)l
if l < r

2mα+ (1− α)(d+ r)

2m(n− 2) + 2mα+ (1− α)l
if l ≥ r

(Here we used exchangeability and (6)).

As a consequence, the probability in (25) is bounded by a constant times

max
r=0,...,m

∣∣∣∣∣
[
r−1∏
l=0

pl

m−1∏
l=r

(1− pl)

]
− pr(1− p)h

∣∣∣∣∣ . (27)
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Telescoping the di�erence, we bound (27) by

max
r=0,...,m

(
r−1∑
l=0

pl|pl − p|
r−1∏
l′=l+1

pl′ +

m−1∑
l=r

pr(1− p)l−r|(1− p)− (1− pl)|
m−1∏
l′=l+1

(1− pl′)

)

≤ max
r=0,...,m

(
~pr−1

r−1∑
l=0

|pl − p|+ pr
m−1∑
l=r

|p− pl|

)
,

where ~p = max{p, p1, . . . , pm} = O(d/n). We now distinguish three cases.

(i) If r ≥ 2, we use the fact that p − pl = O(1/n) to get a bound of order O(~p/n) = O(d/n2) for
both sums;

(ii) if r = 1, we use the fact that the �rst sum is equal to |p0 − p| = O(1/n2), while the second can
be bounded by O(~p/n) = O(d/n2) as before;

(iii) If r = 0, we use that fact that

pl(0) =
2mα+ (1− α)d

2m(n− 2) + 2mα+ (1− α)l

=
2mα

2m(n− 1)

(
1 +O(n−1)

)
+

(1− α)d

2m(n− 2)

(
1 +O(n−1)

)
= p+O(d/n2)

to show that for r = 0, all terms in the sum
∑m−1
l=0 |p− pl| are of order O(d/n2).

This completes the proof of the lemma.

4.3. Proof of Lemma 4.3

As before, we use ϕ
(n)
k for

ϕ
(n)
k = ψk

n∏
i=k+1

(1− ψi).

By construction,

dn(k) = m+

(n−1)m∑
t=(k−1)m+1

Ut (28)

where the variables {Ut} are de�ned as follows: Let {Ût}∞t=1 be i.i.d. U [0, 1] variables, independent

of the ϕk-s. Then Ut = 1
Ût<ϕ

(dt/me)
k

. Note that conditioned on {ϕ(j)
k }j≥k, {Ut}-s are independent,

each being Bernoulli ϕ
(dt/me)
k .

Let F be the σ-algebra generated by {ψh}∞h=1. Then

E(dn(k)|F) = m+m

n−1∑
`=k

ϕ
(`)
k . (29)

By (21),
χ

k
≤ E(ψk) ≤ χ

k − 1
(30)
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which in turn implies that

E[ϕ
(`)
k ] = E[ψk]

∏̀
i=k+1

(
1− E[ψi)]

)
≤ χ

k − 1

∏̀
i=k+1

(
1− χ

i

)

≤ χ

k − 1
exp
(
−χ

∑̀
i=k+1

1

i

)
≤ χ

k − 1
exp
(
−χ log

( `+ 1

k + 1

))
=

χ

k − 1

(k + 1

`+ 1

)χ
,

implying that

E[dn(k)] ≤ m+mχ
(k + 1)χ

k − 1

n−1∑
`=k

( 1

`+ 1

)χ
≤ m+mχ

(k + 1)χ

k − 1

∫ n−1

k−1

dx
( 1

x+ 1

)χ
= m+m

χ

1− χ
(k + 1)χ

k − 1

(
n1−χ − k1−χ

)
≤ m+m

χ

1− χ
k + 1

k − 1

((n
k

)1−χ
− 1
)

≤ m+m
χ

1− χ

((n
k

)1−χ
− 1
)(

1 +
4

k

)
(31)

