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Abstract— In this paper we propose a routing strategy for
enabling publish-subscribe communication in a sensor network.
The approach is semi-probabilistic, in that it relies partly on the
dissemination of subscription information and, in the areas where
this is not available, on random rebroadcast of event messages.
We illustrate the details of our approach, concisely describe its
implementation in TinyOS [19] for the MICA2 platform [1], and
evaluate its performance through simulation. Results show that
our approach provides good delivery and low overhead, and is
resilient to connectivity changes in the sensor network, as induced
by the temporary standby necessary to preserve the energy of
sensor nodes.

I. I NTRODUCTION

The miniaturization of computing, sensing, and wireless
communication devices recently enabled the development of
wireless sensor networks(WSN), a new form of distributed
computing where sensors deployed in the environment com-
municate wirelessly to gather and report information about
physical phenomena. Several successful applications of WSNs
are reported in the literature [2], [3], [5].

A fundamental issue in realizing a WSN is how to route
the applicative information, i.e., the messages controlling the
operation of the various sensors and the data gathered by them.
Most of the existing approaches assume the existence of a
single data sink—usually a centralized monitoring station—
interested in the sensed data, and focus on optimizing multi-
hop communication among sensors to route messages effi-
ciently to and from the sink. In general, however, multiple
data sinks may exist in the system, potentially interested in
monitoring different phenomena whose behavior can never-
theless be derived by analyzing the same set of raw sensed
data. This is evident in the case where multiple monitoring
stations, possibly mobile as in [12], are deployed in the system.
However, it is even more poignant in a variation of WSN that is
rapidly attracting interest among researchers and practitioners,
namely,wireless sensor and actor networks(WSAN) [4]. In
this case, the devices deployed in the environment are not only
able to sense environmental data, but also to react by affecting
the environment with their actuators. However, to do so they
usually play the role of data sinks, as they rely on the data
sensed and disseminated by the other devices in the network.

Despite the rapid development of this research field, the
state of the art shows how programming sensor network
applications is still done by and large in an ad hoc fashion. As
usual, software evolves slower than hardware, and although

the first middleware and platforms for sensor networks are
beginning to appear (e.g., [18], [26], [29]), most of the efforts
are still devoted to the core OS and network functionality,
with little attention to higher-level abstractions that simplify
distributed programming without sacrificing performance.

In this context, the publish-subscribe interaction paradigm
naturally resonates with sensor networks. Publish-subscribe
middleware is organized as a collection ofclient components,
which interact bypublishing messages and bysubscribing
to the classes of messages they are interested in. The core
component of the middleware, thedispatcher, is responsible
for collecting subscriptions and forwarding messages from
publishers to subscribers. In a sensor network context, for
instance, an actuator may be interested in receiving all the
messages concerning a temperature greater than 30 degrees,
to activate a fan; similarly, a node hosting a temperature sensor
may subscribe to all the messages carrying application queries
for temperature data. The implicit and asynchronous commu-
nication paradigm that characterize publish-subscribe fosters
a high degree of decoupling among the components, which is
beneficial since the system configuration often changes as the
devices enter power saving mode.

Clearly, the difficulty is how to implement efficient routing
strategies for a distributed dispatcher. Our research group
has been recently very active in tackling this problem in
contexts with a dynamic topology, including MANETs (see
e.g., [10], [25]). In particular, we recently devised a rout-
ing strategy [11] that exploits a semi-probabilistic approach.
Message subscriptions are propagated deterministically only
in the immediate vicinity (in terms of number of hops) of the
subscribing node. When a message is published, it is routed
using this deterministic information—if available. If there is
no such information to determine the next hop, the decision
is taken probabilistically, by forwarding the message along a
randomly selected subset of the available links. Being based
on probabilistic decisions, our approach exhibits very low
overhead, but cannot guarantee 100% delivery in all situations.
Nevertheless, it is geared towards highly dynamic scenarios
where the cost of providing full delivery guarantees, if at
all possible, is prohibitive. The simulations in [11] confirm
that the approach performs well (i.e., high delivery and low
overhead) even in very dynamic scenarios, and better than a
purely probabilistic (or deterministic) approach.

