
Autonomous Resource Selection for Decentralized Utility Computing

Paolo Costa∗† Jeff Napper∗ Guillaume Pierre∗ Maarten van Steen∗

∗Vrije Universiteit Amsterdam †Microsoft Research Cambridge
The Netherlands United Kingdom

E-mail: costa@microsoft.com,{jnapper,gpierre,steen}@cs.vu.nl

Abstract

Many large-scale utility computing infrastructures com-
prise heterogeneous hardware and software resources. This
raises the need for scalable resource selection services,
which identify resources that match application require-
ments, and can potentially be assigned to these applications.
We present a fully decentralized resource selection algorithm
by which resources autonomously select themselves when
their attributes match a query. An application specifies what
it expects from a resource by means of a conjunction of
(attribute,value-range) pairs, which are matched against the
attribute values of resources. We show that our solution
scales in the number of resources as well as in the number
of attributes, while being relatively insensitive to churn and
other membership changes such as node failures.

1. Introduction

Applications are increasingly voracious in the computing
resources they require to execute efficiently. Moreover, the
computing demand of many users changes over time. We
observe a steady growth of forms of utility computing where
the execution of applications is outsourced to a (potentially
very large) shared external infrastructure of compute and
storage resources that can manage both long-term growth
and short-term fluctuations in use.

There are currently two approaches to build large-scale
utility computing infrastructures. The data center approach
concentrates computing power in large and powerful data
centers, allowing tight control from the operators over re-
sources. However, for very large data centers we observe
diseconomies of scale due to increasing costs of powering
and cooling the data center and acquiring the land [1].

The computing grid approach instead federalizes re-
sources from a large number of locations [2]. Projects such
as Nano Data Centers [3] and BOINC [4] reduce costs by re-
using existing infrastructure (including power facilities) and
may also reduce average latencies due to the geographical
distribution of the resources. Recent studies show that it is
possible to run long-lasting services in such environments
even though resources are far less stable compared to a
typical data center [5].

In a large-scale collaborative system, resource capabilities
are often very diverse [6]. An essential primitive therefore

consists of identifying suitable resources for each applica-
tion. A resource selection service should provide a lookup
primitive that takes a specification of required resource
attributes and returns a list of machines suitable for running
the concerned application.

A number of solutions have been proposed to tackle this
problem, ranging from centralized and hierarchical node
directories to DHT-based solutions [7]. All these approaches
rely on delegation where compute nodes register their at-
tributes to registry nodes that implement the lookup func-
tionality. Registry nodes must then monitor the availability
of compute nodes and periodically refresh the registered at-
tribute values to maintain accuracy. We claim that delegation
should be avoided for three reasons: (i) it creates unneces-
sary load on the system due to the periodic revalidations of
the registered values and the need to check node availability
regularly; (ii) it creates inconsistency between the actual and
registered attribute values, for example, in the case of a fail-
ure of a compute node or its corresponding registry node(s);
(iii) it creates imbalanced workloads, requiring extra effort
to balance. DHT-based resource selection systems frequently
divide the searchable space on a per-attribute basis and each
peer in the system is then responsible for keeping references
to the nodes in charge of those specific attribute values.
This, however, generates uneven load distribution when a
particular attribute range becomes popular.

Another important aspect of resource selection services
is their ability to scale, both in terms of the number of
nodes they can support and in the supported number of node
attributes. Indeed, utility computing platforms may need to
maintain large numbers of attributes per node to represent
hardware characteristics as well as the (non-)availability of
certain libraries or other administrative properties. Central-
ized and hierarchical registries can in principle handle any
number of attributes but have limited scalability in number
of nodes, particularly in a dynamic environment where
managing a robust node hierarchy is far from trivial [8].
On the other hand, DHT-based solutions usually scale very
well with large number of nodes, but they do not efficiently
support multidimensional-range searches.

This paper introduces a decentralized resource selection
service where each compute node is solely responsible for
its own attributes. Eliminating delegation represents a simple
solution to both implement efficient lookups and support
large dimensionality data. Nodes are directly responsible
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for providing accurate and timely information about their
resources, and to minimize overhead, queries are routed
quickly to nodes that can provide the desired resources.

In our solution each node is placed in a multi-dimensional
space where each dimension represents a resource-attribute
type. A query is specified as a list of (attribute, value inter-
val) pairs, effectively demarcating a subregion in this multi-
dimensional space. Irrelevant attributes for a given job can be
left unspecified. Nodes maintain a few links to other nodes
so that queries can be forwarded to a node that either lies in
the associated subregion or to a neighboring node closest to
that region. Once a query is being processed within the as-
sociated subregion, it needs merely be forwarded to enough
nodes within that subregion to satisfy the query. Epidemic
protocols [9] manage the overlay network, enabling high
resilience to faults with negligible overhead.

We evaluate our system using both simulations (with in-
frastructures consisting of up to 100,000 nodes), emulations
(of up to 1,000 nodes running on a cluster) and actual
deployment on PlanetLab (up to 300 nodes). All experiments
show that the system can support high churn and scales
extremely well in both the number of nodes and the number
of dimensions. Notably this last property is rarely satisfied
by other decentralized solutions. Our solution also provides
very good balancing of the query load, even in the presence
of skewed query patterns.

