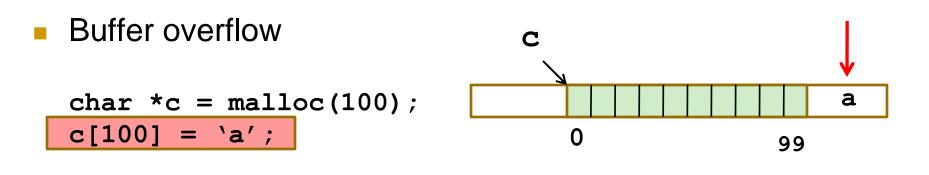
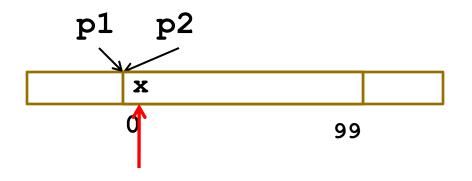
Tolerating and Correcting Memory Errors in C and C++


Ben Zorn Microsoft Research

In collaboration with: Emery Berger and Gene Novark, UMass - Amherst Karthik Pattabiraman, UIUC Vinod Grover and Ted Hart, Microsoft Research


Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in C and C++

Focus on Heap Memory Errors

Dangling reference

Approaches to Memory Corruptions

- Rewrite in a safe language
- Static analysis / safe subset of C or C++
 SAFECode [Adve], PREfix, SAL, etc.
- Runtime detection, fail fast
 - □ Jones & Lin, CRED [Lam], CCured [Necula], etc.
- Tolerate Corruption and Continue
 - Failure oblivious [Rinard] (unsound)
 - Rx, Boundless Memory Blocks, ECC memory DieHard / Exterminator, Samurai

Fault Tolerance and Platforms

- Platforms necessary in computing ecosystem
 - Extensible frameworks provide lattice for 3rd parties
 - Tremendously successful business model
 - Examples: Window, iPod, browser, etc.
- Platform power derives from extensibility
 - Tension between isolation for fault tolerance, integration for functionality
 - Platform only as reliable as weakest plug-in
 - Tolerating bad plug-ins necessary by design

Research Vision

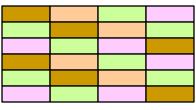
Increase robustness of installed code base

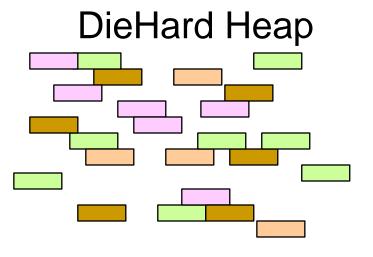
- Potentially improve millions of lines of code
- Minimize effort ideally no source mods, no recompilation
- Reduce requirement to patch
 - Patches are expensive (detect, write, deploy)
 - Patches may introduce new errors
- Enable trading resources for robustness
 - E.g., more memory implies higher reliability

Outline

Motivation

Exterminator


- Collaboration with Emery Berger, Gene Novark
- Automatically corrects memory errors
- Suitable for large scale deployment
- Critical Memory / Samurai
 - Collaboration with Karthik Pattabiraman, Vinod Grover
 - New memory semantics
 - Source changes to explicitly identify and protect critical data


Conclusion

DieHard Allocator in a Nutshell

- With Emery Berger (PLDI'06)
- Existing heaps are packed tightly to minimize space
 - Tight packing increases likelihood of corruption
 - Predictable layout is easier for attacker to exploit
- <u>Randomize</u> and <u>overprovision</u> the heap
 - Expansion factor determines how much empty space
 - Does not change semantics
- Replication increases benefits
- Enables analytic reasoning

Normal Heap

DieHard in Practice

DieHard (non-replicated)

- Windows, Linux version implemented by Emery Berger
- Try it right now! (<u>http://www.diehard-software.org/</u>)
- Adaptive, automatically sizes heap
- Mechanism automatically redirects malloc calls to DieHard DLL
- Application: Firefox & Mozilla
 - Known buffer in version 1.7.3 overflow crashes browser

Experience

- Usable in practice no perceived slowdown
- Roughly doubles memory consumption with 2x expansion
 - FireFox: 20.3 Mbytes vs. 44.3 Mbytes with DieHard

DieHard Caveats

- Primary focus is on protecting heap
 - Techniques applicable to stack data, but requires recompilation and format changes
- Trades space, processors for memory safety
 - Not applicable to applications with large footprint
 - Applicability to server apps likely to increase
- In replicated mode, DieHard requires determinism
 Replicas see same input, shared state, etc.
- DieHard is a brute force approach
 - Improvements possible (efficiency, safety, coverage, etc.)