In this paper, we start from the same premises of employing



a semi-probabilistic approach. Its characteristics of low over-
head and resilience to changes in the network topology make
it amenable to sensor networks, where in many cases (e.g.,
continuous monitoring) probabilistic guarantees are enough.
Nevertheless, in this paper we tailor our original solution to
the peculiar characteristics of our new target scenario. First
of all, we adopt a different communication model. In [11]
we assumed communication to take place along the links of
a graph-shaped overlay network; here, instead, the broadcast
facility available on sensor nodes is our only communication
media. Moreover, in [11] the overlay network completely
masked the mechanics of the underlying network communica-
tion; here, instead, by relying directly on wireless broadcast we
need to take into account packet collisions, to avoid depleting
the sensors’ power in useless retransmissions. Finally, sensors
often operate in a duty cycle, by alternating processing and
communication with stand-by periods, therefore saving battery
power. This introduces a particular form of dynamicity in
the network, even in absence of mobility. To evaluate our
routing strategy we implemented it on Crossbow’s MICA2
motesrunning TinyOS [19], and emulated its behavior with
TOSSIM [21] in scenarios with up to 400 nodes. The research
contribution of this paper is therefore twofold. First, we
extend, adapt, and evaluate our semi-probabilistic approach for
broadcast communication in the context of sensor networks.
Second, our implementation can be effectively regarded as a
novel publish-subscribe middleware for sensor networks.

The paper is organized as follows. Section II presents the
details of our approach, while Section III concisely describes
its TinyOS implementation. Section IV reports about an
evaluation in several scenarios using thetossim emulator.
Section V places our work in the context of related efforts.
Finally, Section VI ends the paper with brief concluding
remarks.

II. A PPROACH

In this section we provide a complete, albeit informal,
description of our approach. In the following we assume that
wireless broadcast is the only communication media used
and that each (active) sensor takes part in routing, regardless
of whether it is currently interested in publishing and/or
subscribing. Finally, we observe that a distinction is usually
drawn betweensubject-basedsystems, where subscriptions are
specified by selecting a topic among many defined a priori, and
content-basedsystems, where instead subscriptions are defined
using filters over the actual message content. Content-based
publish-subscribe systems are much more expressive, but often
demand a more complex implementation1. In the specific case
of our approach, the difference is entirely confined in the
format of the subscription message, and therefore both variants
of publish-subscribe can be implemented equally easily.

A. Disseminating and Managing Subscriptions

The effect of the subscriptions issued by the application
components is to disseminate deterministic information that

1See [15] for a comparison and more detailed discussion.

is going to be used for routing events. When an application
component running on a node issues a subscription, our mid-
dleware broadcasts the corresponding filter. This information
is rebroadcast by the subscriber’s neighbors to an extent
defined by thesubscription horizonφ. In our original, link-
based approach [11],φ was measured as the number of hops
travelled by a subscription message along the links of the
graph overlay. In this paper, instead,φ represents the number
of times the subscription message is (re)broadcast. A value
φ = 0 means that no subscription is ever transmitted by the
subscriber node, and therefore the corresponding information
is only stored locally in the node’s subscription table. As we
discuss next, this implies that events are routed in a purely
probabilistic fashion. Ifφ > 0, the subscriber broadcasts the
subscription; the neighbors receiving the message update their
subscription table accordingly. Ifφ = 1, no further action
is taken. Otherwise, the subscription is rebroadcast by the
neighbors to the extent mandated byφ.

In a publish-subscribe system, subscriptions can be is-
sued and removed dynamically by using proper middleware
constructs, to reflect the changing interests of applications.
Clearly, the information held by the middleware infrastructure,
and in particular the content of the subscription tables, must
be updated accordingly. In [11], we exploited the standard
technique of dealing with (un)subscriptions explicitly, by using
control messages propagated whenever a node decides to
(un)subscribe. The same technique is used to deal with appear-
ing or vanishing links, by treating the disappearing endpoint as
if it were, respectively, subscribing or unsubscribing. Here, we
use a different strategy that associatesleasesto subscriptions,
and require the subscriber to refresh subscriptions by re-
propagating the corresponding message2. If no message is
received before a lease expires, the corresponding subscription
is deleted.