2. Related Work

Traditional approaches for resource selection in dis-
tributed environments use centralized or hierarchical ar-
chitectures in which a few servers keep track of all the
resources in the network and offer lookup functionality to the
users [10]. While these solutions are well-suited for clusters
or small collections of PCs, they exhibit scalability issues
when the system size increases [11]. Hence, in recent years,
researchers put forth a large effort to devise decentralized
solutions addressing large-scale scenarios [12].

The vast majority of these systems exploit DHTs to map
resources to nodes in order to distribute the search operations
across different nodes [7]. Early approaches maintain a
separate DHT per attribute: a query is executed in parallel on
every overlay network and results are then intersected [13],
[14]. Alternative approaches reduce the d-dimensional space
to a 1-dimensional space by means of a Space Filling Curve,
thus reducing the problem to routing in 1-dimensional
space [15], [16]. More recent work, inspired by CAN [17],
partitions the d-dimensional space into smaller blocks that
are assigned to specific nodes, which are responsible for
all resources falling in that block [18], [19], [20], [21].
Finally, SWORD [22] generates a different DHT key for
each attribute based on its current value and each node is
responsible for a continuous range of values.

The fundamental difference with our approach is that
these protocols have been designed to operate in environ-
ments where the number of resources largely exceeds the
number of nodes. In our scenario, the published resources

are the nodes themselves. Instead of having each node
delegating the registration of its attribute values to another
node, each node represents itself directly in the overlay. As
discussed above and evaluated extensively in Section 6.4,
in contrast to DHT-based solutions, our system addresses
load balancing by design, since each node manages exactly
one resource (i.e., itself). Some DHT-based approaches
(e.g., [18]) periodically run an additional protocol to re-
allocate responsibilities. This, however, comes at the cost
of increasing the complexity and overhead of the protocol
without providing any strong load-balancing guarantees.

High churn rates also negatively impact DHTs [23] and
inconsistencies can arise between a resource and its repre-
sentation in the DHT. In case of resource failure, a failure de-
tector must explicitly update the DHT. Conversely, resources
might become unreachable because their representative in
the DHT has disconnected. In our approach, each resource
represents itself in the overlay, removing the inconsistency
problem: when a node’s properties change, or if the node
fails, no registry node must be updated. The overlay merely
reconfigures to repair the broken links.

Beaumont et al. exploit Voronoi diagrams to equally
partition the d-dimensional space among nodes [24]. This
approach is elegant and scales well with the number of
nodes. However, as the authors note, the complexity of
Voronoi diagrams is exponential with the number of dimen-
sions, i.e., number of different attributes. This practically
limits this system to supporting only two different attributes.
Conversely, as we show in Section 6.3, our protocol scales
well with the numbers of dimensions.

Zorilla is a resource discovery system based on an un-
structured overlay, resembling the Gnutella network [25].
This approach relies on message flooding to identify avail-
able resources, thus hampering its scalability. Also, this
system does not support attribute-based resource selection
as in our approach.

The two systems closest to our approach are [26] and
Astrolabe [27]. Similar to us, both systems rely on gossip-
based protocols to keep track of resources in an overlay.

Jelasity and Kermarrec propose to use gossiping to dy-
namically order the nodes of an overlay according to any
metric such as available disk space and memory [26].
Ordered slicing differs from our approach in two ways.
First, ordered slicing is directed towards finding a fraction
of best nodes in a collection. In contrast, we aim for finding
any fixed number of suitable nodes. This is a different
problem that cannot be easily solved through ordered slicing.
Second, ordered slicing requires all nodes of the overlay
to collaborate in answering any query. In our system, a
single gossip-based overlay operates continuously in the
background to maintain neighboring links between nodes.
Query routing based on these links is very efficient, akin
to routing in a structured peer-to-peer overlay. In other
words, we separate overlay maintenance from the problem
of resource selection. These two are intertwined in [26], so
that each new query causes a rerun of the whole protocol.

In Astrolabe, nodes are organized along a tree structure.



Each node gossips only with other nodes at the same
level. Information about available resources is incrementally
summarized as it is reported from the tree leaves toward the
root. The main purpose of Astrolabe is to provide aggregated
information on the status of (a part of) the system. However,
reporting aggregate information is not sufficient for resource
selection. As the authors acknowledge [27], Astrolabe can
easily provide (approximate) information on how many
nodes fit an application’s requirements, but cannot efficiently
produce the list of nodes themselves.

3. System Model

In our model, each node is characterized by a set of
(attribute,value) pairs such as memory, bandwidth and CPU
power. For sake of simplicity, we assume that the number of
attributes is fixed and known a priori. We also assume that
attribute values can be uniquely mapped to natural numbers
(although they need not be represented as such).