Exterminator Motivation

DieHard limitations

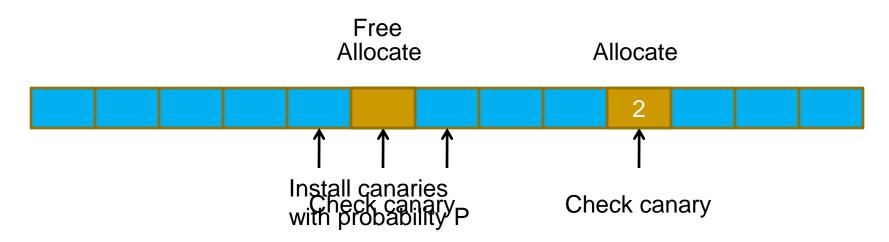
- Tolerates errors probabilistically, doesn't fix them
- Memory and CPU overhead
- Provides no information about source of errors
- "Ideal" solution addresses the limitations
 - Program automatically detects and fixes memory errors
 - Corrected program has no memory, CPU overhead
 - Sources of errors are pinpointed, easier for human to fix
- Exterminator = correcting allocator
 - Joint work with Emery Berger, Gene Novark

Plan: isolate / patch bugs while tolerating them

Exterminator Components

- Architecture of Exterminator dictated by solving specific problems
- How to detect heap corruptions effectively?
 DieFast allocator
- How to isolate the cause of a heap corruption precisely?
 - Heap differencing algorithms
- How to automatically fix buggy C code without breaking it?
 - Correcting allocator + hot allocator patches

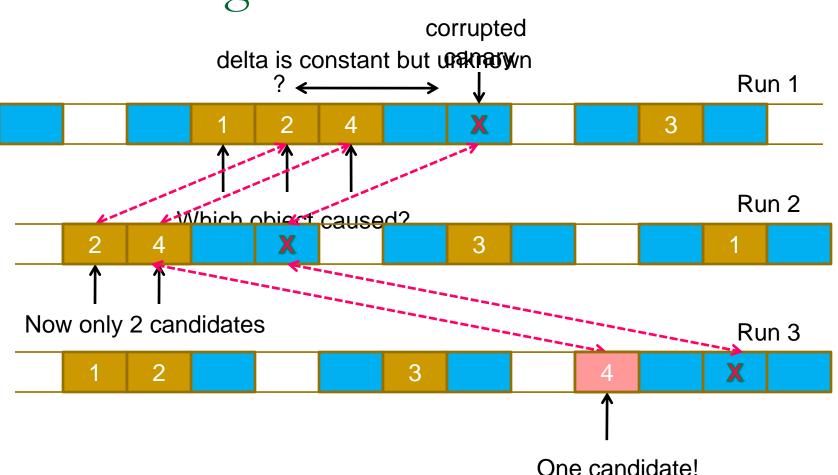
DieFast Allocator


- Randomized, over-provisioned heap
 - Canary = random bit pattern fixed at startup 100101011110
 - Leverage extra free space by inserting canaries

Inserting canaries

- Initialization all cells have canaries
- On allocation no new canaries
- On free put canary in the freed object with prob. P
- Checking canaries
 - On allocation check cell returned
 - On free check adjacent cells

Installing and Checking Canaries


Initially, heap full of canaries

Heap Differencing

- Strategy
 - Run program multiple times with different randomized heaps
 - If detect canary corruption, dump contents of heap
 - Identify objects across runs using allocation order
- Insight: Relation between corruption and object causing corruption is invariant across heaps
 - Detect invariant across random heaps
 - More heaps => higher confidence of invariant