On the other hand, again by (30),

E[ϕ
(`)
k ] ≥ χ

k

∏̀
i=k+1

(
1− χ

i− 1

)
≥ χ

k

∏̀
i=k+1

(
1− 1

i− 1

)χ
=
χ

k

∏̀
i=k+1

( i− 2

i− 1

)χ
=
χ

k

(k − 1

`− 1

)χ
implying that

E[dn(k)] ≥ m+mχ
(k − 1)χ

k

n−1∑
`=k

( 1

`− 1

)χ
≥ m+mχ

(k − 1)χ

k

∫ n

k

dx
( 1

x− 1

)χ
= m+m

χ

1− χ
(k − 1)χ

k

(
(n− 1)1−χ − (k − 1)1−χ

)
= m+m

χ

1− χ
k − 1

k

((n− 1

k − 1

)1−χ
− 1
)

≥ m+m
χ

1− χ

((n
k

)1−χ
− 1
)(

1− 1

k

)
.

(32)
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5. Applications

5.1. Degree Distribution of an Early Vertex

In this section, we will show that for n � k � 1, dn(k) grows like
(
n
k

)1−χ
=
(
n
k

)ψ/(ψ+1)
. To give

the precise statement, we need some de�nition. To this end, let us consider the random variables

M
(`)
k =

∏̀
j=k+1

1− ψj
1− E[ψj ]

The bounds (21) and (22) imply that the second moment of M
(`)
k is bounded uniformly in `, so

by the martingale convergence theorem M
(`)
k converges both a.s and in L2. Since 1 − E[ψj ] =(

j−1
j

)χ
+O(j−2), this also implies that the limit

Fk = lim
`→∞

∏̀
j=k+1

(1− ψj)
(

j

j − 1

)χ
= lim
`→∞

(
`

k

)χ ∏̀
j=k+1

(1− ψj) (33)

exists a.s. and in L2. In the following lemma, OP (k−1/2) stand for a random variable A such that
Ak1/2 is bounded in probability.

Lemma 5.1. Consider the sequential model for some α and m, and let Fk be as above. Then

dn(k)

n1−χ →
m

1− χ
kχψkFk as n→∞, (34)

both in expectation and in distribution. Furthermore

Fk > 0 a.s. for all k ≥ 1, logFk = OP (k−1/2) and E[Fk] = 1 +O(k−1),

implying in particular that

lim
n→∞

E[dn(k)]

n1−χ =
mχ

1− χ
1

k1−χ (1 +O(k−1)).

Remark: Note that (34) holds also for the independent and the conditional models. The reason
is that by the approximating coupling, the total variation distance between the degree distribution
of vertex number k in the sequential model and that of vertex number k in the independent (or
conditional) model goes to 0 as k goes to in�nity, and the convergence is uniform in n (the size of
the graph).

Proof. We �rst consider the conditional expectation E[dn(k)|F ], where, as before, F is the σ-algebra
generated by {ψh}∞h=1. Fix ε, and let K be such that for ` ≥ K,

∥∥∥Fk − ( `
k

)χ ∏̀
j=k+1

(1− ψj)
∥∥∥

2
≤ ε

Bounding ∥∥∥E[dn(k)|F ]−
n−1∑
`=K

mϕ
(`)
k

∥∥∥
2
≤ mK
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we then approximate

n−1∑
`=K

mϕ
(`)
k = mψk

n−1∑
`=K

∏̀
j=k+1

(1− ψj) = mψk

n−1∑
`=K

(
k

`

)χ (
Fk +O(ε)

)
= n1−χ

(
m

1− χ
kχψkFk +O(ε)

)
,

where the errors O(ε) stand for errors in L2. We thus have show that as n→∞,

1

n1−χE[dn(k)|F ]→ m

1− χ
kχψkFk,

in L2. Taking expectations on both sides, we obtain that (34) holds in expectation.

To prove convergence in distribution, it is clearly enough to show that E[dn(k)|F ]− dn(k) → 0 in
probability. But this follows by an easy second moment estimate and the observation that

E[dn(k)2|F ] ≤ E[dn(k)|F ]2 + E[dn(k)|F ].

