

emergence of micro datacenter (cloudlets/edges) for mobile computing

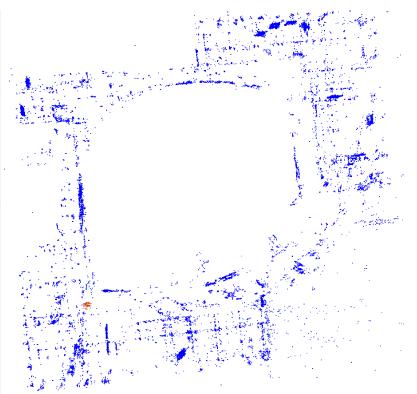
Victor Bahl

Wednesday, May 13, 2015

what if our computers could see?

Microsoft's's HoloLens

who?



what?

seeing is for real

Since February of 2012, Rialto, California has required all police officers to wear a camera to monitor all interactions with the public.

BBC updated at 11:11 ET NEWS LONDON

f

Metropolitan Police officers start wearing body cameras

The New York Times

New York Police Officers to Start Using Body Cameras in a Pilot Program

By J. DAVID GOODMAN SEPT. 4, 2014

The Washington Post D.C. police will wear body cameras as part of pilot program

MSR's Glimpse project

vision is demanding

recognition using *deep neural networks*

	face ¹ [1]	scene [2]	object ² [3]
memory (floats)	103M	76M	138M
compute	1.00 GFLOPs	2.54 GFLOPs	30.9 GFLOPs
accuracy	97%	51%	94% (top 5)

1: 4000 people; 2: 1000 objects from *ImageNet, top 5:* one of your top 5 matches

human-level accuracy, heavy resource demands ... offloading computation is highly desirable

[1] Y. Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In CVPR 2014. (Facebook)

[2] B. Zhou et al. Learning deep features for scene recognition using places database. In NIPS, 2014. [MIT, Princeton, ..]

[3] K. Simonyan & A. Zisserman. Very deep convolutional networks for large-scale image recognition. 2014 [Google, Oxford]

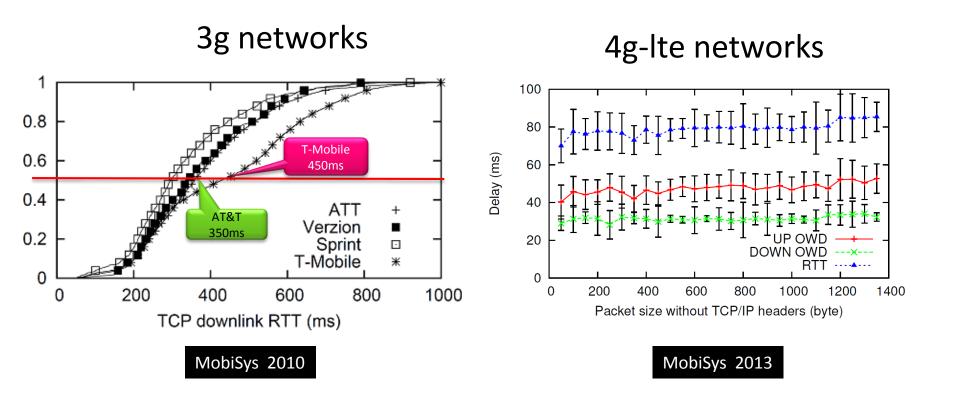
recognition: server versus mobile

Object Detection

Feature Extraction

Object Recognition/Labeling

road sign recognition¹


stage	Mobile (Samsung Galaxy Nexus)	Server (i7, 3.6GHz, 4-core)	Spedup (server:mobile)	
detection	2353 +/- 242.4 ms	110 +/- 32.1 ms	~15-16X	
feature extraction	1327.7 +/- 102.4 ms	69 +/- 15.2 ms	~18X	
recognition ²	162.1 +/- 73.2 ms	11 +/- 1.6 ms	~14X	
Energy used	11.32 Joules	0.54 Joules	~21X	

¹convolution neural networks

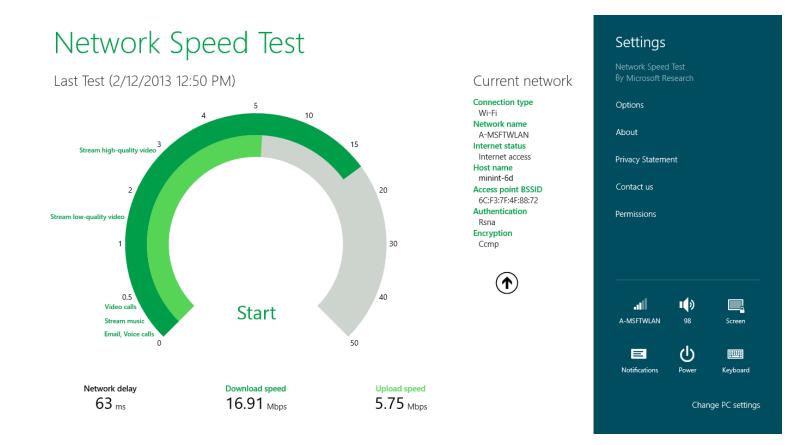
²classifying 1000 objects with 4096 features using a linear SVM

how long does it take to reach the cloud?

2 years later, we still have latency issues (May 9, 2015)