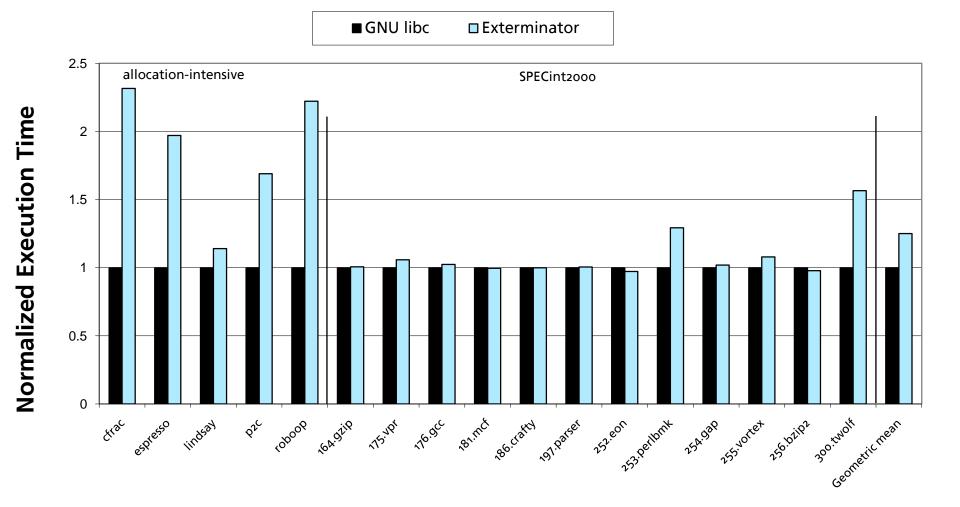
Attributing Buffer Overflows

Precision increases exponentially with number of runs

Tolerating and Correcting Memory Errors in C and C++

Detecting Dangling Pointers (2 cases)

- Dangling pointer read/written (easy)
 - Invariant = canary in freed object X has same corruption in <u>all</u> runs
- Dangling pointer only read (harder)
 - Sketch of approach (paper explains details)
 - Only fill freed object X with canary with probability P
 - Requires multiple trials: ≈ log₂(number of callsites)
 - Look for correlations, i.e., X filled with canary => crash
 - Establish conditional probabilities
 - □ Have: P(callsite X filled with canary | program crashes)
 - □ Need: P(crash | filled with canary), guess "prior" to compute


Correcting Allocator

- Group objects by allocation site
- Patch object groups at allocate/free time
- Associate patches with group
 - Buffer overrun => add padding to size request
 - malloc(32) becomes malloc(32 + delta)
 - Dangling pointer => defer free
 - free(p) becomes defer_free(p, delta_allocations)
 - Fixes preserve semantics, no new bugs created
- Correcting allocation may != DieFast or DieHard
 - Correction allocator can be space, CPU efficient
 - "Patches" created separately, installed on-the-fly

Deploying Exterminator

- Exterminator can be deployed in different modes
- Iterative suitable for test environment
 - Different random heaps, identical inputs
 - Complements automatic methods that cause crashes
- Replicated mode
 - Suitable in a multi/many core environment
 - Like DieHard replication, except auto-corrects, hot patches
- Cumulative mode partial or complete deployment
 - Aggregates results across different inputs
 - Enables automatic root cause analysis from Watson dumps
 - Suitable for wide deployment, perfect for beta release
 - Likely to catch many bugs not seen in testing lab

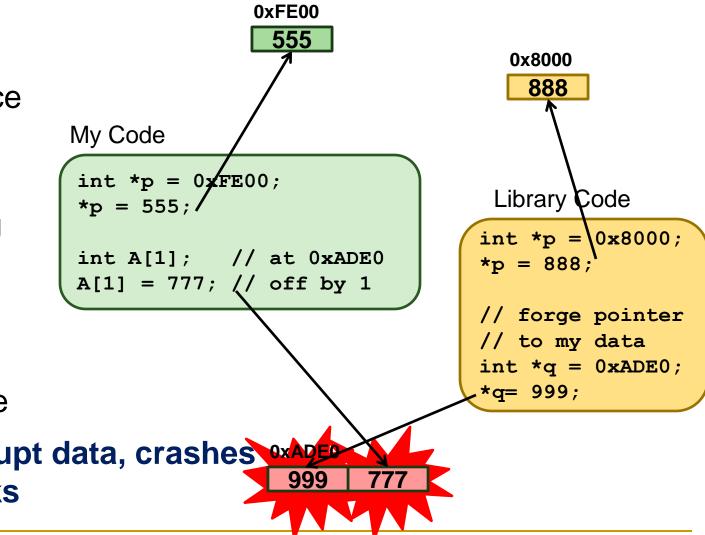
DieFast Overhead

Exterminator Effectiveness

- Squid web cache buffer overflow
 - Crashes glibc 2.8.0 malloc
 - 3 runs sufficient to isolate 6-byte overflow
- Mozilla 1.7.3 buffer overflow (recall demo)
 - Testing scenario repeated load of buggy page
 - 23 runs to isolate overflow
 - Deployed scenario bug happens in middle of different browsing sessions
 - 34 runs to isolate overflow

