
DieHard: Memory Error

Fault Tolerance in C and C++

Ben Zorn
Microsoft Research

In collaboration with

Emery Berger and Gene Novark, Univ. of Massachusetts

Ted Hart, Microsoft Research

Ben Zorn, Microsoft Research 1DieHard: Memory Error Fault Tolerance in C and C++

 Buffer overflow

char *c = malloc(100);

c[101] = ‘a’;

 Dangling reference

char *p1 = malloc(100);

char *p2 = p1;

free(p1);

p2[0] = ‘x’;

a

Focus on Heap Memory Errors

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 2

c

0 99

p1

0 99

p2

x

Ben Zorn, Microsoft Research

Motivation

 Consider a shipped C program with a

memory error (e.g., buffer overflow)

 By language definition, “undefined”

 In practice, assertions turned off – mostly works

 I.e., data remains consistent

 What if you know it has executed an illegal

operation?

 Raise an exception?

 Continue unsoundly (failure oblivious computing)

 Continue with well-defined semantics

3DieHard: Memory Error Fault Tolerance in C and C++

Research Vision

 Increase robustness of installed code base

 Potentially improve millions of lines of code

 Minimize effort – ideally no source mods, no

recompilation

 Reduce requirement to patch

 Patches are expensive (detect, write, deploy)

 Patches may introduce new errors

 Enable trading resources for robustness

 E.g., more memory implies higher reliability

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 4

Ben Zorn, Microsoft Research

Research Themes

 Make existing programs more fault tolerant

 Define semantics of programs with errors

 Programs complete with correct result despite errors

 Go beyond all-or-nothing guarantees

 Type checking, verification rarely a 100% solution

 C#, Java both call to C/C++ libraries

 Traditional engineering allows for errors by design

 Complement existing approaches
 Static analysis has scalability limits

 Managed code especially good for new projects

 DART, Fuzz testing effective for generating illegal test cases

5DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Approaches to Protecting Programs

 Unsound, may work or abort

 Windows, GNU libc, etc.

 Unsound, might continue

 Failure oblivious (keep going) [Rinard]

 Invalid read => manufacture value

 Illegal write => ignore

 Sound, definitely aborts (fail-safe, fail-fast)

 CCured [Necula], others

 Sound and continues

 DieHard, Rx, Boundless Memory Blocks,

hardware fault tolerance

6DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Outline

 Motivation

 DieHard
 Collaboration with Emery Berger

 Replacement for malloc/free heap allocation

 No source changes, recompile, or patching, required

 Exterminator
 Collaboration with Emery Berger, Gene Novark

 Automatically corrects memory errors

 Suitable for large scale deployment

 Conclusion

7DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

DieHard: Probabilistic Memory Safety

 Collaboration with Emery Berger

 Plug-compatible replacement for malloc/free in C lib

 We define “infinite heap semantics”

 Programs execute as if each object allocated with

unbounded memory

 All frees ignored

 Approximating infinite heaps – 3 key ideas

 Overprovisioning

 Randomization

 Replication

 Allows analytic reasoning about safety

8DieHard: Memory Error Fault Tolerance in C and C++

Overprovisioning, Randomization

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 9

Expand size requests by a factor of M (e.g., M=2)

1 2 3 4 5

1 2 3 4 5

Randomize object placement

12 34 5

Pr(write corrupts) = ½ ?

Pr(write corrupts) = ½ !

Replication (optional)

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 10

Replicate process with different randomization seeds

1 234 5

P2

12 345

P3

input

Broadcast input to all replicas

Compare outputs of replicas, kill when replica disagrees

1 23 45

P1

Voter

Ben Zorn, Microsoft Research

DieHard Implementation Details

 Multiply allocated memory by factor of M

 Allocation

 Segregate objects by size (log2), bitmap allocator

 Within size class, place objects randomly in address

space

 Randomly re-probe if conflicts (expansion limits probing)

 Separate metadata from user data

 Fill objects with random values – for detecting uninit reads

 Deallocation

 Expansion factor => frees deferred

 Extra checks for illegal free

11DieHard: Memory Error Fault Tolerance in C and C++

Segregated size classes

- Static strategy pre-allocates size classes

- Adaptive strategy grows each size class incrementally

Ben Zorn, Microsoft Research

Over-provisioned, Randomized Heap

2

H = max heap size,
class i

L = max live size ≤

H/2
F = free = H-L

4 5 3 1 6

object size = 16object size = 8

…

12DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Randomness enables Analytic Reasoning

Example: Buffer Overflows

 k = # of replicas, Obj = size of overflow

 With no replication, Obj = 1, heap no more

than 1/8 full:

Pr(Mask buffer overflow), = 87.5%

 3 replicas: Pr(ibid) = 99.8%

13DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

DieHard CPU Performance (no replication)

Runtime on Windows

0

0.2

0.4

0.6

0.8

1

1.2

1.4

cfrac espresso lindsay p2c roboop Geo. Mean

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

malloc DieHard

14DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

DieHard CPU Performance (Linux)