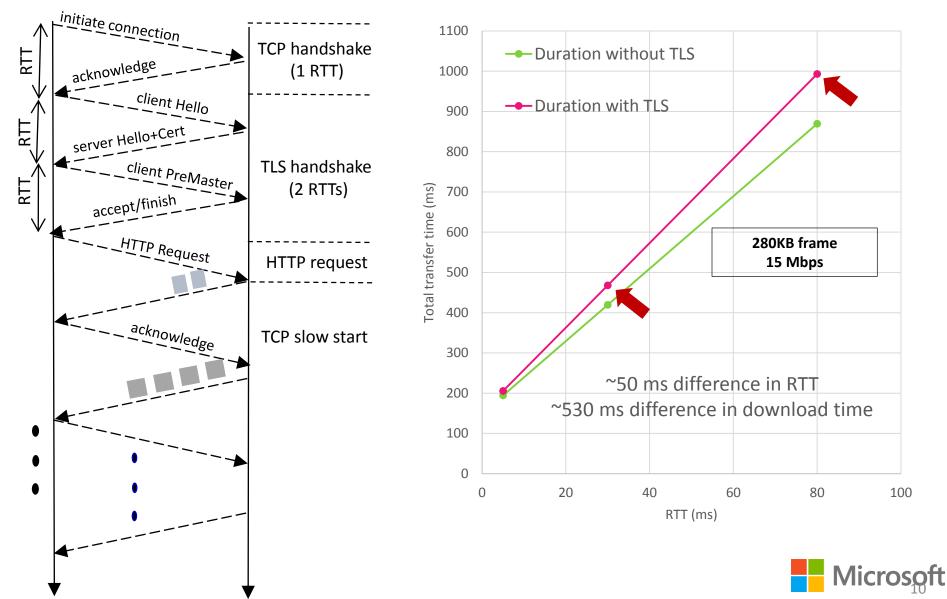
major cloud provider A

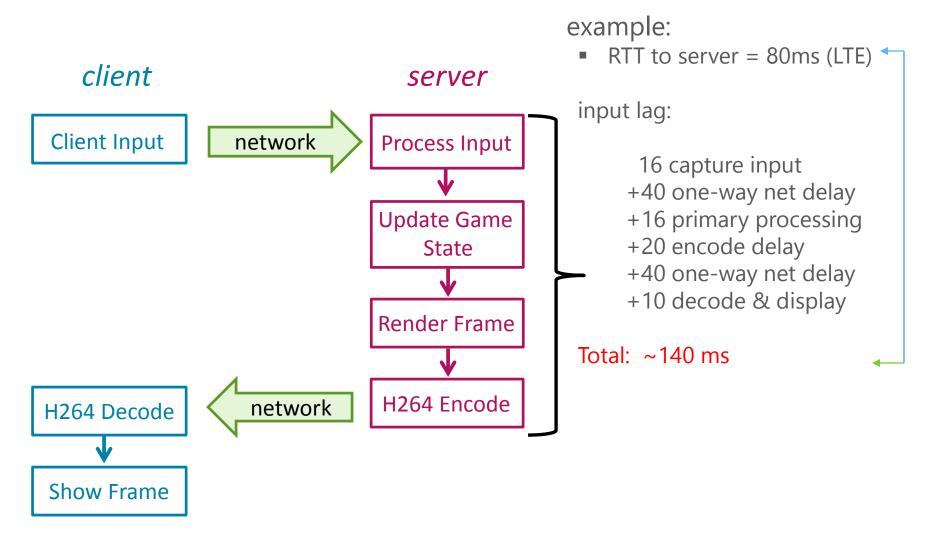
Data Center	Average Latency
West US	115ms
South Central US	131ms
East US	155ms
North Central US	171ms
North Europe	222ms
West Europe	223ms
Japan West	251ms
East Asia	251ms
Japan East	253ms
Southeast Asia	253ms
Central US	276ms
Content Delivery Network *	276ms
East US 2	287ms
Brazil South	371ms
Australia Southeast	398ms
Australia East	441ms


major cloud provider B

		b 1		-d 200 05	Command Pron
			>tracert		
frac:	ing re	oute	to 209.8	5.225.99	over a maximum of 30 hops
1	38	ms	25 ms	47 ms	172.26.96.169
2	45	ms	39 ms	29 ms	172.18.84.36
3	109	ms	39 ms	39 ms	12.249.2.25
4	59	ms	88 ms	70 ms	12.83.180.2
5	81	ms	71 ms	88 ms	12.122.31.194
6	76	ms	72 ms	87 ms	12.122.136.181
7	×		×	×	Request timed out.
8	106	ms	62 ms	80 ms	216.239.49.168
9	81	ms	100 ms	111 ms	209.85.246.253
10	90	ms	124 ms	112 ms	216.239.46.212
11	110	ms	119 ms	119 ms	72.14.239.48
12	135	ms	135 ms	133 ms	209.85.243.99
13	138	ms	120 ms	121 ms	216.239.46.214
14	120	ms	120 ms	125 ms	209.85.249.213
15	192		119 ms		209.85.247.6
16	116	ms	_126 ms	112 ms	64.233.175.45
17	×		^c		
C:\U	sers∖l	bahl	>		

also, http://claudit.feld.cvut.cz/claudit/rtdata.php


try it out – download Microsoft's Network Speed Test

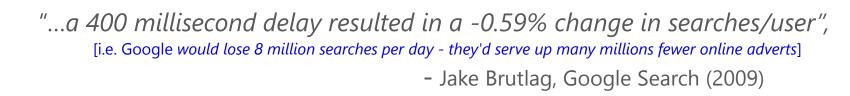

Available on Windows Phone and Windows 8

popular protocols make things worse!

even with UDP - end user impact fast action cloud gaming

MobiSys 2015

impact of 5, 30 & 80 msec latency (fast action gaming)



latency matters!

"being fast really matters...half a second delay caused a 20% drop in traffic. and it killed user satisfaction"

- Marissa Mayer @ Web 2.0 (2008)

"...for Amazon every 100 ms increase in load times decreased sales with 1%" - Andy King, book author

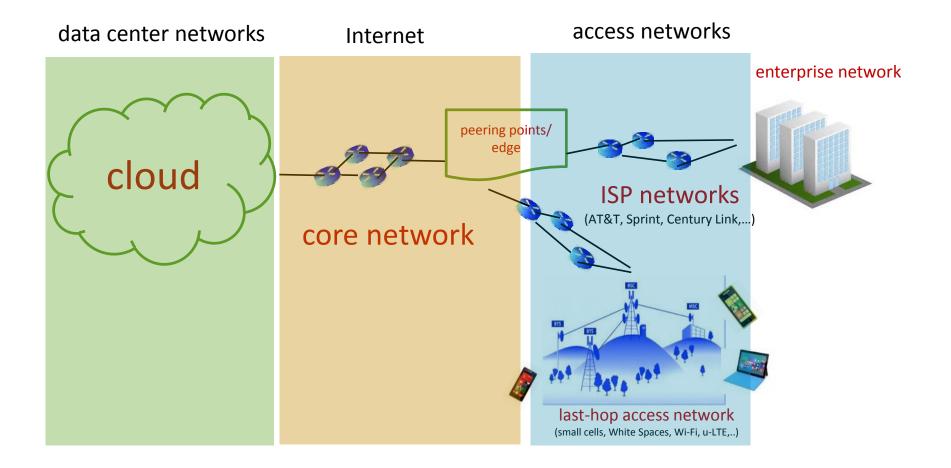
"...when 50% of traffic was redirected to our edges preliminary results showed a 5.9% increase in click-thru rates"

- Andy Lientz, Partner GPM, BingEdge (2013)

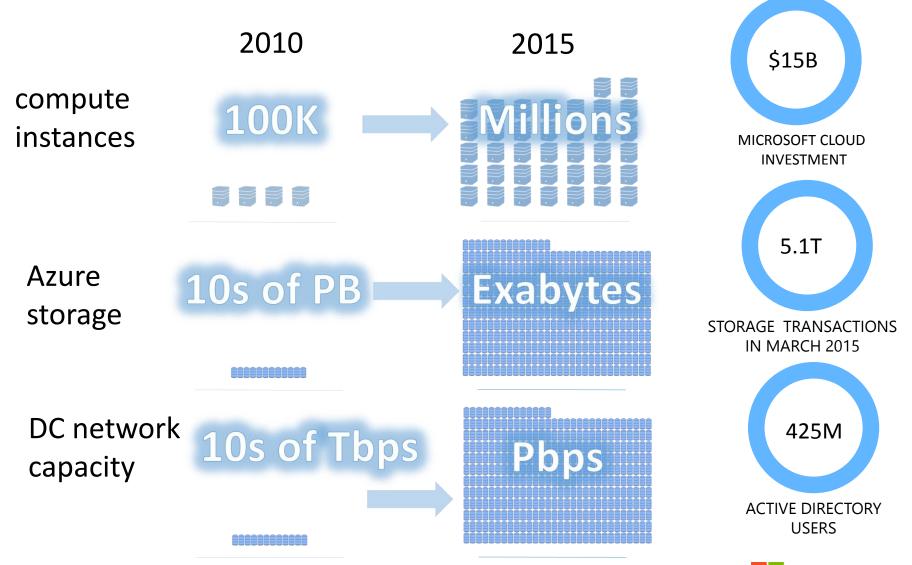
the fact of the matter is ...