Outline

- Motivation
- Exterminator
 - Collaboration with Emery Berger, Gene Novark
 - Automatically corrects memory errors
 - Suitable for large scale deployment
- Critical Memory / Samurai
 - Collaboration with Karthik Pattabiraman, Vinod Grover
 - New memory semantics
 - Source changes to explicitly identify and protect critical data
- Conclusion


The Problem: A Dangerous Mix

Danger 1: Flat, uniform address space

Danger 2: Unsafe programming languages

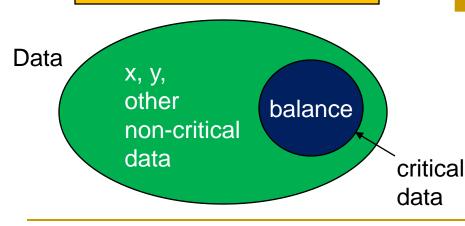
Danger 3: Unrestricted 3rd party code

Result: corrupt data, crashes axAge security risks

Tolerating and Correcting Memory Errors in C and C++

Critical Memory

Approach

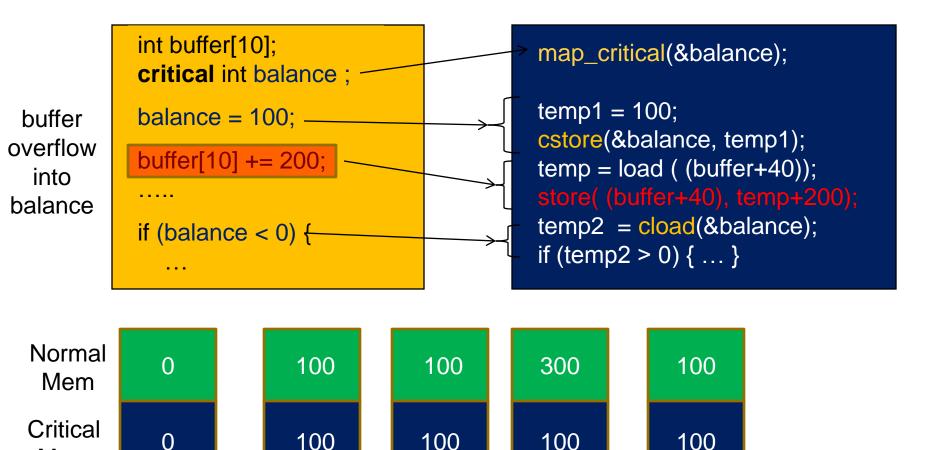

- Identify critical program data
- Protect it with isolation & replication
- Goals:
 - Harden programs from both SW and HW errors
 - Unify existing ad hoc solutions
 - Enable local reasoning about memory state
 - Leverage powerful static analysis tools
 - Allow selective, incremental hardening of apps

Provide compatibility with existing libraries, apps

Critical Memory: Idea

Code critical int balance;

```
balance += 100;
if (balance < 0) {
    chargeCredit();
} else {
    // use x, y, etc.
```

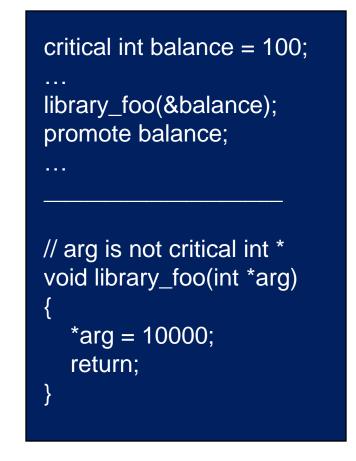


 Identify and mark some data as "critical

- □ Type specifier like **const**
- Shadow critical data in parallel address space (critical memory)
- New operations on critical data
 - cload read

```
cstore - write
```