Clearly, there are tradeoffs involved. Without a leased
approach the (un)subscription traffic is likely to be significant,
due to the need to reconcile routing information whenever a
link appears or disappears. The leased approach remarkably
reduces the communication overhead, by removing this need.
On the other hand, if subscriptions are stable, bandwidth
is unnecessarily wasted for refreshing leases. However, in
sensor networks the former case is much more likely to
happen than the latter, since nodes typically alternate work
and sleep periods to save energy. Moreover, the combination of
leased subscriptions and broadcast communication remarkably
simplifies the management of the subscription table, and
drastically reduces the associated computational and memory
overhead. In [11], to properly reconcile subscription informa-
tion upon connectivity changes, we kept a different table for
each value ofφ, where each row contained the subscription
filter and the link the subscription referred to. Here, instead,
all we need is to store the subscription filter together with a
timestamp used for managing leases. Differentiating according

2Optimizations are possible, e.g., to broadcast the subscription hash, and
transmit the entire one only if missing on the receiving node.



to φ is no longer needed, since subscriptions simply expire,
and broadcast removes the need for information about links.

B. Routing Events

In [11], the effectiveness of event routing is controlled by
means of theevent propagation thresholdτ , which is a fraction
of the links available at a given node. For instance,τ = 0.5
means that an event is always forwarded along half of the
links available at each node. If subscription information is
available, this is used first. If this deterministic information is
not enough to satisfy the propagation threshold, the remaining
links are selected at random among those the event has not
been forwarded along. Clearly, higher values ofτ increase
not only delivery but also overhead. The simulations in [11]
analyze the effect of this parameter in conjunction with the
subscription horizonφ.

In this paper we assume broadcast communication, therefore
this strategy must be adapted slightly because there is no
concept of link. This actually leads to an even simpler strategy.
If an event is received3 for which a matching filter exists in
the subscription table, the event is simply rebroadcast. On the
other hand, if no matching subscription is found, the event is
rebroadcast with a probabilityτ . The parameterτ , therefore,
still limits the extent of propagation, but more indirectly than
in [11], as it comes into play only when no deterministic
information is available.

The effectiveness of our approach is clearly proportional to
the number of forwardersF , i.e., the neighbors which receive
and retransmit an event. Based on the procedure we described
so far, in absence of deterministic informationF = τ ·η holds,
beingη the number of neighbors. As a consequence, a small
value ofη (e.g., in sparse networks) must be compensated by
increased values ofτ , as we discuss in Section IV.

Moreover, while in [11] the event always got routed along
the fraction of links mandated byτ , here instead we have a
non-zero probability that none of the neighbors will rebroad-
cast the event. More precisely, ifη is the average number of
neighbors, the probability of stopping the propagation of the
event (in absence of deterministic information) at a given node
is (1−τ)η. If no subscriber is in the immediate vicinity of the
event publisher andτ is small, there is a significant possibility
that event propagation immediately stops at the publisher.
To ensure that a reasonable amount of event messages are
injected into the network, we mark event messages with a
flag denoting whether they just have been published or instead
already travelled through the network. In the first case, the
receiver behaves as ifτ = 1 and rebroadcasts the event in
any case. This mechanism guarantees that at leastη copies of
the event message are injected in the network and propagate
independently.

C. Dealing with Collisions

Wireless broadcast is subject to packet collisions, which
occur when two or more nodes in the same area send data

3Clearly, events that have already been processed and that are received
again because of routing loops are easily discarded based on their identifier.

simultaneously. Since the propagation of subscriptions and
events both rely on wireless broadcast, it becomes crucial to
reduce the impact of collisions by avoiding wasting precious
energy on useless retransmissions.

TinyOS [19] adopts a very simple scheme to recover from
collisions where, after a broadcast message has been sent,
the sender waits for an acknowledgment from at least one
of its neighbors. If none is received before the associated
timeout expires, the message is resent. The evident weakness
of this solution is that it does not take into account the
actual number of neighbors. If only one neighbor received
and acknowledged successfully the message, the transmission
is assumed successful, regardless of the possibly many nodes
that failed to receive the message. Moreover, it does not try to
limit in any way the number of collisions. More sophisticated
MAC protocols has been proposed in literature [24] but none
is currently supported by the Crossbow MICA2 [1], our target
platform. Moreover, most of them are geared towards scenarios
with a single sink, instead of the dynamic, multiple sink
scenario we target.

Therefore, we conceived a simple yet effective solution that
decreases significantly the number of collisions, without re-
quiring any synchronization among nodes, nor any assumption
about the topology. The idea can be regarded as a sort of
simplified TDMA protocol where each node, upon startup,
sets a timer whose value is a global configuration parameter.
Sending messages (i.e., subscriptions and events) takes place
only upon timer expiration, while receiving is in principle
always enabled. Since each node in the network bootstraps at
a different time, it is highly unlikely that two nodes in range of
each other end up with synchronized timers. The simulations
in Section IV show that this trivial idea goes a long way in
drastically reducing the amount of collisions.