offloading computation to a resource-rich cloud brings the true power of CS into your hands

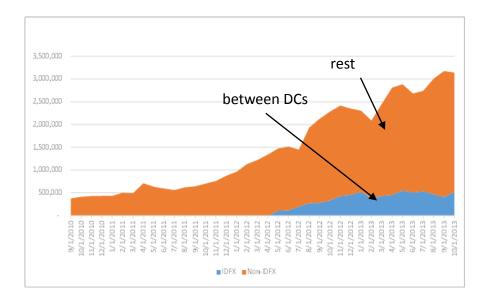
high latency & jitter to the cloud can make cloud services unusable


poor performance impacts revenue and turns users away

... and we have a latency problem


reducing latency

contributors to latency


Microsoft's hyper-scale cloud

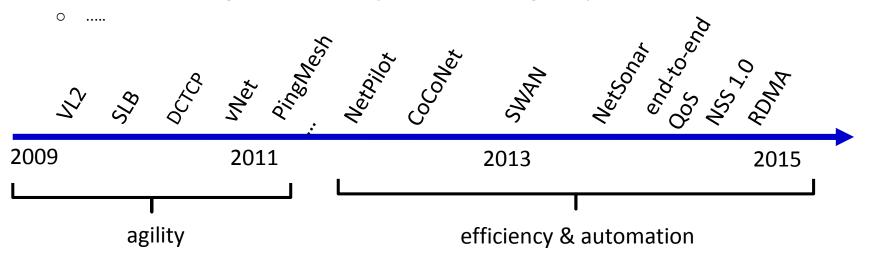
Microsoft's hyper-scale network

Microsoft's network is one of the largest in the world

massive traffic growth is stressing the underlying core networks

areas MSR researchers are working on:

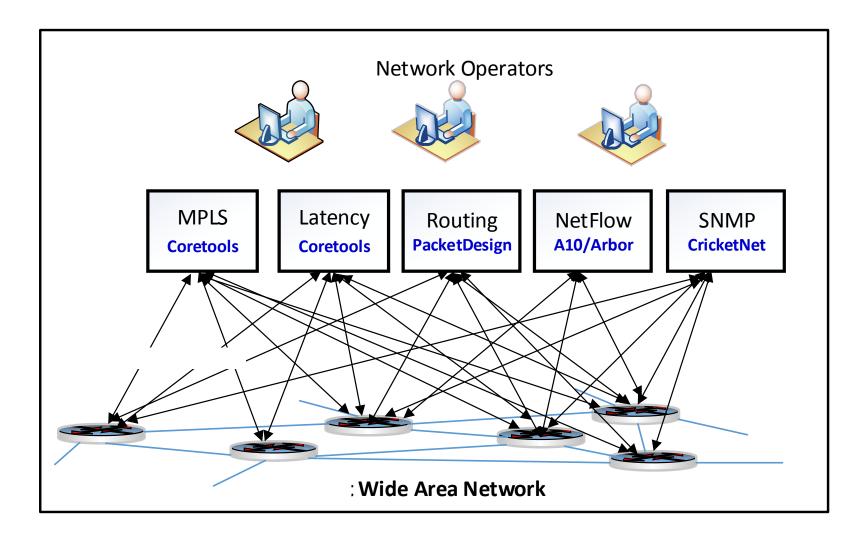
SIGCOM 2014

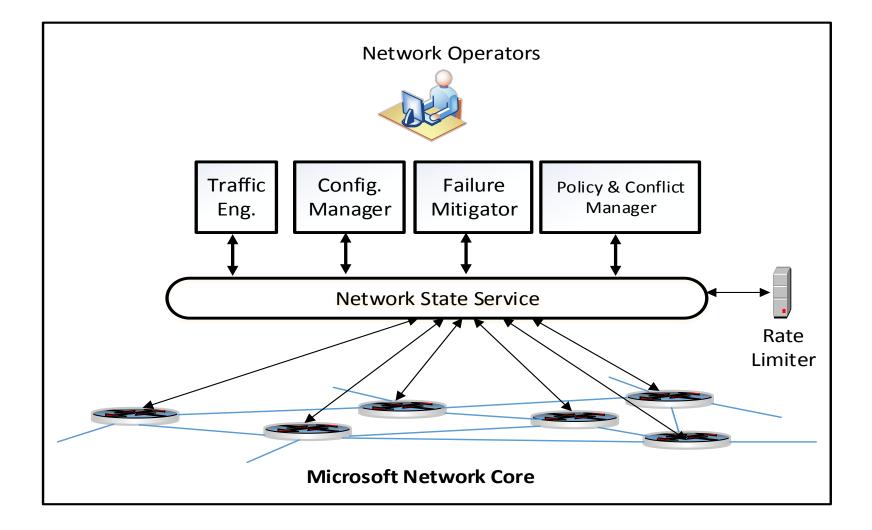

performance: significant number of circuits sit idle while others are oversubscribed (latency increases)

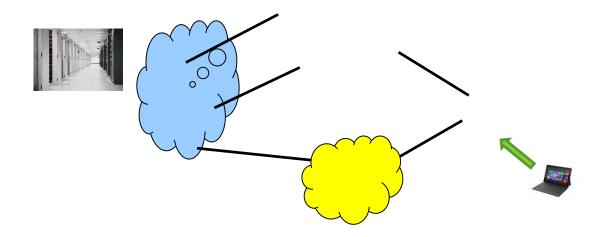
failures: long convergence time during network topology changes with planned and unplanned network events

MSR's contributions to Microsoft sigcomm, NSDI, CACM, ... cloud networking & to academia

reseachers worked hand-in-hand with Azure, Bing, Windows,


- steady stream of significant tech transfers
 - full –bisection bandwidth (Q10): 80x cost reduction, 20x outage reduction, in all Azure DCs
 - o software load balancer (SLB): 15x cost reduction, carries all Azure traffic
 - o software-defined WAN: increased inter-DC bw utilization from ~40% to ~95%,
 - o virtual networking: enabled MSFT hybrid cloud offering via HyperV virtual network product


- plenty of research accolades as well
 - papers recognized as "Research Highlight" by ACM


improving efficiency of wide area network

improving efficiency of wide area network with MSR's network state service

Internet: a network of networks of networks

as of March 6, 2013 (source: PEER 1)