Next we observe that the bounds established in Section 3.6 imply that there is a constant C < ∞
such that for k ≥ 2,

| logM
(`)
k | ≤ ε+

C

k

with probability at least 1− C
ε2k . Since these bounds are uniform in `, they carry over to the limit,

and imply both that a.s. Fk > 0 for all �xed k ≥ 2, and that logFk = OP (k−1/2) as k →∞. To prove
that a.s. F1 > 0, we note that F1/F2 is proportional to 1−ψ2. The bound E[Fk] = 1+O(k−1) �nally

follows from the fact that E[M
(`)
k ] = 1 and the observation that 1−E[ψj ] =

(
j−1
j

)χ
+O(j−2).

5.2. Degree Distribution

By Theorem 2.2 and the Corollary 2.3, the limiting degree distribution of the preferential attachment
graph Gn is exactly the degree distribution of the root of the P�olya-point graph. As we will see,
this allows us to explicitly calculate the limiting degree distribution of the preferential attachment
graph. In a similar way, it also allows us to calculate the limiting degree distribution of a vertex
chosen at random from the vertices that receive an edge from a uniformly random vertex v0 in Gn.
We summarize the results in the following lemma.

Lemma 5.2. Let v0 be a uniformly chosen vertex in Gn, let D be the degree of v0, and let D′

be the degree of a vertex chosen uniformly at random from the m vertices which received an edge
from v0. In the limit n→∞, the distribution of D and D′ for all three versions of the preferential
attachment graph converge to

P(D = m+ k) =
ψ + 1

ψ

�(a+ 1
ψ + 1)

�(a)

�(k + a)

�(a+ 1
ψ + k + 2)

and

P(D′ = m+ 1 + k) =
ψ + 1

ψ2

�(a+ 1
ψ + 1)

�(a+ 1)

(k + 1)�(k + a+ 1)

�(a+ 1
ψ + k + 3)
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where a = m+ 2mu. As k →∞, this gives

P(D = m+ k) = Ck−2− 1
ψ (1 +O(k−1))

and
P(D′ = m+ 1 + k) = ~Ck−1− 1

ψ (1 +O(k−1))

for some constants C and ~C depending on m and α.

Note that for α = 0, the statements of the lemma reduce to

P(D = m+ k) =
2m(m+ 1)

(m+ k)(m+ k + 1)(m+ k + 2)

and

P(D′ = m+ 1 + k) =
2(m+ 1)(k + 1)

(m+ k + 1)(m+ k + 2)(m+ k + 3)
.

Proof. First we condition on the position x0 of the root of the P�olya graph. Let D be the degree of
the root. D conditioned on x0 is m plus a Poisson variable with parameter

γ

xψ0

∫ 1

x0

ψxψ−1dx = γ
1− xψ0
xψ0

,

where γ is a Gamma variable with parameters a = m+ 2mu and 1. Let

κ = κ(x0) =
1− xψ0
xψ0

.

Then

P(D = m+ k|x0) =
�(k + a)

k!�(a)

κk

(κ+ 1)k+a
=

�(k + a)

k!�(a)

(1− xψ0 )k

xkψ0

(xψ0 )k+a

=
�(k + a)

k!�(a)
(1− xψ0 )kxaψ0

(35)

and

P(D = m+ k) = (ψ + 1)

∫ 1

0

P(D = m+ k|x0 = x)xψdx

= (ψ + 1)
�(k + a)

k!�(a)

∫ 1

0

(1− xψ)kx(a+1)ψdx

=
ψ + 1

ψ

�(k + a)

k!�(a)

∫ 1

0

(1− y)
k
ya+ 1

ψ dy

=
ψ + 1

ψ

�(k + a)

�(a)

k+1∏
i=1

1

a+ 1
ψ + i

=
ψ + 1

ψ

�(k + a)

�(a)

�(a+ 1
ψ + 1)

�(a+ 1
ψ + k + 2)

.
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To calculate the distribution of D′, we chose y0 uniformly at random from [0, x0]. Conditioned on
y0, the limiting degree D′ is equal to m+ 1 plus a Poisson variable with parameter