Critical Memory: Example

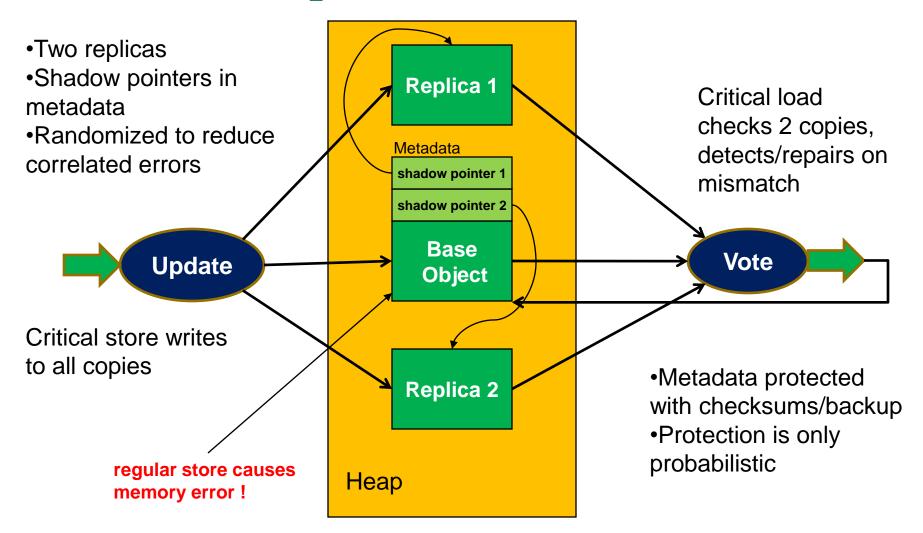

Tolerating and Correcting Memory Errors in C and C++

balance

Mem

Third-party Libraries/Untrusted Code

- Library code does not need to be critical memory aware
 - If library does not update critical data, no changes required
- If library needs to modify critical data
 - Allow normal stores to critical memory in library
 - Explicitly "promote" on return
- Copy-in, copy-out semantics


Samurai: Heap-based Critical Memory

- Software critical memory for heap objects
 - Critical objects allocated with crit_malloc, crit_free

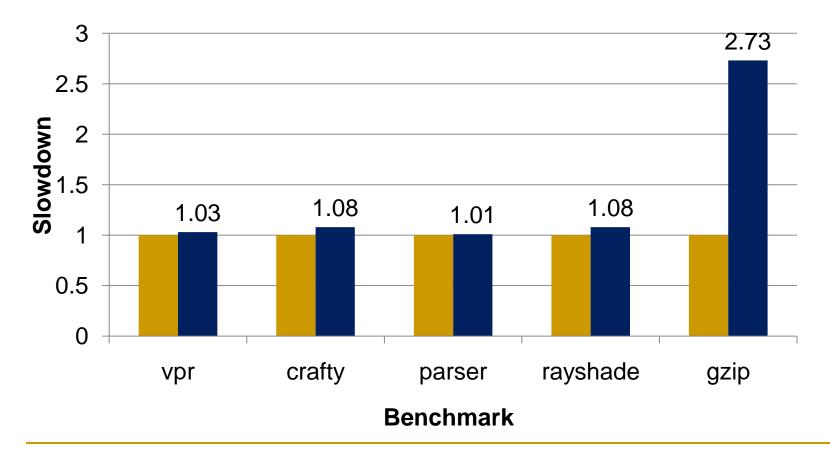
Approach

- Replication base copy + 2 shadow copies
- Redundant metadata
 - Stored with base copy, copy in hash table
 - Checksum, size data for overflow detection
- Robust allocator as foundation
 - DieHard, unreplicated
 - Randomizes locations of shadow copies

Samurai Implementation

Samurai Experimental Results

Implementation


- Automated Phoenix pass to instrument loads and stores
- Runtime library for critical data allocation/de-allocation (C++)
- Protected critical data in 5 applications (mostly SPEC)
 - Chose data that is crucial for end-to-end correctness of program
 - Evaluation of performance overhead by instrumentation
 - □ Fault-injections into critical and non-critical data (for propagation)
- Protected critical data in libraries
 - STL List Class: Backbone of list structure (link pointers)
 - Memory allocator: Heap meta-data (object size + free list)