D. Avoiding Unnecessary Propagation

Without a way to limit forwarding, an event propagates until
it reaches a node that already received it, at which point it gets
dropped. This unconstrained propagation is likely to generate
unnecessary overhead. In [11] we addressed the problem by
setting a time-to-live (TTL) on each event, incremented at each
hop. However, our simulations showed that this solution is
much less effective with broadcast propagation. In fact, even
when an event travels for a small number of hops, the number
of nodes it reaches is great, and therefore the impact of TTL
is limited.

To address this issue, we modified slightly the retransmis-
sion strategy described in Section II-C. Let us assume a node
A waiting to broadcast an evente hears one of its neighbors,
say B, transmitting e before A’s timer expires. If the set
of A’s neighbors partially overlaps withB’s neighbors, it is
likely that most ofA’s neighbors receive the event fromB’s
transmission, therefore makingA’s broadcast largely useless.
Some ofA’s neighbors may not hear aboute from B but,
given the epidemic nature of our algorithm, they are very
likely to get it through other routes. Based on this observation,
our technique (which we calldelay-drop, to distinguish from



configuration MHopRoutePubSub {
provides {

interface StdControl;
interface Receive[uint8_t id];
interface Send as SendSub[uint8_t id];
interface Send as SendUnsub[uint8_t id];
interface Send as SendPub[uint8_t id];

}
uses {

interface ReceiveMsg as ReceiveMsgPub[uint8_t id];
interface ReceiveMsg as ReceiveMsgSub[uint8_t id];

}
}
implementation {

components
MHopRoutePubSubM,
GenericCommPromiscuous as Comm,
QueuedSend, TimerC, RandomLFSR;

SendSub = MHopRoutePubSubM;
SendUnsub = MHopRoutePubSubM;
SendPub = MHopRoutePubSubM;
Receive = MHopRoutePubSubM;
StdControl = MHopRoutePubSubM;
ReceiveMsgSub = MHopRoutePubSubM;
ReceiveMsgPub = MHopRoutePubSubM;
MHopRoutePubSubM.SubControl -> QueuedSend.StdControl;
MHopRoutePubSubM.CommStdControl -> Comm;
MHopRoutePubSubM.CommControl -> Comm;
MHopRoutePubSubM.Random -> RandomLFSR;
MHopRoutePubSubM.SendMsg -> QueuedSend.SendMsg;
MHopRoutePubSubM.Timer -> TimerC.Timer[unique("Timer")];

}

Fig. 1. NesC configuration for our specialized routing component.

the delay technique discussed in Section II-C) simply letsA
safely removee from its transmission queue. In doing this,
not only we limit propagation—our initial rationale for this
modification—but also reduce communication and therefore
save battery power. A downside of this approach is a poten-
tially higher latency, as the event may go through longer routes
before reaching its recipients. Nevertheless, in principle this
delay-drop mechanism could be only one of many alternatives
specified at the application or middleware layer, therefore
enabling to tradeoff latency for overhead as needed.

III. I MPLEMENTATION

We implemented our approach for the Crossbow MICA2 [1]
platform, using the NesC [14] language provided by
TinyOS [19]. A TinyOS application is composed ofmodules,
containing the actual code, andconfigurations, which are
essentially module containers (components) describing how
modules are wired together, and exporting interfaces that
provides access to the overall component functionality. An
interface contains function signatures, divided incommands
(implemented by the interface provider) andevents(imple-
mented by the interface user).

Architecture.Our implementation essentially provides a re-
placement of the standard TinyOS routing component,
MultiHopRouter . ThenesCconfiguration of the new mod-
ule, calledMHopRoutePubSub , is shown in Figure 1.