γ′

yψ0

∫ 1

y0

ψxψ−1dx = γ′
1− yψ0
yψ0

,

where γ′ is a Gamma variable with parameters a+ 1 and 1. Continuing as before, this gives

P(D′ = m+ 1 + k|y0 = y) =
�(k + a+ 1)

k!�(a+ 1)
(1− yψ)ky(a+1)ψ (36)

P(D′ = m+ 1 + k) = (ψ + 1)

∫ 1

0

dx0x
ψ
0

1

x0

∫ x0

0

dyP(D′ = m+ 1 + k|y0 = y)

= (ψ + 1)
�(k + a+ 1)

k!�(a+ 1)

∫ 1

0

dxxψ−1

∫ x

0

dy(1− yψ)ky(a+1)ψ

=
ψ + 1

ψ2

�(k + a+ 1)

k!�(a+ 1)

∫ 1

0

du

∫ u

0

dv(1− v)kva+1/ψ.

Exchanging the integral over u and v we obtain

P(D′ = m+ 1 + k) =
ψ + 1

ψ2

�(k + a+ 1)

k!�(a+ 1)

∫ 1

0

dv(1− v)kva+1/ψ

∫ 1

v

du

=
ψ + 1

ψ2

�(k + a+ 1)

k!�(a+ 1)

∫ 1

0

dv(1− v)k+1va+1/ψ

=
ψ + 1

ψ2

(k + 1)�(k + a+ 1)

�(a+ 1)

�(a+ 1
ψ + 1)

�(a+ 1
ψ + k + 3)

.

The asymptotic behavior as k →∞ follows from the well known asymptotic behavior of the Gamma
function.

5.3. Joint Degree Distributions

We can use the same calculation in order to determine the joint distribution of the degree of the
root of the preferential attachment graph with a vertex chosen uniformly among the m vertices that
receive an edge from the root.

Lemma 5.3. Let v0 be a uniformly chosen vertex in Gn, let D be the degree of v0, and let D′ be
the degree of a vertex chosen uniformly at random from the m vertices which received an edge from
v0. In the limit n→∞, the joint distribution of D and D′ for all three versions of the preferential
attachment graph converges to

P(D′ = m+ 1 + k,D = m+ j) =
ψ + 1

ψ2

�(k + a+ 1)

k!�(a+ 1)

�(j + a)

j!�(a)

∫ 1

0

dv(1− v)kva+ 1
ψ

∫ 1

v

du(1− u)jua,

where a = m+ 2mu. As k →∞ while j is fixed, this gives

P(D′ = m+ 1 + k|D = m+ j) = Cjk
−1− 1

ψ

(
1 +O

(1

k

))
,
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where Cj is a constant depending on j, m and α, while for k fixed and j →∞, we have

P(D = m+ j|D′ = m+ 1 + k) = ~Ck j
−a−3− 1

ψ

(
1 +O(

(1

j

)))
where ~Ck is a constant depending on k, m and α,

Note that the conditioning on D does not change the power law for the degree distribution of D′,
while the conditioning onD′ leads to a much faster fallo� for the degree distribution ofD. Intuitively,
this can be explained by the fact that earlier vertices tend to have higher degree. Conditioning on
the degree D′ to be a �xed number therefore makes it more likely that at least one of the m vertices
receiving an edge from v0 was born late, which in turn makes it more likely that v0 was born late.
This in turn makes it much less likely that the root v0 has very high degrees, leading to a faster
decay at in�nity. This e�ect does not happen for the distribution of D′ conditioned on D, since the
vertices receiving edges from the root are born before the root. Note the fact that the exponent of
the power law of the distribution of D conditioned on D′ depends (through a) on m. Heuristically,
this seemingly surprising result follows from the fact that the distribution of the degree of the
vertex at time k is (in the limit) a discretized Gamma distribution with parameter a (i.e. the prob.
of being equal k is proportional to e−k/λ · ka. λ here is basically an appropriate power of n/k).
Note that with this distribution, when λ is relatively large the probability of the degree being small
is approximately λ−a. This means that when D′ is small, the probability that k is small (i.e. n/k
is large) is as small as (n/k)a. But for D to be big, k needs to be small (up to an exponential
tail). This is the intuitive explanation for the the parameter a comes into the exponent of the joint
distribution.