We represent the overlay as a d−dimensional space A ,
A0×A1×· · ·×Ad−1, with Ai being the set of all possible
values for attribute ai and d the number of different attributes
considered. Every node X can therefore be represented as
a single point with coordinates (v0, v1, . . . , vd−1), and vi
being the value of attribute ai for node X . A query is defined
as a binary relation over A, i.e., q : A → {0, 1} that selects
nodes which satisfy the application requirements. The set of
nodes for which q yields 1 represents the set of candidates
to be allocated to the application. Note that q identifies a
subspace Q(q) , Q0 ×Q1 × · · · ×Qd−1, where Qi ⊆ Ai.

As an example, consider a space based on five attributes:
CPU instruction set, memory size, bandwidth, disk space,
and operating system. Ignoring strict notational issues, an
example query could then be formulated as:

CPU = IA32
MEM ∈ [4GB,∞)
BANDWIDTH ∈ [512Kb/s,∞)
DISK ∈ [128GB,∞)
OS ∈ {Linux 2.6.19-1.2895, . . . , Linux 2.6.20-1.2944}
A query can be issued at any node; there is no designated

node where queries should initially be sent to. Finally we
assume that the network is fully connected: each node can
reach any other node.

4. Protocol Description

This section illustrates the resource discovery protocol.
We first describe the properties of the overlay, then detail
query routing. The next section discusses how the overlay
is built and maintained over time.

4.1. Overlay Network Topology

The model described in Section 3 is naturally represented
as a multi-dimensional cube. In order to scale up to large
numbers of nodes, we must limit the amount of links that
each node needs to maintain. A naive, inefficient solution

(a) Nested Cells.

(b) Neighboring Cells

Figure 1. Attribute space partition with d = 2.

is to connect every node, for each dimension, with its most
immediate neighbors, i.e., the nodes having the most similar
attribute values. When a node receives a query message q,
it can then forward it in a greedy fashion to the neighbor
closest to the area Q(q). Unfortunately, this approach creates
dramatic latency and traffic overheads: since a query can be
issued at any node, it may need to traverse many nodes along
every dimension to reach the area Q.

We instead opt for a hierarchical approach by recursively
splitting the d-dimensional space into smaller spaces, called
cells, and providing each node with a link to the increasingly
larger subspaces of which it is a member. An example for
d = 2 is shown in Figure 1(a). The largest cell has been
partitioned into four smaller cells which each, in turn, have
been split into four even smaller cells. Note that the attribute
ranges of each cell do not have to be regular. One cell may
range over memory between 0 and 128 MB, and another one



between 4 GB and 8 GB. This allows us to deal with skewed
distributions of attributes values. For the same reason, we
do not impose an upper bound on attribute values: in our
example, all nodes with more than 8 GB of RAM will be
placed in the lowest row of the grid.

To distinguish among cells, we introduce the notion of
level l. The smallest cells are at level zero. These are denoted
as C0. C1 cells are obtained by grouping four C0 cells.
Similarly, four C1 cells create a single C2 cell and so on.
More formally, given a cube of d dimensions and a level l,
a Cl cell is obtained by joining 2d adjacent Cl−1 cells. Every
node X belongs to a unique Cl cell, denoted Cl(X).

Key to our approach is that when a node X is requested
to handle a query q, X forwards the query to the lowest
level cell Cl(X) that overlaps with Q(q). This approach
requires that for each level l, X knows about nodes in
Cl(X) \ Cl−1(X). To this end, we construct for each di-
mension a neighboring subcell of Cl−1(X) by first splitting
Cl(X) along dimension #0. The half in which Cl−1(X) is
contained, is then split along dimension #1. This procedure
is repeated until all dimensions have been considered, so
that we will then have created d subcells at level l of
Cl(X), each of which is adjacent to one “side” of Cl−1(X).
Figure 1(b) shows the neighboring cells for a node A with
the corresponding levels and dimensions.

We require that a node knows one other neighbor node
falling in one of these subcells for each level l > 0. If no
node is present in a given subcell, then no link must be
maintained. The nodes in C0(X) are arranged in such a way
that X can efficiently broadcast a message to each of them,
for example through an epidemic protocol [28]. We denote
the neighboring cell of node X at level l and dimension k as
N (l,k)(X). Similarly, the selected neighbor in N (l,k)(X) is
denoted as n(l,k)(X). Interestingly, while the number of Cl
cells grows exponentially with the number of dimensions,
the number of N (l,k) subcells (and hence the number of
neighbors required per node) grows only linearly, and will
thus not hinder scalability.

Figure 2(a) shows an example for node A (for sake of
clarity, we omit the connections among the other nodes).
First, A is connected with all the other nodes in C0(A) i.e., B
and C. Then, for each neighboring cell N (l,k)(A) depicted
in Figure 1(b), it must choose one node n(l,k) to connect
with. For l = 1, it has chosen nodes D (k = 1) and E
(k = 0). For l = 2, it has two available nodes for k = 0 (F
is selected). There is no node in N (2,1)(A) so that no link is
created. The same procedure is repeated for l = 3 (nodes O
and H are selected). Similarly, Figure 2(b) reports the links
of node O. Links need not be symmetric. For instance, here
O is a neighbor of A but not vice versa.