The first two blocks define the interfaces provided and used
by this component. The commandsSendPub , SendSub , and
SendUnsub are instances of the built-in genericSend inter-
face defined by TinyOS, and deal with sending an event, a sub-

typedef struct MultiHopMsgSub {
uint16_t srcaddr; //source address
uint8_t msgid; //message identifier
uint8_t subject; //subject identifier
uint8_t hopcount; //subscription hopcount
uint8_t lease; //subscription lease

} __attribute__ ((packed)) TOS_MHopMsgSub;

typedef struct MultiHopMsgPub {
uint16_t srcaddr; //source address
uint8_t msgid; //message identifier
uint8_t subject; //subject identifier
uint16_t data; //event data

} __attribute__ ((packed)) TOS_MHopMsgPub;

Fig. 2. Subscription and event messages.

scription, and an unsubscription, respectively. By “remapping”
these interfaces onSend we are able to reuse a significant part
of the TinyOS low-level code dealing directly with communi-
cation.Receive is also a standard TinyOS interface, and in
our case provides a way for the routing component to signal
the application whenever an event matching a subscription
has been received. TheReceiveMsg interface, instead, is
provided by the underlying communication component, and is
used to signal the routing component that a new message has
been received from the network. As in the case ofSend,
we “remap” this (TinyOS event) interface onto two differ-
ent ones:ReceiveMsgPub andReceiveMsgSub . Finally,
StdControl is a common interface used to initialize and
start all TinyOS modules.

The last block of the configuration specifies the list
of modules used by this one, and how their in-
terfaces are wired together. The main component is
MHopRoutePubSubM which implements all the inter-
faces provided byMHopRoutePubSub . The others are
TinyOS built-in modules: GenericCommPromiscuous
andQueuedSend support message communication,TimerC
provides the timer functionality necessary for leases and
communication, andRandomLFSR provides the ability to
generate random numbers.

Message structure.The two message types we defined, for
subscriptions and events, are shown in Figure 2. They both
include the message source and a unique message identifier,
which together enable duplicate detection. Also, our current
implementation is subject-based, and therefore both messages
include a subject identifier: an extension to content-based
is straightforward. In addition to these common fields, each
subscription message includes ahopcount field, initialized
with the chosen value of the horizonφ and decremented
at each hop, and alease field, contains the time interval
in seconds during which a subscription is considered valid.
Instead, event message contains an additionaldata field.

Handling subscriptions and events.Whenever the application
issues a subscription, the corresponding subject is stored in a
local subscription table. Moreover, a subscription message is
broadcast to all the neighbors, with thehopcount initialized
to φ. Subscriptions are kept alive by using a timer. When
it fires, a new subscription message is sent for each subject



Network Size N = 200
Number of Neighbors η = 5

Percentage of Receiversρ = 10%
Publish Rate 2 event/s

Transmission Interval 1 s

TABLE I

DEFAULT VALUES USED IN SIMULATIONS.

in the local subscription table. An unsubscription simply
consists of removing the corresponding subject from the local
subscription table.

Non-local subscriptions are managed in a different subscrip-
tion table. When a subscription message for a given subject is
received, it is inserted in the table, possibly overwriting obso-
lete information for that subject with the new one containing
a more recent lease. Moreover, if thehopcount is not zero,
the subscription is enqueued, waiting to be rebroadcast ac-
cording to the strategy discussed in Section II-C. Periodically,
subscriptions whose lease expired are removed.

As for events, our routing module maintains a list of the
most recently received. When an event message is received,
this list is checked to see whether the event is a duplicate.
In this case, the message is simply dropped. Otherwise, it is
first inserted in the list, and its subject checked against the
local subscriptions to determine whether its receipt must be
signaled to the application through theReceive interface.
Then, it is checked against the non-local subscription table. If
a subscription is found, the event message is inserted in the
sending queue. Otherwise, a random number is drawn and,
according toτ , either the event message is inserted in the
sending queue or it is simply dropped.

IV. EVALUATION

In this section we evaluate several aspects of our approach
usingTOSSIM [21], the simulation tool provided with TinyOS.
TOSSIM emulates all the operating system layers and therefore
works by reusing directly the code deployed on the motes and
described in the previous section.

Simulation setting.Table I shows the most relevant parameters
of our simulations, and their default values. Each simulation
run lasted 60 simulated seconds, with an extra second devoted
to “booting” the network, as done automatically byTOSSIM.
Transmission occurs by using our simple delay technique to
avoid collisions. The impact of this technique, as well as of
its delay-drop variant, is analyzed later in this section.