Proof. Let x0 be the location of the root in the P�olya-point graph, and let y0 be the location of a
vertex chosen uniformly at random from the m vertices of type L connected to the root. Then

P(D′ = k +m+ 1, D = j +m) =

= (ψ + 1)

∫ 1

0

dxxψ−1

∫ x

0

dyP(D′ = k +m|y0 = y)P(D = j +m|x0 = x)

Using (35) and (36), we can write this explicitly a

P(D′ = k +m+ 1, D = j +m) =

= (ψ + 1)
�(k + a+ 1)

k!�(a+ 1)

�(j + a)

j!�(a)

∫ 1

0

dx(1− xψ)jx(a+1)ψ−1

∫ x

0

dy(1− yψ)ky(a+1)ψ

=
ψ + 1

ψ2

�(k + a+ 1)

k!�(a+ 1)

�(j + a)

j!�(a)

∫ 1

0

du(1− u)jua
∫ u

0

dv(1− v)kva+ 1
ψ

=
ψ + 1

ψ2

�(k + a+ 1)

k!�(a+ 1)

�(j + a)

j!�(a)

∫ 1

0

dv(1− v)kva+ 1
ψ

∫ 1

v

du(1− u)jua.

We want to approximate the double integral by a product of integrals. Clearly∫ 1

0

dv(1− v)kva+ 1
ψ

∫ 1

v

du(1− u)jua ≤
∫ 1

0

dv(1− v)kva+ 1
ψ

∫ 1

0

du(1− u)jua

= k!j!
�(a+ 1

ψ + 1)

�(a+ 1
ψ + k + 2)

�(a+ 1)

�(a+ j + 2)
:= Z.
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On the other hand∫ 1

0

dv(1− v)kva+ 1
ψ

∫ v

0

du(1− u)jua ≤
∫ 1

0

dv(1− v)kva+ 1
ψ

∫ v

0

duua

=
1

a+ 1
k!

�(2a+ 1
ψ + 2)

�(2a+ 1
ψ + k + 3)

=
�(2a+ 1

ψ + 2)

�(a+ 1
ψ + 1)�(a+ 2)

�(a+ 1
ψ + k + 2)

�(2a+ 1
ψ + k + 3)

�(a+ j + 2)

j!
Z

= O
(( j
k

)a+1
)
Z,

implying that

P(D′ = k +m+ 1|D = j +m) =
1

ψ

�(k + a+ 1)

�(a+ 1
ψ + k + 2)

�(a+ 1
ψ + j + 2)

�(a+ j + 2)

(
(1 +O

(( j
k

)a+1
))
. (37)

A similar calculation gives∫ 1

0

du(1− u)jua
∫ u

0

dv(1− v)kva+ 1
ψ =

j!

a+ 1
ψ + 1

�(2a+ 1
ψ + 2)

�(2a+ 1
ψ + j + 3)

(
1 +O

(k
j

))
which in turn implies that for �xed k, as j goes to in�nity, we get

P(D = j +m|D′ = k +m+ 1) =

�(2a+ 1
ψ + 2)

�(a)�(a+ 1
ψ + 2)

�(j + a)

�(2a+ 1
ψ + j + 3)

�(a+ 1
ψ + k + 3)

�(k + 2)

(
1 +O

(k
j

))
.

(38)

The statements of the lemma describing the decay of (37) and (38) as (resp.) k → ∞ and j → ∞
follow from the well-know asymptotics of the �-function.