Note that even if the nodes are not uniformly distributed
throughout the space, the performance of our protocol is not
affected. In fact, our protocol can even benefit to a certain
extent from a skewed distribution. If most nodes fall within
a small portion of the space, this means that on average
nodes will have fewer neighbors because many neighboring

(a) Node A’s neighbors

(b) Node O’s neighbors

Figure 2. Neighbor links for nodes A and O.

cells will be empty (e.g., A has no neighbor in N (2,1)(A)).
In addition, highly populated cells avoid bottlenecks by
offering more nodes from which to select a neighbor.

4.2. Query Routing: An Example

We illustrate query routing by an example depicted in
Figure 3. Assume that node A is looking for σ = 4 nodes
that have a network connection greater than 512 Kb/s and
at least 4 Gb of RAM. Graphically, this is represented by
the dotted rectangle in Figure 3, representing the area Q.
Node A will first find that itself does not fall into Q.
A then increases its scope starting from the highest level
neighboring cells, until it finds one that overlaps Q. In our
example, this process ends immediately with l = 3, since an
overlap is found between N (3,0)(A) and Q. Hence, node A
forwards the query to its neighbor n(3,0)(A) responsible for
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Figure 3. Example of query routing.

that subcell (node O in the example). The latter will proceed
in the same way. However, to avoid backward messages, it
considers only N (3,1)(O) or lower-level cells.

Node O finds that N (3,1)(O) partially overlaps Q. It
therefore forwards the query to T , i.e., n(3,1)(O). T first
includes itself in the candidate set as it matches the query
requirements. Then, since both N (3,0)(T ) and N (3,1)(T )
cannot be further considered to avoid backward propagation
of the query, it can just consider N (l,k)(T ) with l < 3.
It therefore routes the query towards n(2,0)(T ), namely U ,
which fulfills the query requirements. Since A asked for
4 nodes, U continues to disseminate the query to S, in
N (1,1)(U), which also matches. Now, S cannot propagate
the query further and thus replies back to U . Also U , T and
O do not have alternative paths so, following the return path,
the query goes back to A. Node A, however, can forward
the query to H , since also N (3,1)(A) overlaps with Q. Here
the propagation occurs as above and in the end the query
reaches node L, whose attributes also match the query1.

As shown in Figure 3, query propagation follows a depth-
first tree rooted at the originating node. This ensures that no
loops are created. However, this tree is created dynamically
each time a new query is issued, exploiting the links of
the overlay network. Compared with traditional approaches,
where a single tree is used, this solution is more efficient
due to a better load distribution and much lower maintenance
costs, especially in presence of churn.

4.3. Query Routing: The Protocol

When a user needs a collection of nodes to perform her
tasks, she contacts any node in the overlay network and
passes the query to it. A query message contains the address

1. This algorithm can easily be extended to support rapidly-changing
attributes, such as the available disk space of a node. Instead of representing
this attribute as an extra dimension, one can route queries according to
other requested attributes, and let resources check locally if they match the
dynamic attribute as well. This is not feasible in delegation-based systems.

QUERY:
• id: the query identifier (must be unique)
• address: the address of the last forwarder of the query
• ranges: the vector of the desired ranges per attribute
• σ: the number of nodes to be found (optional)
• level: the cell level to explore. Default value is max(l).
• dimensions: the set of dimensions to explore. Default value is
{0, 1, . . . , d− 1}.

REPLY:
• id: the id of the corresponding query
• matching: the set of nodes (address, values) matching the query
• sender: the address of reply’s sender

(a) Message Formats.

Each node X hosts a set neighbors, containing one neighbor n(l,d)(X) per
neighboring cell at level l and dimension d. Neighbors in C0(X) are kept in a
separate set neighborsZero.
For each neighbor the following information is stored:
• n.address: n’s IP address and TCP port
• n.level: the level of this neighbor
• n.dimension: the dimension of this neighbor

A node also maintains the following vectors (maps) indexed by the query id:
• pending: the queries that have not been answered yet
• matching: the addresses of the nodes matching the query collected so far
• waiting: the addresses of the nodes to which the query has been forwarded

but from which no reply has been received yet
Each node stores information about its own state in a record self with fields:
• address: own IP address and TCP port
• values: a vector of all its attribute values

We also rely on the following Boolean functions:
• overlaps(q, l, d, X): returns TRUE if Q(q) overlaps N (l,d)(X)
• matches(n,q): returns TRUE if node n’s attributes match the query q

(b) Data structures.

Figure 4. Messages and data structures.

of the querying node and the desired range of values for each
attribute representing a lower and upper bound. The job may
specify both of them, only one, or even none (if it does not
care for any particular value for that attribute).

A job can also impose an upper bound σ on the number
of nodes it is interested in. This information will be used by
our protocol to halt the propagation of the query once the
threshold is met. Finally, each query contains two further
fields, level and dimensions, which will be exploited to
forward the query. Default values are reported in Figure 4(a).