15DieHard: Memory Error Fault Tolerance in C and C++

0

0.5

1

1.5

2

2.5
c
fr

a
c

e
s
p

re
s
s
o

lin
d

s
a

y

ro
b

o
o

p

G
e

o
.
M

e
a

n

1
6

4
.g

z
ip

1
7

5
.v

p
r

1
7

6
.g

c
c

1
8

1
.m

c
f

1
8

6
.c

ra
ft

y

1
9

7
.p

a
rs

e
r

2
5

2
.e

o
n

2
5

3
.p

e
rl
b

m
k

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

3
0

0
.t

w
o

lf

G
e

o
.
M

e
a

n

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

malloc GC DieHard (static) DieHard (adaptive)

alloc-intensive general-purpose

Ben Zorn, Microsoft Research

Correctness Results

 Tolerates high rate of synthetically injected
errors in SPEC programs

 Detected two previously unreported benign
bugs (197.parser and espresso)

 Successfully hides buffer overflow error in
Squid web cache server (v 2.3s5)

 But don’t take my word for it…

16DieHard: Memory Error Fault Tolerance in C and C++

DieHard Demo

 DieHard (non-replicated)
 Windows, Linux version implemented by Emery Berger

 Available: http://www.diehard-software.org/

 Adaptive, automatically sizes heap

 Detours-like mechanism to automatically redirect malloc/free calls

to DieHard DLL

 Application: Mozilla, version 1.7.3
 Known buffer overflow crashes browser

 Takeaways
 Usable in practice – no perceived slowdown

 Roughly doubles memory consumption

 20.3 Mbytes vs. 44.3 Mbytes with DieHard

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 17

http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/

Ben Zorn, Microsoft Research

Caveats

 Primary focus is on protecting heap

 Techniques applicable to stack data, but requires

recompilation and format changes

 DieHard trades space, extra processors for memory

safety

 Not applicable to applications with large footprint

 Applicability to server apps likely to increase

 DieHard requires non-deterministic behavior to be

made deterministic (on input, gettimeofday(), etc.)

 DieHard is a brute force approach
 Improvements possible (efficiency, safety, coverage, etc.)

18DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Outline

 Motivation

 DieHard
 Collaboration with Emery Berger

 Replacement for malloc/free heap allocation

 No source changes, recompile, or patching, required

 Exterminator
 Collaboration with Emery Berger, Gene Novark

 Automatically corrects memory errors

 Suitable for large scale deployment

 Conclusion

19DieHard: Memory Error Fault Tolerance in C and C++

Exterminator Motivation

 DieHard limitations
 Tolerates errors probabilistically, doesn’t fix them

 Memory and CPU overhead

 Provides no information about source of errors

 Note – DieHard still extremely useful

 “Ideal” addresses the limitations
 Program automatically detects and fixes memory errors

 Corrected program has no memory, CPU overhead

 Sources of errors are pinpointed, easier for human to fix

 Exterminator = correcting allocator
 Joint work with Emery Berger, Gene Novark

 Random allocation => isolates bugs instead of tolerating them

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 20

Exterminator Components

 Architecture of Exterminator dictated by solving

specific problems

 How to detect heap corruptions effectively?

 DieFast allocator

 How to isolate the cause of a heap corruption

precisely?

 Heap differencing algorithms

 How to automatically fix buggy C code without

breaking it?

 Correcting allocator + hot allocator patches

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 21

DieFast Allocator
 Randomized, over-provisioned heap

 Canary = random bit pattern fixed at startup

 Leverage extra free space by inserting canaries

 Inserting canaries

 Initialization – all cells have canaries

 On allocation – no new canaries

 On free – put canary in the freed object with prob. P

 Remember where canaries are (bitmap)

 Checking canaries

 On allocation – check cell returned

 On free – check adjacent cells

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 22

100101011110

1 2

Installing and Checking Canaries

Ben Zorn, Microsoft Research

DieHard: Memory Error Fault Tolerance in C

and C++ 23

Allocate Allocate

Install canaries

with probability P
Check canary Check canary

Free

Initially, heap full of canaries

1

Heap Differencing

 Strategy

 Run program multiple times with different randomized

heaps

 If detect canary corruption, dump contents of heap

 Identify objects across runs using allocation order

 Key insight: Relation between corruption and

object causing corruption is invariant across

heaps

 Detect invariant across random heaps

 More heaps => higher confidence of invariant

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 24

1 2

Attributing Buffer Overflows

Ben Zorn, Microsoft Research

DieHard: Memory Error Fault Tolerance in C

and C++ 25

One candidate!

4 3

corrupted

canary

Which object caused?

delta is constant but unknown
?