- 22,961 AS numbers (AS numbers uniquely identify networks on the Internet, e.g. 8075 for Microsoft)
- 50,519 peering connections

... but we can reduce latency further

get the packets under our control as soon as possible

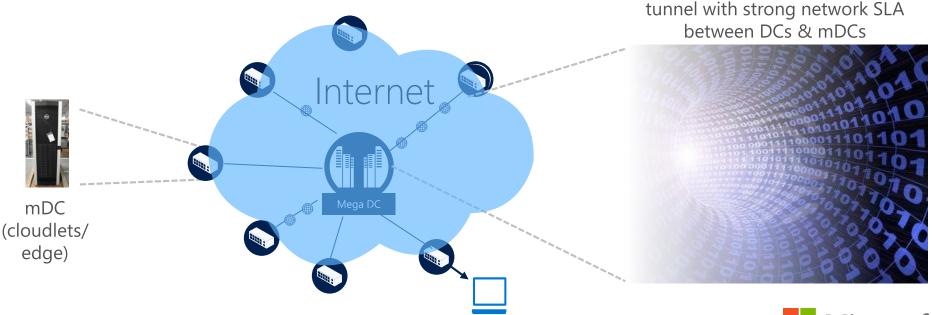
how?

- bring the <u>cloud closer</u> to the end-user
 - ✓ build lots of DCs around the world & place them in strategic locations

bringing the cloud closer build lots of hyper-scale data centers around the world

19

Azure compute regions open today


more than AWS and Google cloud combined

is building hyper-scale data centers enough?

no, it's capital intensive and expensive to operate

smarter approach: build an extensive infrastructure of micro DCs (1-10s of servers with several TBs of storage, \$20K-\$200K/mDC) and place them everywhere

micro DCs site acceleration (classic)

content caching

Xbox videos, NetFlix videos, Windows updates,...

split TCP connections

 $\,\circ\,$ from Bing data, on avg. can reduce latencies by ~30 msec

 predictive search query responses improved ~25-35% based on random sampling before and after deploying edge serves in a couple of US cities

mDCs are "classic" CDNs nodes, that can improve the performance of search engines, office productivity tools, video and audio conferencing & future cloud services

Akamai Limelight CloudFront Level 3 EdgeCast Rackspace

additional benefits of mDCs

latency reduction

- ✓ serve static content immediately
- ✓ SSL termination / split TCP
- edge to DC protocol enhancements

bandwidth saving

- ✓ compression
- procrastination
- edge analytics

service & internet monitoring

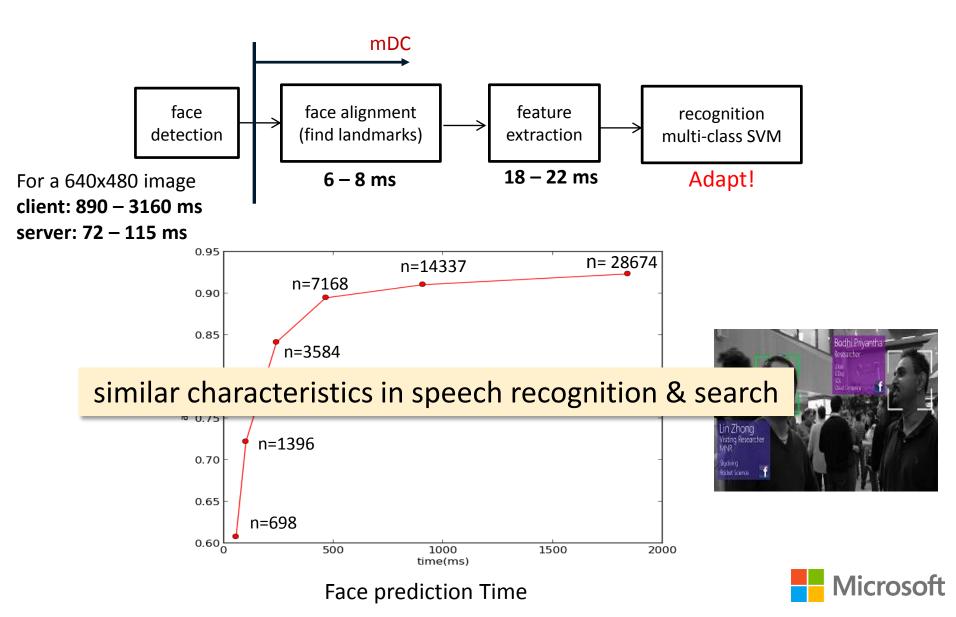
reliable connectivity

- overlay networking
- path diversity

battery saving

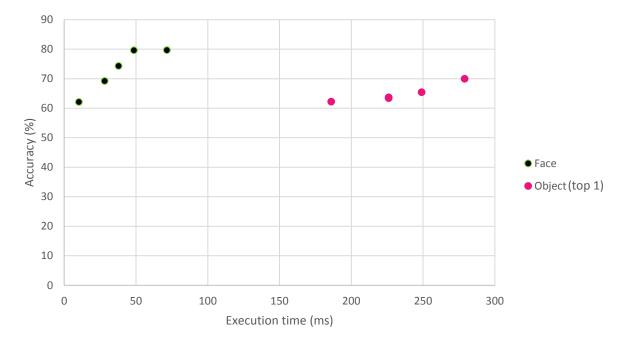
- computation offloads
- client proxying

high-end game streaming


- lower device cost
- reduce developer fragmentation

new services

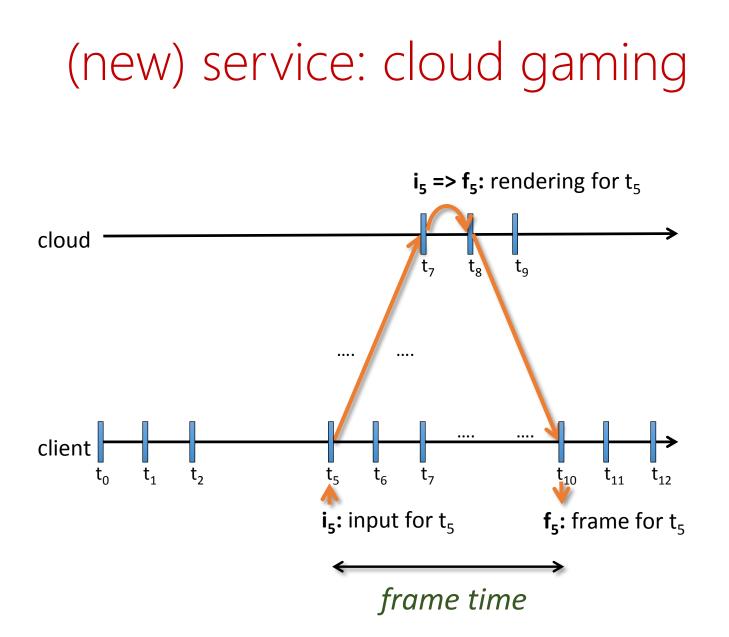
protection against DoS


reduced load on DCs

new services: object recognition the lower the latency, the better the results

using DNNs - similar results - lower transport latency helps

model execution time vs. accuracy (core i7)