For each run we plot the event delivery (i.e., the ratio
between the events expected received and those actually re-
ceived) and the overhead (i.e., the collective number of sent
messages, including both events and subscriptions). To focus
on these two performance metrics and reduce further bias, we
ran our simulations with a stable set of subscriptions (i.e., no
refresh needed) and a stable network connectivity (apart from
the changes induced by duty cycle). Moreover, we analyzed
the behavior of our algorithms with different combination ofτ

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250  300  350  400  450  500

ev
en

t d
el

iv
er

y

Network Size

tau=0.25

phi=0
phi=1
phi=2

flooding

(a) τ = 0.25

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250  300  350  400  450  500
ev

en
t d

el
iv

er
y

Network Size

tau=0.50

phi=0
phi=1
phi=2

flooding

(b) τ = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250  300  350  400  450  500

ev
en

t d
el

iv
er

y

Network Size

tau=0.75

phi=0
phi=1
phi=2

flooding

(c) τ = 0.75

Fig. 3. Delivery vs. network size.

andφ to estimate their impact. Our upper and lower bounds are
flooding (τ = 1) and a purely probabilistic approach (φ = 0).
Flooding delivers all the events but with very high overhead,
while a fully probabilistic approach exhibits low overhead but
at the cost of poor event delivery.

Network size.The first parameter we analyze is the size of the
network, which we ranged from 100 to 400. To maintain a
steady publishing load and receiver density, we increased them
proportionally by ranging the former from 1 to 4 evt/s, and
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keeping the latter at 10% (yielding from 10 to 40 receivers).
The results depicted4 in Figure 3 confirm our expectations,

showing that event delivery is only marginally dependent from
the network size—at least forτ = 0.5 and τ = 0.75. This
is not surprising, since the probabilistic component of our
approach tends to distribute the load equally on each node
and, therefore, the more the network grows (and the more
receivers need to be reached), the more nodes participate in

4We use Bezier interpolation to better evidence the trends.

delivering the events. Notably, in some cases event delivery
is even increased as more routes become available. On the
other hand, as shown in Figure 4 the overhead increases
too, since the number of receivers and the publishing load
augments linearly, i.e., there are more events to deliver to
more recipients. Nevertheless, the two increments share the
same trend, that is, no additional overhead is introduced by the
size. This, again, stems from the fact the the effort imposed
on each node by our algorithm is constant.

As the charts show,τ is tightly related to event delivery,
since it controls the degree of propagation in the system. With
values close to 1 (see Figure 3(c)), the system is able to
improve event delivery up to 100% with the downside of an
increase in network traffic (Figure 4(c)). In the extreme case of
τ = 1 (flooding) no event gets lost, but the network becomes
overwhelmed by messages, since each node rebroadcasts all
the events. Besides, with high values ofτ collisions may
drastically grow, thus hampering delivery. Therefore, the right
value for τ is a tradeoff among delivery, overhead, and
collisions.

On the other hand, the reason of the low performance
achieved withτ = 0.25 lies in the fact that, as discussed
in Section II-B, the probability that no neighbor broadcasts an
event is(1 − τ)η = 0.755 = 0.23, i.e., one in four events is
dropped byall neighbors. Figure 4(a) reflects this, by showing
that the overhead is less than 20% of the flooding one.

As for φ, it is interesting to see thatφ = 1 andφ = 2 exhibit
a different behavior. WhenN = 100, φ = 2 performs worse
than φ = 1, most likely due to the fact that the smaller size
increases the likelihood of creating loops. AsN increases,
however, the additional deterministic information provided
by φ = 2 becomes precious in steering events towards the
receivers in a sparser network.

Finally, the comparison with flooding is also worth com-
menting. Indeed, the delivery withτ equal to 0.5 and 0.75 is
essentially comparable, but overhead is sensibly lower. This
is particularly evident forτ = 0.5, which in this scenario
represents the best tradeoff between cost and performance,
being able to deliver about the 90% of events with about 25%
of the overhead introduced by flooding.

Number of receivers.Another interesting view on our approach
is the impact ofρ, the percentage of receivers. As shown
in Figure 5, delivery withφ = 0 is nearly unaffected byρ
and is about constant despite the increasing receivers. This is
reasonable, since purely probabilistic routing makes essentially
“blind” decisions, regardless of the presence of receivers.
Conversely, withφ > 0, delivery improves significantly with
the number of receivers, as more deterministic information
is available to each host. Figure 5(c) shows that indeed this
information is increasingly exploited to steer events towards
receivers asρ increases. Moreover, it shows that, whenφ = 2,
ρ = 20% of receivers is enough to obtain a routing that is
basically entirely deterministic.