Each node stores three tables containing an entry for each
query it receives (Figure 4(b)). The first one, pending, is used
to keep track of on-going queries. Each entry is associated
with a time out T (q): when it expires, the neighbor is
considered to have failed and the query is forwarded again.
The second table, named matching, includes the list of
candidates that the node has retrieved so far for each query
in pending. Finally, waiting stores the neighbors that have
received a query but have not replied yet.

As shown in the second procedure in Figure 5, when a
node X receives a query, it first adds a new entry in the three
aforementioned tables (lines 1–3). It then checks whether its
own attributes satisfy the request, in which case it adds itself
to the matching list (lines 4–5). It then invokes the forward
procedure to route the query to its neighbors (lines 6–7),
unless σ nodes have already been found.

In the forward procedure, all neighboring cells are



Invoked by a user to query for a collection of k nodes.
create QUERY q
1: create a QUERY message q
2: q.address← self .address
3: for all Ai ∈ A do
4: q.ranges[i] ← (mini,maxi)
5: q.σ ← k
6: q.level← max(l)
7: q.dimensions← {0, 1, . . . , d− 1}
8: receive query(q)

Invoked by a node receiving a QUERY message.
receive_query QUERY q
1: pending[q.id]← q
2: matching[q.id]← ∅
3: waiting[q.id]← ∅
4: if matches(self, q) then
5: matching[q.id]← {self}
6: if |matching[q.id]| < q.σ then
7: forward(q)
8: else
9: create REPLY r

10: r.sender ← self .address
11: r.id← q.id
12: r.matching← matching[q.id]
13: send r → sender[q.id]

Invoked by a node to forward a QUERY message.
forward QUERY q
1: while q.level > 0 do
2: for all d′ ∈ q.dimensions do
3: if overlaps(q, q.level, d’, self) then
4: q.dimensions← q.dimensions \ {d′}
5: send q → neighbors[q.level, d′]
6: waiting[q.id]← waiting[q.id] ∪ {neighbors[q.level, d′]}
7: return
8: q.level← q.level− 1
9: q.dimensions← {0, 1, . . . , d− 1}

10: if q.level = 0 then
11: for all n ∈ neighborsZero do
12: if matches(n, q) ∧ n 6∈ matching[q.id] then
13: q′ ← q
14: q′.level← −1
15: send q′ → n
16: waiting[q.id]← waiting[q.id] ∪ {n}
17: return
18: if |waiting[q.id]| = 0 then
19: create REPLY r
20: r.sender ← self .address
21: r.id← q.id
22: r.matching← matching[q.id]
23: send r → sender[q.id]

Invoked by a node receiving a REPLY message.
receive_reply REPLY r
1: q ← pending[r.id]
2: matching[r.id]← matching[q.id] ∪ r.matching
3: waiting[q.id]← waiting[q.id] \ {r.address}
4: if |waiting[q.id]| 6= 0 then
5: return
6: else if |matching[r.id]| < q.σ ∧ q.level ≥ 0 then
7: forward(q)
8: else
9: create REPLY r′

10: r′.sender ← self .address
11: r′.id← r.id
12: r′.matching← matching[r.id]
13: send r′ → q.address

Figure 5. Query routing protocol.

scanned sequentially starting from the highest level until a
cell overlappingQ is found In this case, the query message is
forwarded to the neighbor responsible for that cell and, after
storing its address in waiting list, the procedure terminates
(lines 1–7). To prevent this neighbor from sending the query
back, the corresponding dimension of the neighboring cell is
removed from the query (line 4). This way, when the neigh-

bor wants to forward the query, it will be prevented from
sending the message along the same dimension. However,
when passing to a lower level, dimensions are reset to the
default value (lines 8–9).

If no suitable neighbor is found, nodes from C0(X)
(i.e., the neighborsZero set) are checked to verify whether
matches exist (lines 10–17). Finally, if the query could not
be forwarded, X replies to the node from which it received
the query by sending the set of matching nodes. This set can
either be empty or contain X itself (lines 18–23).

Upon the receipt of a REPLY message, a node retrieves
the corresponding query from the pending list, adds the
addresses of the nodes included in the reply to its own
matching list, and deletes the reply’s sender from the waiting
list (lines 1–3). Then, if there is still some neighbor that has
not replied yet (|waiting[q.id]| 6= 0), the procedure termi-
nates (lines 4–5). Otherwise, if the number of candidates
found so far is still lower than what was initially required
and there are still some neighboring cells to explore (i.e.,
q.level ≥ 0), the forwarding procedure is invoked again
(lines 6–7). If enough candidates have been found, a new
reply message is created and filled with the addresses of the
discovered candidates and sent back to the node from which
the query message had been received (lines 8–13).

5. Overlay Maintenance

An important issue in the above protocol is to efficiently
maintain the overlay in the presence of frequent node joins
and leaves, for example caused by failures. Similarly, node
attributes might change during a system’s lifetime, introduc-
ing another source of dynamicity.