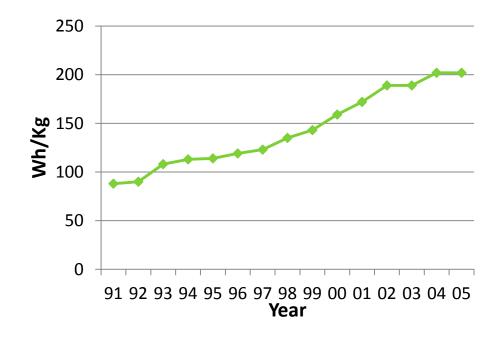


50-100ms can allows ~10-20% more accurate model

face recognition with mDCs

MobiSys 2015

cloud gaming (with speculative execution)


Outatime Improving Cloud Gaming w/ Speculative Execution

battery life... silver bullet seems unlikely

Li-lon energy density

lagged behind

higher voltage batteries (4.35 V vs. 4.2V) – 8% improvement
silicon anode adoption (vs. graphite) – 30% improvement

contrast with CPU performance improvement during same period: 246x

battery use in SmartPhones...

LTE consumes > 1.5W when active LTE chip active for ~10 secs of extra tail time (1W power)

....but how did we get here

a bit of context/history... 6 years ago

The New York Times

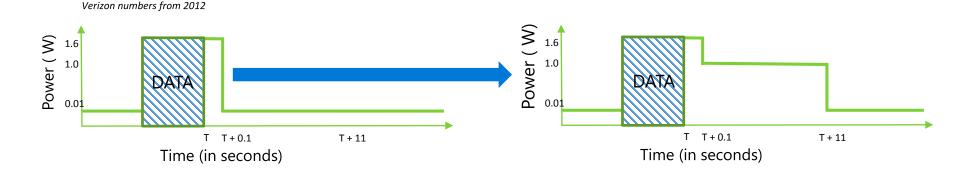
Customers Angered as iPhones Overload AT&T

By JENNA WORTHAM Published: September 2, 2009

The New York Times

AT&T Takes the Blame, Even for the iPhone's Faults

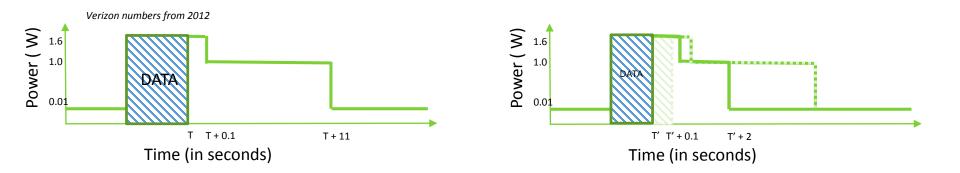
By RANDALL STROSS Published: December 12, 2009


PCWorld

Report: AT&T Reputation Tarnished by iPhone Flaws

original design: bring radio to low power state immediately

mobile operator requirement:


keep LTE chip **active for** ~**10 sec**. of extra tail time (to reduce the signaling load)

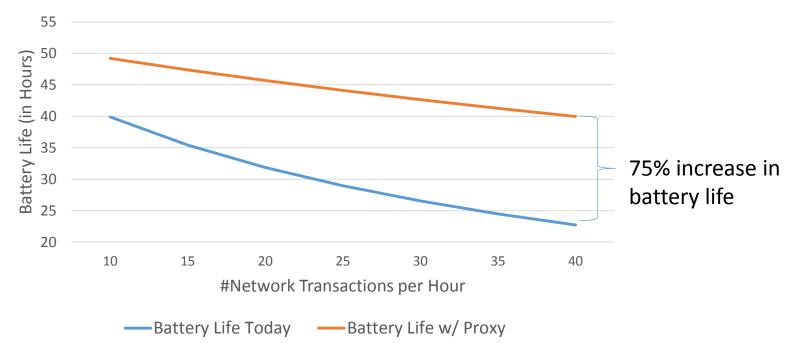
mDCs can increase use time

LTE consumes > 1.5W when active LTE chip active for ~10 secs of extra tail time (1W power) with mDCs: faster transfers => less time in high power state aggressively enter lowest power state

Energy savings / transfer: 1.6W*speedup + 1W*9sec = 10.6J (assuming speedup of 1 second)

for 20 network transfers/hour (notifications, email, etc.), with 1 sec speedup total energy savings per 24 hr. = 6624 J

→ Saving of **26%** in a 1500 mAH cell phone battery*


* Samsung Standard LI-ION battery with rating of 1500mAh/3.7Vdc

especially good for mobile battery life improvement

calculated for a 30 msec speedup / network transaction

these types of saving occur across the board for all battery types and all types of mobile devices

* Samsung Standard LI-ION battery with rating of 1500mAh/3.7Vdc

saving bandwidth....

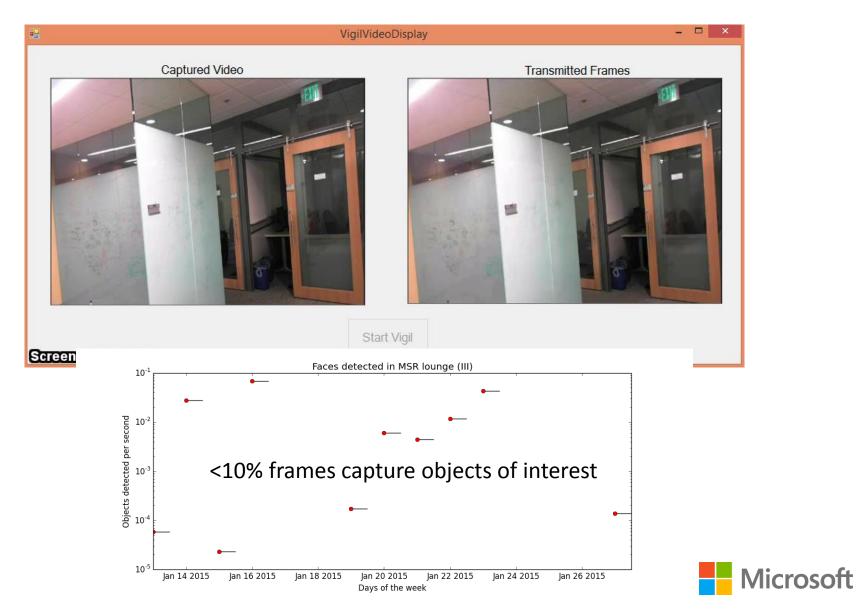
security, traffic, tracking

STARBUC COFFEE customer queue analytics

current approach

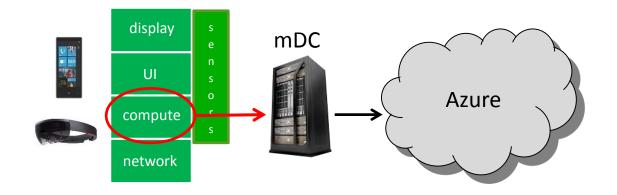
upload the captured video to the cloud for remote analysis