Samurai Performance Overheads

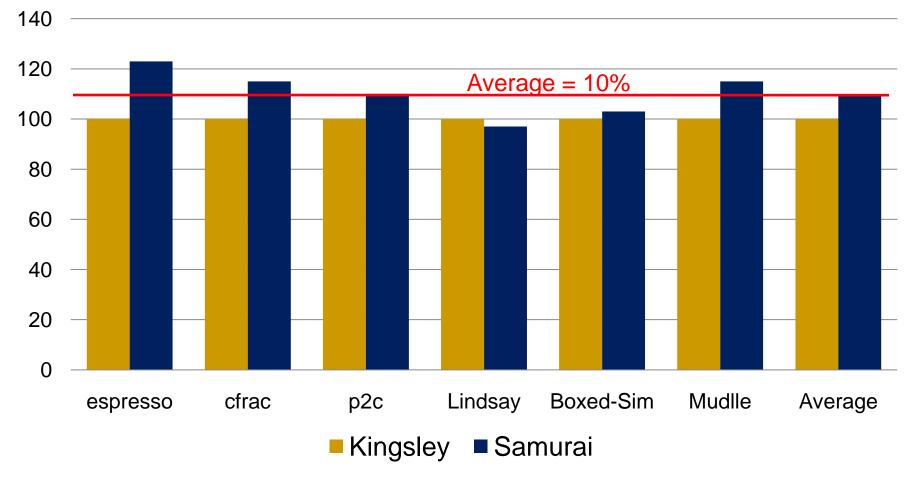
Performance Overhead

Baseline

Samurai

Samurai: STL Class + WebServer

STL List Class


- Modified memory allocator for class
- Modified member functions *insert, erase*
- Modified custom iterators for list objects
- Added a new call-back function for direct modifications to list data

Webserver

- Used STL list class for maintaining client connection information
- Made list critical one thread/connection
- Evaluated across
 multiple threads and
 connections
- Max performance
 overhead = 9%

Samurai: Protecting Allocator Metadata

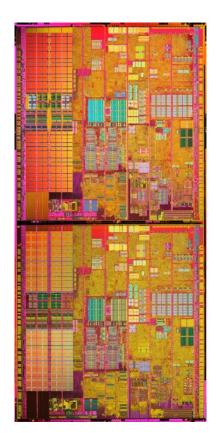
Performance Overheads

Tolerating and Correcting Memory Errors in C and C++

Conclusion

- Programs written in C / C++ can execute safely and correctly despite memory errors
- Research vision
 - Improve existing code without source modifications
 - Reduce human generated patches required
 - Increase reliability, security by order of magnitude

Current projects


- DieHard / Exterminator: automatically detect and correct memory errors (with high probability)
- Critical Memory / Samurai: enable local reasoning, allow selective hardening, compatibility
- **ToleRace**: replication to hide data races

Hardware Trends (1) Reliability

- Hardware transient faults are increasing
 - Even type-safe programs can be subverted in presence of HW errors
 - Academic demonstrations in Java, OCaml
 - Soft error workshop (SELSE) conclusions
 - Intel, AMD now more carefully measuring
 - "Not practical to protect everything"
 - Faults need to be handled at all levels from HW up the software stack
 - Measurement is difficult
 - How to determine soft HW error vs. software error?
 - Early measurement papers appearing

Hardware Trends (2) Multicore

- DRAM prices dropping
 - 2Gb, Dual Channel PC 6400 DDR2 800 MHz \$85
- Multicore CPUs
 - Quad-core Intel Core 2 Quad, AMD Quad-core Opteron
 - Eight core Intel by 2008?
- Challenge: How should we use all this hardware?

Additional Information

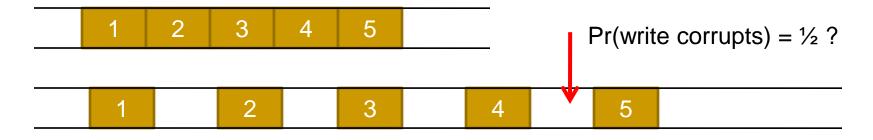
Web sites:

- Ben Zorn: http://research.microsoft.com/~zorn
- DieHard: http://www.diehard-software.org/
- Exterminator: <u>http://www.cs.umass.edu/~gnovark/</u>

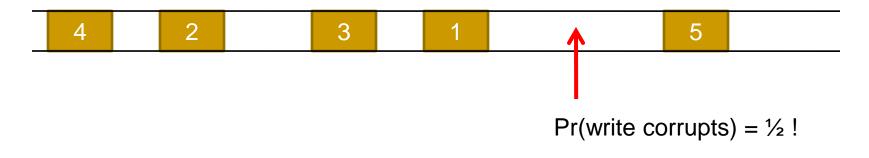
Publications

- Emery D. Berger and Benjamin G. Zorn, "DieHard: Probabilistic Memory Safety for Unsafe Languages", PLDI'06.
- Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn,
 "Samurai: Protecting Critical Data in Unsafe Languages", Eurosys 2008.
- Gene Novark, Emery D. Berger and Benjamin G.
 Zorn, "Exterminator: Correcting Memory Errors with High Probability", PLDI'07.
- Lvin, Novark, Berger, and Zorn, "Archipelago: Trading Address Space for Reliability and Security", ASPLOS 2008.

