
Tolerating and Correcting

Memory Errors in C and C++

Ben Zorn
Microsoft Research

In collaboration with:

Emery Berger and Gene Novark, UMass - Amherst

Karthik Pattabiraman, UIUC

Vinod Grover and Ted Hart, Microsoft Research

Ben Zorn, Microsoft Research 1Tolerating and Correcting Memory Errors in C and C++

 Buffer overflow

char *c = malloc(100);

c[100] = ‘a’;

 Dangling reference

char *p1 = malloc(100);

char *p2 = p1;

free(p1);

p2[0] = ‘x’;

a

Focus on Heap Memory Errors

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 2

c

0 99

p1

0 99

p2

x

Ben Zorn, Microsoft Research

Approaches to Memory Corruptions

 Rewrite in a safe language

 Static analysis / safe subset of C or C++

 SAFECode [Adve], PREfix, SAL, etc.

 Runtime detection, fail fast

 Jones & Lin, CRED [Lam], CCured [Necula], etc.

 Tolerate Corruption and Continue

 Failure oblivious [Rinard] (unsound)

 Rx, Boundless Memory Blocks, ECC memory

DieHard / Exterminator, Samurai

3Tolerating and Correcting Memory Errors in C and C++

Fault Tolerance and Platforms

 Platforms necessary in computing ecosystem

 Extensible frameworks provide lattice for 3rd parties

 Tremendously successful business model

 Examples: Window, iPod, browser, etc.

 Platform power derives from extensibility

 Tension between isolation for fault tolerance,

integration for functionality

 Platform only as reliable as weakest plug-in

 Tolerating bad plug-ins necessary by design

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 4

Research Vision

 Increase robustness of installed code base

 Potentially improve millions of lines of code

 Minimize effort – ideally no source mods, no

recompilation

 Reduce requirement to patch

 Patches are expensive (detect, write, deploy)

 Patches may introduce new errors

 Enable trading resources for robustness

 E.g., more memory implies higher reliability

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 5

Ben Zorn, Microsoft Research

Outline

 Motivation

 Exterminator
 Collaboration with Emery Berger, Gene Novark

 Automatically corrects memory errors

 Suitable for large scale deployment

 Critical Memory / Samurai
 Collaboration with Karthik Pattabiraman, Vinod Grover

 New memory semantics

 Source changes to explicitly identify and protect
critical data

 Conclusion

6Tolerating and Correcting Memory Errors in C and C++

DieHard Allocator in a Nutshell

 With Emery Berger (PLDI’06)

 Existing heaps are packed
tightly to minimize space
 Tight packing increases

likelihood of corruption

 Predictable layout is easier for
attacker to exploit

 Randomize and overprovision
the heap
 Expansion factor determines how

much empty space

 Does not change semantics

 Replication increases benefits

 Enables analytic reasoning

7

Normal Heap

DieHard Heap

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

DieHard in Practice

 DieHard (non-replicated)
 Windows, Linux version implemented by Emery Berger

 Try it right now! (http://www.diehard-software.org/)

 Adaptive, automatically sizes heap

 Mechanism automatically redirects malloc calls to DieHard DLL

 Application: Firefox & Mozilla
 Known buffer in version 1.7.3 overflow crashes browser

 Experience
 Usable in practice – no perceived slowdown

 Roughly doubles memory consumption with 2x expansion

 FireFox: 20.3 Mbytes vs. 44.3 Mbytes with DieHard

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 8

http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/

Ben Zorn, Microsoft Research

DieHard Caveats

 Primary focus is on protecting heap

 Techniques applicable to stack data, but requires

recompilation and format changes

 Trades space, processors for memory safety

 Not applicable to applications with large footprint

 Applicability to server apps likely to increase

 In replicated mode, DieHard requires determinism

 Replicas see same input, shared state, etc.

 DieHard is a brute force approach
 Improvements possible (efficiency, safety, coverage, etc.)