Overlay maintenance is realized using previous work from
our group in which nodes can dynamically self-organize into
any pre-defined structure. The approach relies on a two-
layered gossip-based protocol [9]. The bottom layer executes
the CYCLON protocol [28], [29] to connect all nodes into
a randomly structured overlay. Each node maintains a small
list of Kc random links to other nodes in the system (with
Kc � N ). Each node periodically selects one neighbor
randomly among Kc and exchanges a few of its links
with those from its neighbor’s list. This way, all nodes
are periodically provided with a refreshed set of links to
other randomly chosen nodes. The resulting overlay closely
resembles a random graph in which failing nodes are quickly
replaced and removed from the lists of other nodes. Such
overlays have been shown to be extremely robust against
partitioning even in the presence of churn and massive node
failures.

The second gossip-based layer executes a protocol very
similar to the first one in that each node keeps another
set of Kv links to other nodes, and periodically exchanges
information about a subset of its links Kc and Kv with its
neighbors. However, in the second layer links are associated
with the attribute values of the node they represent. Nodes do
not randomly select links to keep in their list, but according



Parameter Default value
Network size (N ) 100,000 (PeerSim)

1,000 (DAS)
Query selectivity (f ) 0.125

Max. no. requested nodes (σ) 50
Dimensions (d) 5

Nesting depth (max(l)) 3
Gossip period 10 seconds

Gossip cache size 20

Table 1. Default simulation parameters.

to their attributes. Specifically, each node X selects only
links to nodes located in its neighboring cells N (l,k)(X).

As discussed in [9] and Section 6.6, this approach for
self-organization converges extremely fast in the presence
of major changes in node membership due to the fact that if
two nodes are neighbors of each other, then there is a high
probability that they have other neighbors in common. At
the same time, the underlying CYCLON layer continuously
feeds the top layer with random nodes to make sure the
system remains connected.

6. Evaluation

To assess the performance of our protocol, we built two
implementations. We deployed the first implementation on
the DAS-3 cluster at VU University Amsterdam [30]. We
emulated a system with 1,000 nodes by running 20 processes
per node on 50 nodes. The second implementation runs on
top of the PeerSim discrete event simulator [31]. This allows
us to explore setups with up to 100,000 nodes. Finally, we
run our system on 302 nodes in PlanetLab [32].

Based on these setups, we evaluated the performance of
our system in terms of efficiency and correctness. Efficiency
is measured in terms of routing overhead, defined as the
average number of hops traveled by a query through nodes
that did not match the query themselves. Correctness means
that each node that matches a query must be hit exactly
once. We note that we always obtained 100% delivery
(i.e., all matching nodes receive the query message) in all
experiments where the system does not experience churn.
We discuss the effects of churn on delivery in Section 6.6.
In addition, in all runs (including the ones with churn), a
message has never been received twice by the same node.

In all experiments, including the ones on the DAS, we
first randomly populate the space with nodes following a
uniform distribution and give them sufficient time to build
their routing tables. Effectively, this allows us to consider the
space as nicely built up from equally-sized d-dimensional
cells. In later experiments, we drop the uniform distribution
of nodes and consider a skewed one.

We generate queries by selecting a subspace in the d-
dimensional space such that it approximately contains a
desired fraction f of the total number of nodes N , which we
refer to as the query selectivity. Each query will therefore be
satisfied by f×N nodes. Different queries refer to different
subspaces. Each query is then issued repeatedly from every
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Figure 6. Routing overhead vs. network size (PeerSim).

node in the system. Unless specified otherwise, simulations
are based on the default parameters depicted in Table 1.

Hereafter we focus on the performance of the protocol
and ignore costs due to the maintenance of the overlay.
These costs depend on the gossip frequency: for each gossip
cycle, each node initiates exactly two gossips (one per gossip
layer), and receives on average two other gossips. With
message sizes of 320 bytes, this yields a traffic of 2,560 bytes
per gossip cycle at each node. Given a gossip periodicity of
10 seconds, we consider these costs as negligible.

6.1. Effect of Network Size

Figure 6 plots the routing overhead of our system for
different network sizes N . In all configurations, the overhead
remains very small, on average below three messages per
query. Interestingly, the overhead increases approximately
logarithmically until 10,000 nodes, then decreases for large
network sizes. This is due to the threshold σ = 50: when
the network is densely populated, a query often reaches its
requested threshold very early and does not need to iterate
through all cells that may overlap with the query.

6.2. Effect of Query Selectivity

We now study the cost of queries with different selectivity,
that is queries that match different fractions of the total
system nodes. We studied two workloads. In the “best-case”
scenario, each query is built such that it is satisfied by the
nodes in a single cell and matches exactly the required
number of nodes. The “worst-case” scenario consists of
queries that require nodes from multiple subcells such that
every dimension and cell level is represented. This represents
the worst-case scenario because this requires to route the
query on every dimension and level, thus increasing the path
to reach all matching nodes2.

2. In practice, cell boundaries can be set to specific values. We can also
force queries to respect boundaries in order to reduce the likelihood that
a query spans multiple subcells. For example, an application in need of
1.2–2.9 GB of memory may be forced to request 1–3 GB.
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Figure 7. Routing overhead vs. selectivity.