observations


- too much data captured per hour (>10GB/hour)
- bandwidth limits scale and use of system
- unable to support near real-time tracking & security

saving network bandwidth (wireless video surveillance)

saving network bandwidth (parking spot detector)



a couple of on-going problems

offloading computation

remote execution reduces energy consumption and improves performance

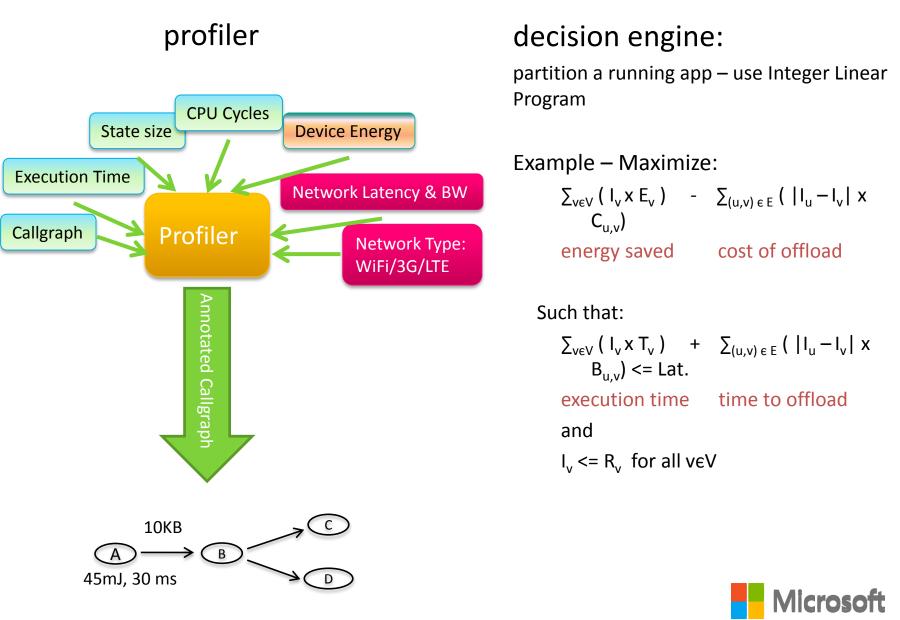
challenges

- what to offload?
- how to dynamically decide when to offload?
- how to do so with minimum programmer effort?
- how to support multi-tenancy with bullet-proof privacy?

programming frameworks for cloud offloading

	Microsoft's MAUI	Intel's CloneCloud	USC's Odessa
remote execution unit	methods	threads	tasks

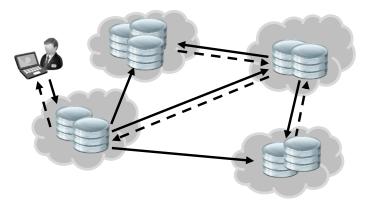
- MAUI exploits .NET framework to dynamically partitioning & offload method execution [MobiSys'10]
- CloneCloud supports existing applications, but requires tight synchronization between cloud and phone [EuroSys 2011]
- Odessa creates a data-flow graph to exploit parallelism [MobiSys 2011]


all have a profiler & a solver

also see: http://elijah.cs.cmu.edu/

MobiSys 2010

MAUI's profiler and decision engine



geo-distributed analytics

lots of data being generated at the edges, need support for sophisticated analysis

possible solution(s)

- pull all data into a central data center; answer queries from there
- leave data where it is collected; fetch on demand per query

costly and wasteful; not realtime very long latency; can't run Hive or Spark on WAN

Observations

- connectivity is expensive, low bw & high latency
- need to support near real-time triggers (e.g., faults/ fire)
- some of the data is infrequently accessed

geo-distributed analytics

allow data & query tasks to be placed at any site

- some datasets remain at the edge; others move to resource-rich DCs
- make job schedulers' robust to high latency by pipelining

mimic optimal data & task placement

- minimize average query latency
 - E.g., move data iff the cumulative *shuffle volume* of its queries exceeds data size
 - Eg., place network-heavy tasks on a site where there is more data to be read

recapping benefits of mDCs

latency reduction

- serve static content immediately
- SSL termination / split TCP
- edge to DC protocol enhancements

bandwidth saving

- compression
- procrastination
- edge analytics

service & internet monitoring

reliable connectivity

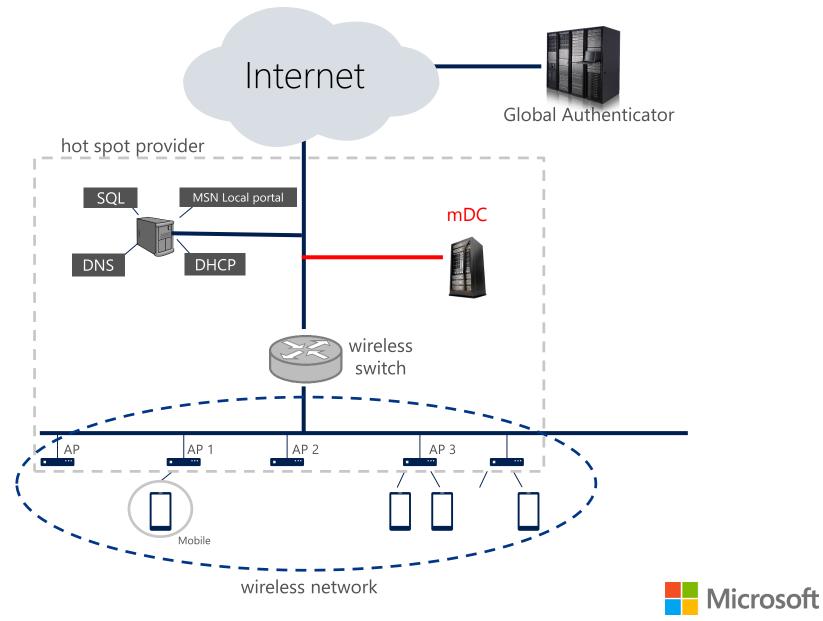
- overlay networking
- path diversity

battery saving

- computation offloads
- client proxying

high-end game streaming

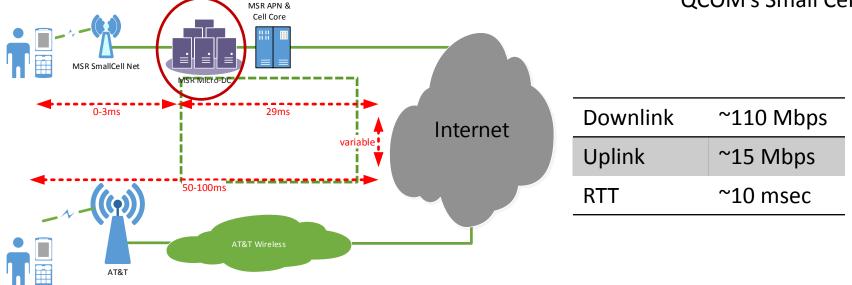
- lower device cost
- reduce developer fragmentation