5.4. Subgraph frequencies

5.4.1. Proof of Lemma 2.4

Let F be a �nite graph with vertex set V (F ) = {v1, v2, · · · vk}. As in Section 2.5, let inj(F,n;Gn)
be the number of injective maps � from V (F ) into V (Gn) that are homomorphisms and preserve

the degrees. In a similar way, given two rooted graphs (F, v) and (G, x), let înj((F, v)),n; (Gn, x)))
be the number of injective maps � from V (F ) into V (Gn) that are homomorphisms, preserve the
degrees, and map v into x. Then inj(F,n;Gn) can be reexpressed as

inj(F,n;Gn) =
∑

x1∈V (Gn)

înj((F, v1),n; (Gn, x1)).

Since the diameter of (F, v1) is at most k, its image under a homomorphism � has diameter at most
k as well, which in turn implies that

1

n
inj(F,n;Gn) =

1

n

∑
x1∈V (Gn)

înj((F, v1),n;Bk+1(Gn, x1)).
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Given N and r, let B(N)
r be the set of routed graphs on {1, 2, . . . , N} that have radius r and contain

exactly one of the representatives from each isomorphism class, and let Br = ∪∞N=1B
(N)
r . Then

1

n
inj(F,n;Gn) =

1

n

∑
x1∈V (Gn)

înj((F, v1),n;Bk+1(Gn, x1))

=
∑

B∈Bk+1

înj((F, v1),n;B)Prx1

(
Bk+1(Gn, x1)) ∼ B

)
where ∼ indicates rooted isomorphisms and the probability is the probability over rooted balls
induced by the random choice of x1 ∈ V (Gn).

Since F is connected, înj((F, v1),n;Bk+1(Gn, x1)) is upper bounded by the constant C = max1≤i≤k(n(i)+
dF (vi))

k−1. Therefore convergence in the sense of Benjamini-Schramm implies convergence of the
right hand side, giving that

t̂(F,n) := lim
n→∞

1

|V (Gn)|
inj(F,n;Gn)

=
∑

B∈Bk+1

înj((F, v1),n;B)Pr
(
Bk+1(G, x) ∼ B

)
= E

[
înj((F, v1),n; (G, x))

]
,

(39)

where E[·] denotes expectation over the random choices of the limit graph (G, x).

5.4.2. Convergence in probability

If Gn is a sequence of random graphs, the subgraph frequencies inj(F,n;Gn, ) are random numbers
as well. Examining the last proof, one easily sees that the expectation of these numbers converges
if Gn converges in the sense of De�nition 2.1. For the preferential attachment graph, this gives

lim
n→∞

1

|V (Gn)|
E
[
inj(F,n;Gn)

]
= t̂(F,n)

where
t̂(F,n) = E

[
înj((F, v1),n; (T, 0))

]
, (40)

with (T, 0) denoting the P�olya-point graph. It turns out that we can prove a little more, namely
convergence in probability.

Lemma 5.4. Let Gn be one of the three version of the preferential attachment graph defined in
Section 2.1, let F be a finite connected graph, and let n : V (F )→ {0, 1, . . . }. Then

1

n
inj((F,n);Gn)→ t̂(F,n) in probability.

Proof. Assume that x0 and x′0 are chosen independently uniformly at random from V (Gn). Re-
peating the proof of Theorem 2.2, one easily obtains that the pair ((Gn, x0), (Gn, x

′
0)) converges to

two independent copies of the P�olya-point graph (more precisely, that the distribution of all pairs
of balls (Br(Gn, x0), Br(Gn, x

′
0)) converges to the product distribution of the corresponding balls

in (T, 0)). As a consequence, the expectation of
[

1
n inj((F,n);Gn)

]2
converges

[
t̂(F,n)

]2
, which in

turn implies the claim.
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5.4.3. Calculation of Subgraph Frequencies

In this subsection, we calculate the limiting subgraph frequencies t̂(F,n) using the expression (40).
Alternatively, one could use the intermediate expression in (39) and the fact that for each given
rooted graph B of radius k, we can calculate the probability that the ball of radius k in the P�olya-
point graph (T, 0) is isomorphic to B. But this gives an expression involving the countably in�nite
sum over the balls in Bk+1, while our calculation below only involves a �nite number of terms.