Figure 7 shows results based on PeerSim and DAS. In
the best-case scenario, the overhead remains negligible for
all selectivity values. The worst-case scenario, however,
shows higher overhead values, albeit still reasonable: e.g.,
in Figure 7(a), for f = 0.125 the overhead is 257 messages,
to be compared with 12,500 matching nodes. This is due
to the fact that queries that span multiple subcells must be
split to cover all requested cells. This overhead decreases
for queries with high selectivity: in these cases, the system
contains less nodes that do not match the query.

In most cases, we can assume that a user wants to identify
a limited number of nodes out of a large population of
candidates that match the query. Due to the depth-first search
of our algorithm, such queries can be stopped when they
reach the threshold σ. This explains why experiments with
σ = 50 always exhibit very low query overheads.

Interestingly, the overhead in the worst case does not
change significantly between 100,000 (Figure 7(a)) and
1,000 nodes (Figure 7(b)). Indeed, the number of nodes to
contact to reach the matching ones does not depend on the
size of the network but on the topological properties of the
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Figure 8. Routing overhead vs. dimensions.

space (i.e., the number of dimensions and the nesting depth),
which are the same in both systems.

6.3. Effect of the Number of Dimensions

A major difficulty in multidimensional peer-to-peer sys-
tems is to be able to handle a large number of dimensions,
which in our system correspond to node attributes. Figure 8
charts the performance when using different numbers of
dimensions, in both PeerSim and DAS setups. In PeerSim,
the overhead increases slightly with the number of dimen-
sions, while in the DAS it remains roughly constant. These
variations, however, remain difficult to interpret, as such low
overhead values typically fall within statistical error margins.
Note that in all cases the overhead remains very low.

6.4. Load Distribution

In a large-scale system, it is important that the load
imposed by the protocol is evenly distributed among nodes.
Figure 9(a) shows the load in terms of messages (queries
and replies) dispatched by each node. We exercised PeerSim
with two different node distributions across the space. In the
first one, each parameter of each node is selected randomly
in the interval [0, 80] using a uniformly random distribution.
The second configuration creates a hotspot around coordi-
nate (60, 60, . . . , 60). Nodes were distributed around that
coordinate, with a standard deviation of 10.

In both cases, we observe that no node receives a load
significantly higher than the others. This is due to the gossip-
based construction of the neighbor lists. Even in dense
areas of the hyperspace, each node selects its neighbors
independently. The inherent randomness of this neighbor-
selecting protocol evenly distributes the links across all
nodes of a given cell which, in turn, leads to an even
distribution of load among those nodes.

Figure 9(b) shows the load (as number of queries pro-
cessed) seen by nodes comparing a DHT-based implementa-
tion to our approach in the DAS setup using 16 dimensions.



Node attributes are taken from the XtremLab BOINC project
traces [33] that record node properties seen for more than
10,000 hosts in BOINC projects and are highly skewed.
We use the Bamboo DHT [23] and, as in SWORD [22],
store a record of the nodes’ attributes in the DHT at a
key for each attribute value for each dimension. In each
run we randomly generated 50 queries (f = 0.125) and
measured the messages processed by each node. Searches
are performed using a range query (implemented as an
iterated search) until the requested number of nodes is found
matching the query or the range is exhausted. Note that
delegation produces a distribution with a heavy tail so that
a few nodes receive a large number of queries in the DHT
approach while our approach sends relatively few queries to
all nodes, thus achieving an effective load-balancing3.

6.5. Number of Neighbors per node

The next evaluation concerns the number of links that each
node must maintain. Links belong to two categories. First,
a node must maintain its neighborZero list which links to
every other node present in the same lowest-level cell. The
number of cells in the system is

(
2d

)max(l)
, where d is the

number of dimensions and max(l) is the nesting depth. The
cell number grows extremely fast with d and max(l), so we
expect that in practice a lowest-level cell will contain only
nodes strictly identical to each other (e.g., nodes belonging
to the same cluster). However, even if that is not the case,
we can relax this condition by demanding that the nodes in
the same lowest-level cell are connected in an overlay. Such
overlays are easy to construct and maintain [28].

Second, every node must maintain one link to a node in
every neighbor cell for each dimension and level. Each node
thus has d×max(l) neighbor cells. However, because of the
huge number of cells, even a 100,000-node system such as
our PeerSim example will leave most cells empty. Nodes
do not need to maintain a link to empty cells, so the actual
number of neighbor links per node will be much lower than
d × max(l). This is confirmed in Figure 10(a): except for
very low numbers of dimensions, the number of links per
node, both in its neighborZero list and in its neighbor cells,
is virtually constant4. Similar results (omitted here for space
reasons) are also obtained when varying max(l).

Figure 10(b) plots the distribution of the of links per node
in PeerSim, under uniform and normal distribution. In both
cases, this number remains under 20 links in total. We note,
however, that the normal distribution case requires slightly
more links per node. This is due to the fact that neighborZero
lists will grow in the cells around the hotspot.