Number of neighbors.Another key factor that greatly impacts
the performance of our approach is the network density, de-
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Fig. 5. Number of receivers (τ = 0.5).

fined by the average numberη of neighbors for each node. Not
surprisingly, our approach performs worse in a sparse network,
as fewer nodes participate in the event routing. Figure 6
analyzes the performance by ranging fromη = 5 to η = 15,
for τ = 0.25. This value ofτ is particularly interesting, since
in Figure 3 it led to the worst performance. Instead, Figure 6(a)
show how the increase inη boosts performance remarkably.
The bottomline is represented by the purely probabilistic
approach, which experiences a linear increase in delivery. The
reason is that, as stated earlier, delivery is directly proportional
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Fig. 6. Number of neighbors (τ = 0.25).

to the number of forwardersF , which in turn depends directly
on η and τ . Therefore, low values ofτ are sufficient in a
dense network. Moreover, the curves withφ > 0 converge
much faster to a 100% delivery, showing that deterministic
information definitely improves delivery. At the same time,
Figure 6(b) shows how this is achieved by keeping overhead
reasonably low.

The effect is still observable, although less marked, with
greater values ofτ , not reported here. In this case, even with
a sparse network the number of forwardersF is sufficient to
achieve a satisfactory event delivery. Indeed, we verified that
the performance withτ = 0.25 andη = 10 is about the same
of the one obtained withτ = 0.5 and η = 5. Given this
analysis, it should be noted how our choice ofη = 5 as the
default value in our simulations is rather conservative.

Collisions and rebroadcast.In Section II-C and II-D we de-
scribed the delay and delay-drop techniques for, respectively,
reducing collisions and avoiding useless rebroadcasts.

The effect of these techniques on the system is shown in
Figure 7 for τ = 0.5 and η = 10. Figure 7(a) shows that
the delivery is largely unaffected, with a small decrease in
the case of delay-drop. On the other hand, Figure 7(c) shows
that our simple mechanism for avoiding collisions is very
effective, since it more than halves the number of collisions.
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Fig. 7. Collisions and delay-drop (τ = 0.5, η = 10).

The delay-drop mechanism does not improve much in terms
of collisions. Instead, by avoiding useless rebroadcasts, this
latter technique drastically reduces overhead, as shown in
Figure 7(b). Although we do not have simulations linking
directly these results to the power consumption, it is evident
how the combination of these two simple techniques not only
improves the performance of our approach, but also yields
remarkable savings in communication, therefore enabling a
longer life of the overall sensor network.
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Fig. 8. Sleeping nodes (τ = 0.5, η = 10).

Duty cycle. A prominent feature of our approach is the
resilience to changes in the underlying topology and connec-
tivity. Most approaches for content dissemination and group
communication for sensor networks rely on exact routes that
must be recalculated each time the topology is modified. This
is an important limitation, since sensors are often supposed to
regularly switch from active to sleeping, to preserve battery
and extend the system lifetime. Therefore, unless some kind
of synchronization is in place, routes become invalid and must
be recomputed, with consequent overhead. Conversely, our
approach does not make any assumption on the underlying
topology, as it “explores” it semi-probabilistically. Therefore,
it can tolerate sleeping nodes (or even crashed, or moving)
nodes, without any particular mechanism.

In the simulations in Figure 8, we used a simple model
where each node is active for a periodTa, followed by a
sleeping periodTs. All nodes are initially active: after a ran-
dom time (which temporally scatters them) they are regularly
switched off and reactivated afterTs. To obtain meaningful
results, sleeping nodes are not considered in the event delivery,
which is then computed by taking into account only the
active subscribers. Also, since the temporal scattering among
nodes is completely random, it may happen that under certain
combination ofTa, Ts andη, the network becomes partitioned.



Then, a delivery of 100% is not meaningful because, if no path
exists among two nodes, there is no way to correctly deliver
the event. Consequently, our upper bound is represented by
the delivery of flooding.

By comparing Figure 8(a) atTa = 3Ts and Figure 6(a), it
can be noted how the event delivery is quite similar, although a
significant fraction of the nodes is unable to receive or forward
events5. Clearly, if too many nodes are sleeping at the same
time, delivery falls abruptly since the number of forwarders is
too low. However, the delivery of flooding also falls abruptly,
and some of our solutions remain comparable to it.

These results are not surprising, since what we stated
earlier about density holds here as well. Indeed, the effect
of sleeping nodes is to reduce the density, expressed in terms
of the numberη of neighbors. Therefore, since our algorithm
tolerates low densities up to a given extent, it is resilient to
sleeping nodes as well. The validity of this statement is shown
by observing that 50% of the nodes sleeping in a network with
η = 10 is roughly equivalent to a network where all nodes are
active andη = 5.