new services

protection against DoS

reduced load on DCs

deployment


mDCs with Wi-Fi or White-Fi

mDC with small cells

QCOM's Small Cell

	<u>_</u>				Telnet 127.0.0.1			
	C:\>tracert any.edge.bing.com							
I	Tracing route to any.edge.bing.com [204.79.197.200]							
I	over	a maximum	n of 30 ho	ps:				
1	1	37 ms	34 ms	39 ms	172.26.241.113			
I		*	37 ms	*	172.26.236.2			
I	3	38 ms	38 ms		172.26.96.11			
1	23456	38 ms	39 ms	39 ms	172.26.96.193			
I	5	50 ms	41 ms	40 ms	172.18.3.241			
I	6	44 ms	37 ms	60 ms	12.249.2.25			
I	7	44 ms	43 ms	44 ms	12.83.180.6			
I	8	48 ms	47 ms	42 ms	12.83.180.14			
I	. 9	45 ms	52 ms	44 ms	cr81.st0wa.ip.att.net [12.122.5.197]			
I	10	93 ms	120 ms	43 ms	12.122.111.9			
I	11	45 ms	44 ms	46 ms	12.249.36.6			
I	12	*	*	*	Request timed out.			
1	13	*	*	*	Request timed out.			
1	14	* 	*	*	Request timed out.			
1	15	50 ms	50 ms	50 ms	origin.any.bing.com [204.79.197.200]			
1	Tunoo	complete						
1	Tratte	comprete	-					
1	C:\>							
1	0. 17							

::\Users\sagarwal>tracert any.edge.bing.com							
raci	ng rout	e to an	y.edge	.bing	.com [204.79.197.200]		
vera	a maxim	um of 3	0 hops				
1	*	×		*	Request timed out.		
123	42 ms		ms		131.107.151.1		
3	43 ms	98	ms	26 ms	ge-3-0-0401.icar-sttlwa01-02.infra.pnw-gigapop.net [209.124.190.238		
-4 5	35 ms	27	ms	39 ms	ae1706.iccr-sttlwa01-03.infra.pnw-gigapop.net [207.231.240.1]		
5	32 ms	28	ms	27 ms	microsoft-1-lo-jmb-706.sttlwa.pacificwave.net [207.231.240.7]		
6		29	ms	27 ms	ae0-0.wst-96cbe-1a.ntwk.msn.net [204.152.140.105]		
7 8 9	×	×		×	Request timed out.		
8	×	×		×	Request timed out.		
. <u>¥</u>	*	*		*	Request timed out.		
10	43 ms	27	ms	38 ms	any.edge.bing.com [204.79.197.200]		

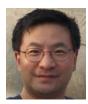
tracert from SC to any.edge.bing.com (10 hops)

tracert from AT&T LTE to any.edge.bing.com (15 hops)

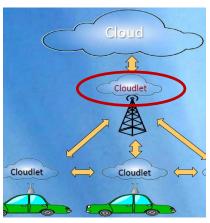
the wave is coming ...

Dynamically manipulate images in the Cloud for responsive web design

Fast and Easy Access Control for your Web Applications


(intel)

Increasing Mobile Operators' Value Proposition With Edge Computing

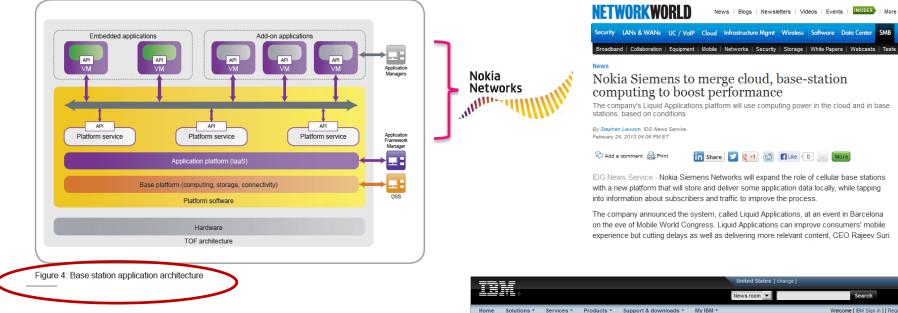

Turn bit pipes into smart pipes with an Intel® architecture-based server embedded into a Nokia Siemens Networks* base station

"local cloud are essential for backbone and core network scalability"

Dr. Geng Wu, Chief Scientist, Intel (Wireless World Research Forum, Vancouver, BC, Oct. 22, 2013)

5G with Undelay Networks and Local Cloud

"cloudlets for reducing latency, security and reliability"

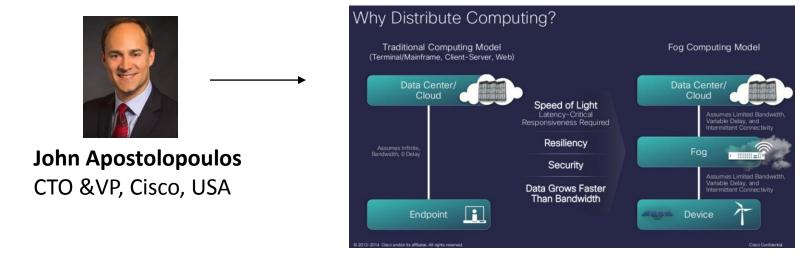

- Dr. David Soldani, VP Huawei
- (IEEE ICC, June 12, 2013)

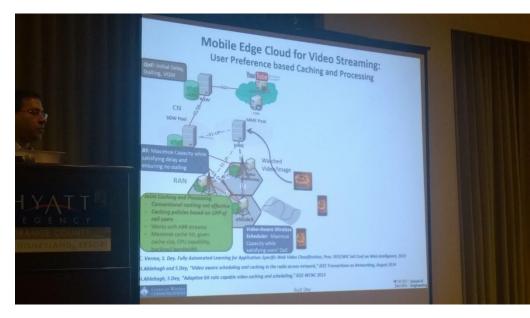
...and it's becoming bigger MOs moving towards edge services

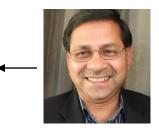
Liquid Net

Nokia Networks reveals ETSI mobile edge computing collaboration

IBM, Intel, Vodafone, and Huawei all on board


October 20, 2014 | By Michael Carroll


	United States [change]						
		News room	Search				
Home Solutions • S	ervices * Products * Support & downloads *	My IBM *	Welcome [IBM Sign in] [Registe				
News room	News room > News releases > IBM and Nokia Siemens Network	s Announce World's First Mobile					
News releases	Edge Computing Platform						
Press kits							
mage gallery	News release	Contact(s) information	Contact us				
Biographies	Related XML feeds		→ Contact a media relations				
Background	Barcelona, Spain - 25 Feb 2013: Mobile Wor	representative					
lews room feeds	(NYSE: IBM) announced today a collaboration	(NYSE: IBM) announced today a collaboration to deliver the world's first mobile edge computing platform that can run applications directly within a mobile base station. This new platform					
Global news rooms		allows mobile operators to create a truly unique mobile experience, relieve the ever increasing					
News room search	strain on network infrastructure and bring cor	strain on network infrastructure and bring completely new solutions to market.					
Media contacts	The new platform can accelerate the delivery	Facebook					
incula contacta	directly from the base station, ensuring enha						



overheard at a recent conference (IEEE ICNC 2015)

"fog computing"

Sujit Dey, Professor/ Director Center for Wireless CommunicationsUCSD

it's hot in the research community as well...