Backup Slides

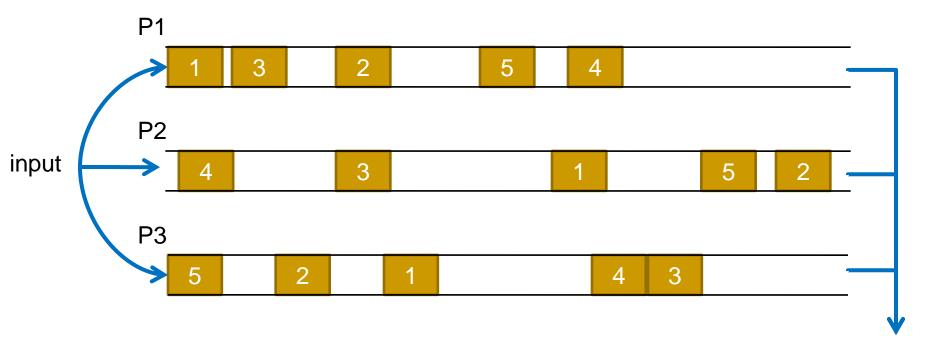

DieHard: Probabilistic Memory Safety

- Collaboration with Emery Berger
- Plug-compatible replacement for malloc/free in C lib
- We define "infinite heap semantics"
 - Programs execute as if each object allocated with unbounded memory
 - All frees ignored
- Approximating infinite heaps 3 key ideas
 - Overprovisioning
 - Randomization
 - Replication


Allows analytic reasoning about safety

Overprovisioning, Randomization

Expand size requests by a factor of M (e.g., M=2)



Randomize object placement

Replication (optional)

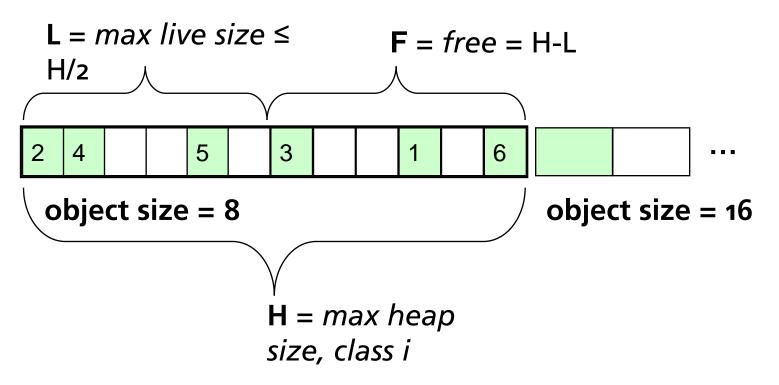
Replicate process with different randomization seeds

Broadcast input to all replicas

Compare outputs of replicas, kill when replica disagrees

Voter

DieHard Implementation Details


- Multiply allocated memory by factor of M
- Allocation
 - Segregate objects by size (log2), bitmap allocator
 - Within size class, place objects randomly in address space
 - Randomly re-probe if conflicts (expansion limits probing)
 - Separate metadata from user data
 - □ Fill objects with random values for detecting uninit reads