9Tolerating and Correcting Memory Errors in C and C++

Exterminator Motivation

 DieHard limitations
 Tolerates errors probabilistically, doesn’t fix them

 Memory and CPU overhead

 Provides no information about source of errors

 “Ideal” solution addresses the limitations
 Program automatically detects and fixes memory errors

 Corrected program has no memory, CPU overhead

 Sources of errors are pinpointed, easier for human to fix

 Exterminator = correcting allocator
 Joint work with Emery Berger, Gene Novark

 Plan: isolate / patch bugs while tolerating them

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 10

Exterminator Components

 Architecture of Exterminator dictated by solving

specific problems

 How to detect heap corruptions effectively?

 DieFast allocator

 How to isolate the cause of a heap corruption

precisely?

 Heap differencing algorithms

 How to automatically fix buggy C code without

breaking it?

 Correcting allocator + hot allocator patches

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 11

DieFast Allocator
 Randomized, over-provisioned heap

 Canary = random bit pattern fixed at startup

 Leverage extra free space by inserting canaries

 Inserting canaries

 Initialization – all cells have canaries

 On allocation – no new canaries

 On free – put canary in the freed object with prob. P

 Checking canaries

 On allocation – check cell returned

 On free – check adjacent cells

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 12

100101011110

1 2

Installing and Checking Canaries

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++ 13

Allocate Allocate

Install canaries

with probability P
Check canary Check canary

Free

Initially, heap full of canaries

1

Heap Differencing

 Strategy

 Run program multiple times with different randomized

heaps

 If detect canary corruption, dump contents of heap

 Identify objects across runs using allocation order

 Insight: Relation between corruption and object

causing corruption is invariant across heaps

 Detect invariant across random heaps

 More heaps => higher confidence of invariant

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 14

1 2

Attributing Buffer Overflows

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++ 15

One candidate!

4 3

corrupted

canary

Which object caused?

delta is constant but unknown
?

12 4 3

Run 2

Run 1

Now only 2 candidates

2 4

41 3

Run 3

2 44

Precision increases exponentially with number of runs

Detecting Dangling Pointers (2 cases)

 Dangling pointer read/written (easy)

 Invariant = canary in freed object X has same

corruption in all runs

 Dangling pointer only read (harder)

 Sketch of approach (paper explains details)

 Only fill freed object X with canary with probability P

 Requires multiple trials: ≈ log2(number of callsites)

 Look for correlations, i.e., X filled with canary => crash

 Establish conditional probabilities

 Have: P(callsite X filled with canary | program crashes)

 Need: P(crash | filled with canary), guess “prior” to compute

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 16

Correcting Allocator

 Group objects by allocation site

 Patch object groups at allocate/free time

 Associate patches with group

 Buffer overrun => add padding to size request

 malloc(32) becomes malloc(32 + delta)

 Dangling pointer => defer free

 free(p) becomes defer_free(p, delta_allocations)

 Fixes preserve semantics, no new bugs created

 Correcting allocation may != DieFast or DieHard

 Correction allocator can be space, CPU efficient

 “Patches” created separately, installed on-the-fly

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 17

Deploying Exterminator

 Exterminator can be deployed in different modes

 Iterative – suitable for test environment

 Different random heaps, identical inputs

 Complements automatic methods that cause crashes

 Replicated mode

 Suitable in a multi/many core environment

 Like DieHard replication, except auto-corrects, hot patches

 Cumulative mode – partial or complete deployment

 Aggregates results across different inputs

 Enables automatic root cause analysis from Watson dumps

 Suitable for wide deployment, perfect for beta release

 Likely to catch many bugs not seen in testing lab

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 18

0

0.5

1

1.5

2

2.5

N
o

rm
a
li
z
e
d

 E
x
e
cu

ti
o

n
 T

im
e

GNU libc Exterminator

allocation-intensive SPECint2000

DieFast Overhead

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++ 19

Exterminator Effectiveness

 Squid web cache buffer overflow

 Crashes glibc 2.8.0 malloc

 3 runs sufficient to isolate 6-byte overflow

 Mozilla 1.7.3 buffer overflow (recall demo)