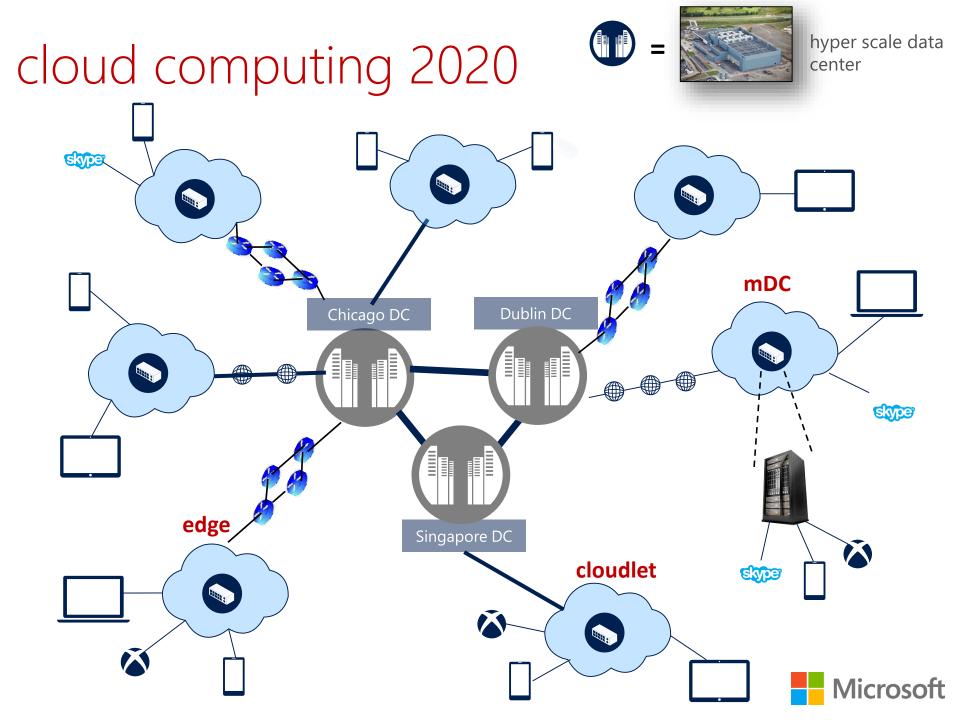
there is plenty of research literature (incl. MSR's) that shows edge computing significantly enhances mobile experience

first

paper

Satya (CMU), Bahl (Microsoft), Caceres (AT&T), Davies (Lancaster) The Case for VM-based Cloudlets in Mobile Computing IEEE Pervasive Computing, October 2009

~ 900 citations


Cuervo (Duke), Balasubramanian (UMASS), Wolman, Saroiu, Chandra, Bahl (Microsoft) *MAUI: making smartphones last longer with code offload* ACM MobiSys conference, June 2010

~ 825 citations

Why a Cloudlet Beats the Cloud for Mobile Apps

Posted on December 13, 2009 by lewisshepherd

with mDCs (cloudlets) you can...

- develop new (latency sensitive, CPU & battery intensive) (IoT) applications, which (dynamically) partition themselves
- pursue infrastructure research in an emerging cloud platform, which promises to be pervasive
- deploy your own mDCs & connect them to Azure

merci!

mDC benefits - app & game streaming

run any ecosystem's apps on resourced-starved devices by streaming them from the cloud

- circumvent client-side compatibility complexities
- with mDCs, reduce
 - latency -- keeping users engaged
 - jitter & packet loss reduce user frustrating in highly interactive sessions
 - backbone bandwidth so both MOs and we pay less to other ISPs

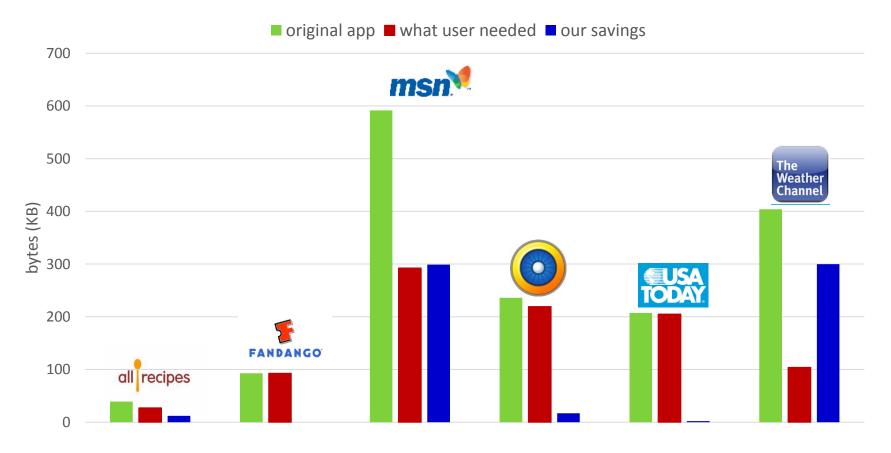
note: standard proxy + split TCP insufficient for interactive traffic

mDCs can reduce dependency on cellular networks

offload to Wi-Fi aggressively

already doing this

compress aggressively

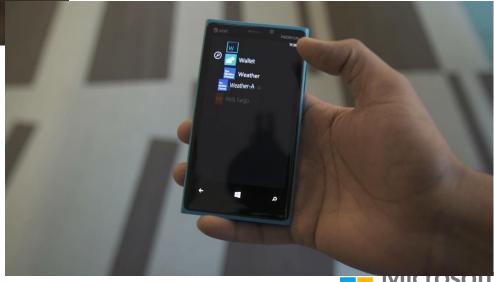

procrastinate instead of prefetch

MobiSys 2014

- many network apps. fetch data whether or not it is consumed
- idea: mDC fetches the data but holds on to it until user explicitly needs it
 - ✓ save cellular bandwidth <u>without</u> the latency penalty

procrastinate & save few results on bandwidth saving the system automatically decides what is not needed by the end-user

test applications



micro datacenter - benefits reducing dependency on cellular networks (with procrastination)

get data only when needed (without mDC)

get data only when needed (with mDC)