V. RELATED WORK

Although sensor networks have now been studied for some
years, only recently research has focused on the develop-
ment of reusable middleware platforms as opposed to all-in-
one solutions. As a consequence, most of existing research
(e.g., [18], [26], [29]) focus more on architecture design or
run-time language support rather than directly routing issues.

A more meaningful comparison is with research addressing
multicast or group communication in sensor networks. Un-
fortunately, the scenario targeted by this research is usually
characterized by sensors cooperating to deliver the sensed
data to a fixed node acting as base station or, alternatively,
to enable communication from the base station towards all
the sensors (e.g to perform a query or to force a network re-
programming). This hampers successful exploitation of these
solutions in situations where sensors need to communicate
among themselves, or there are multiple sinks, as in the
aforementioned WSAN networks.

Traditional approaches (e.g., [23], [27]) rely on a tree-based
structure to deliver messages. This approach minimizes data
traffic, but tree maintenance and updates require many control
messages and, more importantly, a stable network. Alternative
approaches (e.g., [8], [20]) spread the nodes’ interests across
the whole network to create a reverse path from a publisher to
receivers. However, again, no details are provided about how
to deal with a dynamic network, as in the case of mobile or
sleeping sensors, and failures.

Epidemic (or gossip) algorithms have been applied in
different contexts ranging from distributed database mainte-
nance [13] to broadcast and multicast operation [7], [16],

5In most scenarios found in literature, sensor nodes sleep for most time and
switch on only for a short amount of time. However, in our scenario, sensor
nodes are essential not only to acquire data from the environment but also to
participate in their propagation. Hence it seems reasonable that the ratioTa

Ts
is greater than (or at least equal to) 1.

[22]; our idea of controlling the probability of reforwarding a
message is inspired by the work on gossip for ad hoc routing
described in [17]. Nevertheless, these algorithms essentially
trade the absolute guarantees provided by deterministic ap-
proaches for probabilistic ones, yielding in turn increased
scalability and resilience to change, as well as reduced com-
plexity. Unfortunately, these algorithms are well-versed for
group communication or broadcast, where a message must be
sent toall the members of a predetermined set of intended
recipients. In our scenario, where subscribers may be a small
fraction of the network and each subscriber may be subscribed
to a different set of subscriptions, purely epidemic approach
generates unnecessary overhead, since it proceeds by “blindly”
infecting all the network. A recent work [6] exploits proba-
bilistic forwarding combined with knowledge of the network
topology to route messages from sensors to a special node
acting as collector. The forwarding probability depends on
various parameters, in particular the current distance from the
collector. The probabilistic component allows to tolerate stale
information on the global topology. Despite the different aim
of the work, targetting at single sink application, this approach
differs from ours in that we require a much smaller knowledge
of the network, namely, only the subscribersφ hops away.

The possibility of temporarily switching off nodes is partic-
ularly amenable in sensor networks as the battery is not easily
replaceable. At the same time, however, the network must
maintain its functionality through a connected sub-network,
i.e., it should be able to correctly deliver events despite the
absence of some nodes. Some works [9], [28] address this
issue by introducing synchronization of the sleeping patterns
to minimize the energy spent without affecting network con-
nectivity. The weakness of this solution, however, is that other
kinds of topological reconfiguration (e.g., mobility or failures)
are not tolerated. In these cases, the (expensive) synchroniza-
tion procedure must be restarted, with increased overhead.
Conversely, our approach does not require any synchronization
protocol and yet tolerates arbitrary reconfigurations.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we proposed a routing approach enabling
publish-subscribe on sensor networks. The routing strategy is
semi-probabilistic, in that it relies on deterministic subscription
information being disseminated close to the subscriber and,
where this is absent, resorts to random rebroadcast. The
approach described in this paper is inspired by our earlier
work [11], which we adapted and extended here to better suit
the peculiarity of the wireless sensor network environment.
The results show that our approach provides good performance
in terms of high delivery and low overhead, and is resilient to
changes in connectivity, therefore making it amenable to our
target deployment scenario.

Ongoing work on this topic is investigating the ability to
dynamically tune theφ and τ parameter, to provide a degree
of adaptivity to changes in the network or in the physical
context, as well as the integration of our approach with



more sophisticated MAC strategies enabling further overhead
reduction and power savings.
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