 Testing scenario - repeated load of buggy page

 23 runs to isolate overflow

 Deployed scenario – bug happens in middle of

different browsing sessions

 34 runs to isolate overflow

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 20

Ben Zorn, Microsoft Research

Outline

 Motivation

 Exterminator
 Collaboration with Emery Berger, Gene Novark

 Automatically corrects memory errors

 Suitable for large scale deployment

 Critical Memory / Samurai
 Collaboration with Karthik Pattabiraman, Vinod Grover

 New memory semantics

 Source changes to explicitly identify and protect
critical data

 Conclusion

21Tolerating and Correcting Memory Errors in C and C++

The Problem: A Dangerous Mix

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++ 22

Danger 1:

Flat, uniform

address space

0xFE00

0xADE0

int *p = 0xFE00;

*p = 555;

int A[1]; // at 0xADE0

A[1] = 777; // off by 1

My Code
Danger 2:

Unsafe

programming

languages

Danger 3:

Unrestricted

3rd party code

int *p = 0x8000;

*p = 888;

// forge pointer

// to my data

int *q = 0xADE0;

*q= 999;

Library Code

0x8000
555

777

888

999
Result: corrupt data, crashes

security risks

Critical Memory

 Approach

 Identify critical program data

 Protect it with isolation & replication

 Goals:

 Harden programs from both SW and HW errors

 Unify existing ad hoc solutions

 Enable local reasoning about memory state

 Leverage powerful static analysis tools

 Allow selective, incremental hardening of apps

 Provide compatibility with existing libraries, apps

Ben Zorn, Microsoft Research 23Tolerating and Correcting Memory Errors in C and C++

Critical Memory: Idea

 Identify and mark some

data as “critical

 Type specifier like const

 Shadow critical data in

parallel address space

(critical memory)

 New operations on

critical data

 cload – read

 cstore - write

24

critical int balance;

balance += 100;

if (balance < 0) {

chargeCredit();

} else {

// use x, y, etc.

}

balance

Data
x, y,

other

non-critical

data critical

data

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Code

Critical Memory: Example

25

int buffer[10];

critical int balance ;
map_critical(&balance);

temp1 = 100;

cstore(&balance, temp1);

temp = load ((buffer+40));

store((buffer+40), temp+200);

temp2 = cload(&balance);

if (temp2 > 0) { … }

balance = 100;

buffer[10] += 200;

…..

if (balance < 0) {

…

0

0

100

100

100

100

300

100

100

100

Normal

Mem

Critical

Mem

balance

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

buffer

overflow

into

balance

Third-party Libraries/Untrusted Code

 Library code does not
need to be critical memory
aware
 If library does not update

critical data, no changes
required

 If library needs to modify
critical data
 Allow normal stores to

critical memory in library

 Explicitly “promote” on
return

 Copy-in, copy-out semantics

critical int balance = 100;

…

library_foo(&balance);

promote balance;

…

// arg is not critical int *

void library_foo(int *arg)

{

*arg = 10000;

return;

}

Ben Zorn, Microsoft Research 26

Tolerating and Correcting Memory Errors in C and

C++

Samurai: Heap-based Critical Memory

 Software critical memory for heap objects

 Critical objects allocated with crit_malloc, crit_free

 Approach

 Replication – base copy + 2 shadow copies

 Redundant metadata

 Stored with base copy, copy in hash table

 Checksum, size data for overflow detection

 Robust allocator as foundation

 DieHard, unreplicated

 Randomizes locations of shadow copies

Ben Zorn, Microsoft Research 27Tolerating and Correcting Memory Errors in C and C++

Samurai Implementation

28

base
Base

Object

Replica 1

Replica 2

shadow pointer 2

shadow pointer 1

Heap
regular store causes

memory error !