12 4 3

Run 2

Run 1

Now only 2 candidates

2 4

41 3

Run 3

2 44

Precision increases exponentially with number of runs

Detecting Dangling Pointers (2 cases)

 Dangling pointer read/written (easy)

 Invariant = canary in freed object X has same

corruption in all runs

 Dangling pointer only read (harder)

 Sketch of approach (paper explains details)

 Only fill freed object X with canary with probability P

 Requires multiple trials: ≈ log2(number of callsites)

 Look for correlations, i.e., X filled with canary => crash

 Establish conditional probabilities

 Have: P(callsite X filled with canary | program crashes)

 Need: P(crash | filled with canary), guess “prior” to compute

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 26

Correcting Allocator

 Group objects by allocation site

 Patch object groups at allocate/free time

 Associate patches with group

 Buffer overrun => add padding to size request

 malloc(32) becomes malloc(32 + delta)

 Dangling pointer => defer free

 free(p) becomes defer_free(p, delta_allocations)

 Fixes preserve semantics, no new bugs created

 Correcting allocation may != DieFast or DieHard

 Correction allocator can be space, CPU efficient

 “Patches” created separately, installed on-the-fly

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 27

Deploying Exterminator

 Exterminator can be deployed in different modes

 Iterative – suitable for test environment

 Different random heaps, identical inputs

 Complements automatic methods that cause crashes

 Replicated mode

 Suitable in a multi/many core environment

 Like DieHard replication, except auto-corrects, hot patches

 Cumulative mode – partial or complete deployment

 Aggregates results across different inputs

 Enables automatic root cause analysis from Watson dumps

 Suitable for wide deployment, perfect for beta release

 Likely to catch many bugs not seen in testing lab

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 28

0

0.5

1

1.5

2

2.5

N
o

rm
a
li
z
e
d

 E
x
e
cu

ti
o

n
 T

im
e

GNU libc Exterminator

allocation-intensive SPECint2000

DieFast Overhead

Ben Zorn, Microsoft Research

DieHard: Memory Error Fault Tolerance in C

and C++ 29

Exterminator Effectiveness

 Squid web cache buffer overflow

 Crashes glibc 2.8.0 malloc

 3 runs sufficient to isolate 6-byte overflow

 Mozilla 1.7.3 buffer overflow (recall demo)

 Testing scenario - repeated load of buggy page

 23 runs to isolate overflow

 Deployed scenario – bug happens in middle of

different browsing sessions

 34 runs to isolate overflow

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 30

Comparison with Existing Approaches

 Static analysis, annotations

 Finds individual bugs, developer still has to fix

 High cost developing, testing, deploying patches

 DieHard reduces threat of all memory errors

 Testing, OCA / Watson dumps

 Finds crashes, developer still has find root cause

 Type-safe languages (C#, etc.)

 Large installed based of C, C++

 Managed runtimes, libraries have lots of C, C++

 Also has a memory cost

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 31

Ben Zorn, Microsoft Research

Conclusion

 Programs written in C / C++ can execute safely

and correctly despite memory errors

 Research vision

 Improve existing code without source modifications

 Reduce human generated patches required

 Increase reliability, security by order of magnitude

 Current projects and results

 DieHard: overprovisioning + randomization + replicas =

probabilistic memory safety

 Exterminator: automatically detect and correct memory

errors (with high probability)

 Demonstrated success on real applications

32DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Hardware Trends

 Hardware transient faults are increasing

 Even type-safe programs can be subverted in
presence of HW errors
 Academic demonstrations in Java, OCaml

 Soft error workshop (SELSE) conclusions
 Intel, AMD now more carefully measuring

 “Not practical to protect everything”

 Faults need to be handled at all levels from HW up the
software stack

 Measurement is difficult
 How to determine soft HW error vs. software error?

 Early measurement papers appearing

33DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Power to Spare

 DRAM prices dropping
 2Gb, Dual Channel PC 6400 DDR2

800 MHz $85

 Multicore CPUs
 Quad-core Intel Core 2 Quad, AMD

Quad-core Opteron

 Eight core Intel by 2008?

http://www.hardwaresecrets.com/news/709

 Challenge:

How should we use all this

hardware?

34DieHard: Memory Error Fault Tolerance in C and C++

http://www.hardwaresecrets.com/news/709

Additional Information

 Web sites:
 Ben Zorn: http://research.microsoft.com/~zorn

 DieHard: http://www.diehard-software.org/

 Exterminator: http://www.cs.umass.edu/~gnovark/

 Publications
 Emery D. Berger and Benjamin G. Zorn, "DieHard:

Probabilistic Memory Safety for Unsafe
Languages", PLDI’06.

 Gene Novark, Emery D. Berger and Benjamin G.
Zorn, “Exterminator: Correcting Memory Errors
with High Probability", PLDI’07.

Ben Zorn, Microsoft Research 35DieHard: Memory Error Fault Tolerance in C and C++

http://research.microsoft.com/~zorn
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.cs.umass.edu/~gnovark/
http://www.cs.umass.edu/~emery/pubs/05-65.pdf

Backup Slides

Ben Zorn, Microsoft Research 36DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Related Work
 Conservative GC (Boehm / Demers / Weiser)

 Time-space tradeoff (typically >3X)

 Provably avoids certain errors

 Safe-C compilers
 Jones & Kelley, Necula, Lam, Rinard, Adve, …

 Often built on BDW GC

 Up to 10X performance hit

 N-version programming
 Replicas truly statistically independent

 Address space randomization (as in Vista)

 Failure-oblivious computing [Rinard]
 Hope that program will continue after memory error with no

untoward effects

37DieHard: Memory Error Fault Tolerance in C and C++