In a preliminary step, we note that the P�olya-point graph (T, 0) and the point process {xā} can
be easily recovered from the countable graph on [0, 1] which is obtained by joining two points
x, x′ ∈ [0, 1] by an edge whenever x = xā and x′ = xā′ for a pair of neighbors �a, �a′ in T . Identifying
the point x0 as the root, we obtain an in�nite, random rooted tree on [0, 1] which we will again
denote by T .

Recalling (40), we will want to calculate the expected number of maps ϕ from V (F ) to [0, 1] and are
degree preserving homomorphism from (F,n) into T that map v1 into the root x0. To this end, we
explore the tree structure around the node x0 in T , in a similar fashion as in Section 3.2. Obviously,
if F is not a tree then t̂(F,n) = 0. Otherwise, denote the vertex v1 ∈ V (F ) as the root and obtain
a rooted tree in which the set of children of every node is uniquely de�ned.

A mapping ϕ from vertices v1, v2, · · · , vk to points x1, x2, · · · , xk on the interval [0, 1] de�nes a
natural total order θ on V (F ). We say a mapping is consistent with total order θ if and only if for
every i and j, θ(vi) < θ(vj) implies xi < xj .

Given the positions x1, x2, · · ·xk (or equivalently the ordering θ), we can divide the children of every
node vi to two sets L(vi) and R(vi), depending on whether their corresponding points on the interval
are to the left or right of xi, respectively. With a slight abuse of notation, de�ne L = ∪1≤i≤kL(vi)
and R = ∪1≤i≤kR(vi). Note that {v2, . . . , vk} is the disjoint union of L and R. Since we require
that the degrees are preserved, the degree of a node xi in T is dF (vi) + ni. For the root x1 = x0

this gives dF (v1) + n1 children, m to the left, and n′1 + |R(v1)| = dF (v1) + n1 −m to its right. If
vi ∈ L, its parent appears on its right. Therefore, of n(vi) remaining neighbors of xi that are not
mapped to any vertex in F , n′(vi) = dF (vi) + n(vi)− (m+ |R(vi)|+ 1) should appear to its right
side. For vi ∈ R, n′(vi) = dF (vi) + n(vi)− (m+ |R(vi)|).
Using the above notation, we can �nally write the probability density function p(F,n, x) for a
mapping from V (F ) to x = (x1, x2, · · ·xk) to be homomorphic and degree preserving. Conditioned
on γ(xi) = γi, it can be written as

p(F,n, x, γ) = (ψ + 1)xψ1
∏
vi∈V

exp(−Hi)H
n′(i)
i

n′(i)!

∏
vj∈L(vi)

x−1
i

∏
vj∈R(vi)

γi
ψxψ−1

j

xψi

, (41)

where

Hi = γi
1− xψi
xψi

.

The two inner product terms in the above equations are derived using the description of the P�olya-
point in Section 2.3.2. The �rst term captures the probability that the remaining degree of xi is the
desired value n′(i). Indeed, recalling that the children x > xi of a vertex xi are given by a Poison

process with density γi
ψxψ−1

xψi
on [xi, 1], we see that n′i is a Poisson random variable with rate

γi

∫ 1

xi

ψxψ−1

xψi
dx = Hi,
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giving the �rst term in the product above.

Also, γi is a Gamma variable with parameters α(i) and 1, where αi depends on whether we discover
vi from right or left.

α(i) =

{
m+ 2mu+ 1 if vi ∈ L
m+ 2mu if vi ∈ R

.

Similarly, α(1) = m + 2mu. Let C(θ) be the simplex containing all points x = (x1, x2, · · · , xk)
consistent with an ordering θ. Setting

t̂(F,n, θ) =

∫
C(θ)×(0,∞)k

k∏
i=1

e−γiγαk−1
k

�(αi)
p(F,n, x, γ) dx1 · · · dxk dγ1 · · · dγk,

t(F,n) can now be computed by summing t(F,n, θ) over the k! choices of θ.
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