Vote

Critical load

checks 2 copies,

detects/repairs on

mismatch

•Two replicas

•Shadow pointers in

metadata

•Randomized to reduce

correlated errors

Update

Critical store writes

to all copies

Metadata

•Metadata protected

with checksums/backup

•Protection is only

probabilistic

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Samurai Experimental Results

 Implementation

 Automated Phoenix pass to instrument loads and stores

 Runtime library for critical data allocation/de-allocation (C++)

 Protected critical data in 5 applications (mostly SPEC)

 Chose data that is crucial for end-to-end correctness of program

 Evaluation of performance overhead by instrumentation

 Fault-injections into critical and non-critical data (for propagation)

 Protected critical data in libraries

 STL List Class: Backbone of list structure (link pointers)

 Memory allocator: Heap meta-data (object size + free list)

Ben Zorn, Microsoft Research 29Tolerating and Correcting Memory Errors in C and C++

Samurai Performance Overheads

30

1.03 1.08 1.01 1.08

2.73

0

0.5

1

1.5

2

2.5

3

vpr crafty parser rayshade gzip

S
lo

w
d

o
w

n

Benchmark

Performance Overhead

Baseline Samurai

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Samurai: STL Class + WebServer

 STL List Class

 Modified memory

allocator for class

 Modified member

functions insert, erase

 Modified custom

iterators for list objects

 Added a new call-back

function for direct

modifications to list

data

 Webserver

 Used STL list class for

maintaining client

connection information

 Made list critical – one

thread/connection

 Evaluated across

multiple threads and

connections

 Max performance

overhead = 9%

31Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Samurai: Protecting Allocator Metadata

32

0

20

40

60

80

100

120

140

espresso cfrac p2c Lindsay Boxed-Sim Mudlle Average

Performance Overheads

Kingsley Samurai

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Average = 10%

Ben Zorn, Microsoft Research

Conclusion

 Programs written in C / C++ can execute safely

and correctly despite memory errors

 Research vision

 Improve existing code without source modifications

 Reduce human generated patches required

 Increase reliability, security by order of magnitude

 Current projects

 DieHard / Exterminator: automatically detect and

correct memory errors (with high probability)

 Critical Memory / Samurai: enable local reasoning,

allow selective hardening, compatibility

 ToleRace: replication to hide data races

33Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

Hardware Trends (1) Reliability

 Hardware transient faults are increasing

 Even type-safe programs can be subverted in
presence of HW errors
 Academic demonstrations in Java, OCaml

 Soft error workshop (SELSE) conclusions
 Intel, AMD now more carefully measuring

 “Not practical to protect everything”

 Faults need to be handled at all levels from HW up the
software stack

 Measurement is difficult
 How to determine soft HW error vs. software error?

 Early measurement papers appearing

34Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

Hardware Trends (2) Multicore

 DRAM prices dropping
 2Gb, Dual Channel PC 6400 DDR2

800 MHz $85

 Multicore CPUs
 Quad-core Intel Core 2 Quad, AMD

Quad-core Opteron

 Eight core Intel by 2008?

 Challenge:

How should we use all this

hardware?

35Tolerating and Correcting Memory Errors in C and C++

Additional Information

 Web sites:
 Ben Zorn: http://research.microsoft.com/~zorn

 DieHard: http://www.diehard-software.org/

 Exterminator: http://www.cs.umass.edu/~gnovark/

 Publications
 Emery D. Berger and Benjamin G. Zorn, "DieHard:

Probabilistic Memory Safety for Unsafe Languages", PLDI’06.

 Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn,
"Samurai: Protecting Critical Data in Unsafe Languages",
Eurosys 2008.

 Gene Novark, Emery D. Berger and Benjamin G.
Zorn, “Exterminator: Correcting Memory Errors with High
Probability", PLDI’07.

 Lvin, Novark, Berger, and Zorn, "Archipelago: Trading Address

Space for Reliability and Security", ASPLOS 2008.

Ben Zorn, Microsoft Research 36Tolerating and Correcting Memory Errors in C and C++

http://research.microsoft.com/~zorn
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.cs.umass.edu/~gnovark/

Backup Slides

Ben Zorn, Microsoft Research 37Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

DieHard: Probabilistic Memory Safety

 Collaboration with Emery Berger

 Plug-compatible replacement for malloc/free in C lib

 We define “infinite heap semantics”

 Programs execute as if each object allocated with

unbounded memory

 All frees ignored

 Approximating infinite heaps – 3 key ideas

 Overprovisioning

 Randomization

 Replication

 Allows analytic reasoning about safety

38Tolerating and Correcting Memory Errors in C and C++

Overprovisioning, Randomization

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 39

Expand size requests by a factor of M (e.g., M=2)

1 2 3 4 5

1 2 3 4 5

Randomize object placement

12 34 5

Pr(write corrupts) = ½ ?