Deallocation

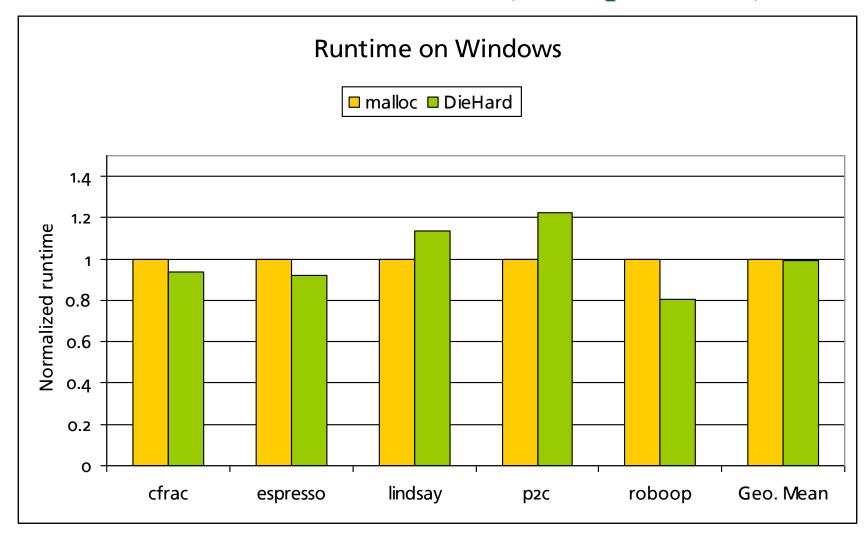
- Expansion factor => frees deferred
- Extra checks for illegal free

Over-provisioned, Randomized Heap

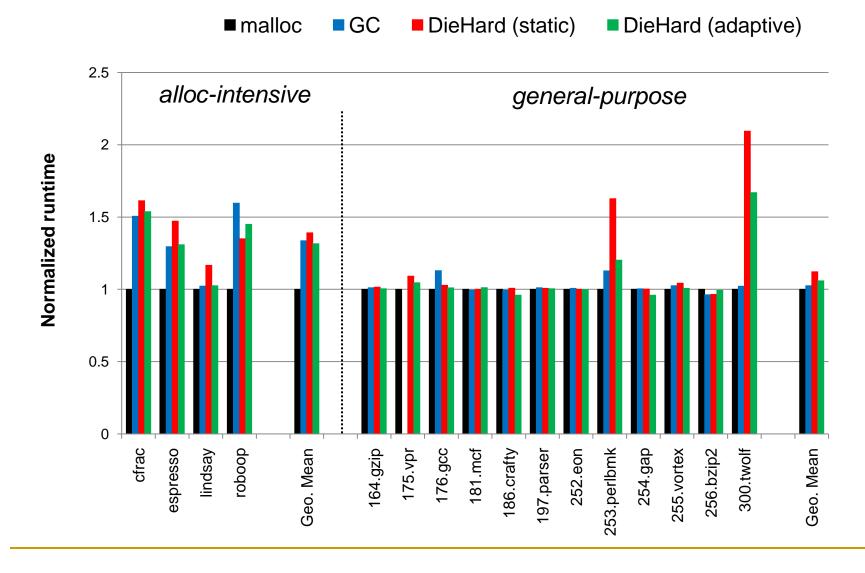
Segregated size classes

- Static strategy pre-allocates size classes
- Adaptive strategy grows each size class incrementally

Randomness enables Analytic Reasoning Example: Buffer Overflows


 $\Pr(\text{Mask Buffer Overflow}) = 1 - \left[1 - \left(\frac{F}{H}\right)^{Obj}\right]^{\kappa}$

- k = # of replicas, Obj = size of overflow
- With no replication, Obj = 1, heap no more than 1/8 full:


Pr(Mask buffer overflow), = 87.5%

3 replicas: Pr(*ibid*) = 99.8%

DieHard CPU Performance (no replication)

DieHard CPU Performance (Linux)

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

Correctness Results

- Tolerates high rate of synthetically injected errors in SPEC programs
- Detected two previously unreported benign bugs (197.parser and espresso)
- Successfully hides buffer overflow error in Squid web cache server (v 2.3s5)
- But don't take my word for it...

Experiments / Benchmarks

- vpr: Does place and route on FPGAs from netlist
 Made routing-resource graph critical
- crafty: Plays a game of chess with the user
 - Made cache of previously-seen board positions critical
- gzip: Compress/Decompresses a file
 Made Huffman decoding table critical
- parser: Checks syntactic correctness of English sentences based on a dictionary
 - Made the dictionary data structures critical
- rayshade: Renders a scene file
 - Made the list of objects to be rendered critical

Related Work

- Conservative GC (Boehm / Demers / Weiser)
 - Time-space tradeoff (typically >3X)
 - Provably avoids certain errors
- Safe-C compilers
 - Jones & Kelley, Necula, Lam, Rinard, Adve, ...
 - Often built on BDW GC
 - Up to 10X performance hit
- N-version programming
 - Replicas truly statistically independent
- Address space randomization (as in Vista)
- Failure-oblivious computing [Rinard]
 - Hope that program will continue after memory error with no untoward effects