3. We chose SWORD for our comparison because it has been success-
fully adopted as resource selection service in PlanetLab and it is based on
the publicly available Bamboo DHT. Nevertheless, the conclusions drawn
can be extended to other DHT-based approaches as well.

4. For d < 5 the number of neighbors maintained by each node is
bounded by the gossip cache (equal to 20 in our configuration).
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Figure 9. Node load distribution

6.6. Delivery under Churn

Experiments presented so far assume that the list of
nodes remains stable. This is of course unrealistic: any large
network will exhibit a degree of dynamicity due to node
joins and leaves. In particular, ungraceful node departures
may represent an issue, since the routing tables of other
nodes need to be updated to maintain correct routing. We
claim, however, that no particular measure should be taken to
handle churn. Instead, the underlying gossip-based protocol
maintains correct routing tables continuously.

To support this claim, we evaluated the delivery (i.e.,
the fraction of matching nodes that actually receive the
query) in PeerSim when 0.1% (resp. 0.2%) of the nodes
leave the system and re-enter it under a different identity
every 10 seconds. The 0.2% value corresponds to churn
rates observed in Gnutella [34]. However, many real-world
systems are considerably more stable [35].

We measure the delivery over time by issuing one query
every 30 seconds. Queries do not use any threshold value, so
a delivery of 1 means that we reached all f ×N = 12, 500
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Figure 10. Number of neighbors (PeerSim)

matching nodes. As shown in Figure 11, a churn of 0.1%
barely disrupts the delivery. With 0.2% churn the delivery
decreases, but remains still high. Note that a delivery of
0.8 means that we retrieved 80% of all matching nodes.
However, we expect most users of a real system to issue
queries with a threshold. In such cases churn would only
slightly reduce the number of reachable matching nodes to
choose from, but most queries would be satisfied according
to their specification. For instance, with a network size N =
100, 000 and a selectivity f = 0.125, a delivery of 0.8 yields
around 10,000 nodes (i.e., N · f · 0.8), which is well-above
the expected number of nodes needed for a job.

Also note that in these experiments, if a query cannot be
propagated due to a broken link, the message is dropped.
An alternative is to delay the query until the overlay has
been restored by the underlying gossip protocols. While
we did not adopt this approach to avoid any bias, this
would have allowed delivery close to 1. Latency would have
increased though, because nodes, upon the detection of a
failed neighbor, would wait for the overlay to be repaired
before forwarding the query.
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Figure 11. Delivery vs. churn (PeerSim).
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6.7. Delivery under Massive Failure

The last experiment studies delivery when a massive fail-
ure of a large fraction of the system happens simultaneously.
We measure the delivery over time before and after the



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

D
el

iv
er

y

Time (s)
(a) Failure = 50% (PeerSim).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

D
el

iv
er

y

Time (s)
(b) Failure = 90% (PeerSim).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

D
el

iv
er

y

Time (s)
(c) Failure = 50% (DAS).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

D
el

iv
er

y

Time (s)
(d) Failure = 90% (DAS).

Figure 12. Delivery vs. massive failure.

failure. Again, we do not use any threshold values or the
previously discussed mechanism to avoid evaluation bias.

Figure 12(a) and 12(b) shows delivery in PeerSim when
we remove respectively 50% and 90% of random nodes
from the network at once. We evaluate the delivery once
every 10 seconds. When the failure occurs many routing
paths get disrupted, so the delivery oscillates across a broad
spectrum. However, the system re-organizes itself rapidly.
In the case of 50% simultaneous node failures, the system
needs only 15 minutes to recover completely. This value
may be tuned by changing the gossip period. Only in the
case 90% simultaneous failures, the delivery could not be
restored. The overlay was partitioned by the massive failure
so full recovery was impossible. Similar behaviors are also
observed in Figure 12(c) and 12(d) in the DAS setup.

To evaluate our protocol on a wide area network, we
deployed it on 302 nodes in PlanetLab. We tested it under
very challenging conditions, artificially increasing the natu-
ral churn of PlanetLab by killing 10% of the network every
20 minutes. These nodes were not replaced, so the system

shrinks over time. Figure 13 again shows fast recovery and
near-optimal delivery once the routes have been restored.

7. Conclusions

Future utility computing platforms will be too large
to support (semi-)centralized resource discovery. We have
presented a fully decentralized protocol to select nodes
according to their properties. Each node represents itself in
an overlay where resource discovery queries can be routed.

We have shown through simulations and actual deploy-
ments that this protocol scales well with the number of
nodes and dimensions. The overlay adopts a gossip-based
infrastructure which continuously maintains its routing ta-
bles, making our system extremely resilient to churn. Also,
no intricate measures are necessary to ensure load balancing,
to recover from link or node failures, or to adapt to changes
in a node’s attributes. By keeping management localized and
by following an approach of “continuous maintenance,” our
system achieves a high degree of simplicity from which the
properties discussed in this paper emerge naturally.



Finally, we note that resource selection is just the first
step towards a complete decentralized job execution systems
and other issues (e.g., scheduling [36], trust, and incentives
schemes) deserve further investigation and are part of our
future research agenda.
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