Pr(write corrupts) = ½ !

Replication (optional)

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 40

Replicate process with different randomization seeds

1 234 5

P2

12 345

P3

input

Broadcast input to all replicas

Compare outputs of replicas, kill when replica disagrees

1 23 45

P1

Voter

Ben Zorn, Microsoft Research

DieHard Implementation Details

 Multiply allocated memory by factor of M

 Allocation

 Segregate objects by size (log2), bitmap allocator

 Within size class, place objects randomly in address

space

 Randomly re-probe if conflicts (expansion limits probing)

 Separate metadata from user data

 Fill objects with random values – for detecting uninit reads

 Deallocation

 Expansion factor => frees deferred

 Extra checks for illegal free

41Tolerating and Correcting Memory Errors in C and C++

Segregated size classes

- Static strategy pre-allocates size classes

- Adaptive strategy grows each size class incrementally

Ben Zorn, Microsoft Research

Over-provisioned, Randomized Heap

2

H = max heap
size, class i

L = max live size ≤

H/2
F = free = H-L

4 5 3 1 6

object size = 16object size = 8

…

42Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

Randomness enables Analytic Reasoning

Example: Buffer Overflows

 k = # of replicas, Obj = size of overflow

 With no replication, Obj = 1, heap no more

than 1/8 full:

Pr(Mask buffer overflow), = 87.5%

 3 replicas: Pr(ibid) = 99.8%

43Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

DieHard CPU Performance (no replication)

Runtime on Windows

0

0.2

0.4

0.6

0.8

1

1.2

1.4

cfrac espresso lindsay p2c roboop Geo. Mean

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

malloc DieHard

44Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

DieHard CPU Performance (Linux)

45Tolerating and Correcting Memory Errors in C and C++

0

0.5

1

1.5

2

2.5
c
fr

a
c

e
s
p

re
s
s
o

lin
d

s
a

y

ro
b

o
o

p

G
e

o
.
M

e
a

n

1
6

4
.g

z
ip

1
7

5
.v

p
r

1
7

6
.g

c
c

1
8

1
.m

c
f

1
8

6
.c

ra
ft

y

1
9

7
.p

a
rs

e
r

2
5

2
.e

o
n

2
5

3
.p

e
rl
b

m
k

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

3
0

0
.t

w
o

lf

G
e

o
.
M

e
a

n

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

malloc GC DieHard (static) DieHard (adaptive)

alloc-intensive general-purpose

Ben Zorn, Microsoft Research

Correctness Results

 Tolerates high rate of synthetically injected
errors in SPEC programs

 Detected two previously unreported benign
bugs (197.parser and espresso)

 Successfully hides buffer overflow error in
Squid web cache server (v 2.3s5)

 But don’t take my word for it…

46Tolerating and Correcting Memory Errors in C and C++

Experiments / Benchmarks

 vpr: Does place and route on FPGAs from netlist
 Made routing-resource graph critical

 crafty: Plays a game of chess with the user
 Made cache of previously-seen board positions critical

 gzip: Compress/Decompresses a file
 Made Huffman decoding table critical

 parser: Checks syntactic correctness of English
sentences based on a dictionary
 Made the dictionary data structures critical

 rayshade: Renders a scene file
 Made the list of objects to be rendered critical

Ben Zorn, Microsoft Research 47Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

Related Work
 Conservative GC (Boehm / Demers / Weiser)

 Time-space tradeoff (typically >3X)

 Provably avoids certain errors

 Safe-C compilers
 Jones & Kelley, Necula, Lam, Rinard, Adve, …

 Often built on BDW GC

 Up to 10X performance hit

 N-version programming
 Replicas truly statistically independent

 Address space randomization (as in Vista)

 Failure-oblivious computing [Rinard]
 Hope that program will continue after memory error with no

untoward effects

48Tolerating and Correcting Memory Errors in C and C++

