
422 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Kraken: Online and Elastic Resource Reservations
for Cloud Datacenters

Carlo Fuerst, Stefan Schmid , Lalith Suresh, and Paolo Costa

Abstract— In cloud environments, the absence of strict network
performance guarantees leads to unpredictable job execution
times. To address this issue, recently, there have been several
proposals on how to provide guaranteed network performance.
These proposals, however, rely on computing resource reservation
schedules a priori. Unfortunately, this is not practical in today’s
cloud environments, where application demands are inherently
unpredictable, e.g., due to differences in the input data sets or
phenomena, such as failures and stragglers. To overcome these
limitations, we designed KRAKEN, a system that allows to dynam-
ically update minimum guarantees for both network bandwidth
and compute resources at runtime. Unlike previous work, Kraken
does not require prior knowledge about the resource needs of the
applications but allows to modify reservations at runtime. Kraken
achieves this through an online resource reservation scheme,
which comes with provable optimality guarantees. In this paper,
we motivate the need for dynamic resource reservation schemes,
present how this is provided by Kraken, and evaluate Kraken
via extensive simulations and a preliminary Hadoop prototype.

Index Terms— Network virtualization, embedding, predictable
performance, algorithms.

I. INTRODUCTION

CLOUD-BASED applications, including batch processing,
streaming, and scale-out databases, generate a significant

amount of network traffic and a considerable fraction of their
runtime is due to network activity. For example, traces of
jobs from a Facebook cluster reveal that network transfers on
average account for 33% of the execution time [24].

Unfortunately, as reported in previous studies [5], in existing
cloud infrastructures the bandwidth available to the tenants
varies significantly over time, i.e., by a factor of five or
more [35], even within the same day. Given the time spent
in network activity by these applications, this variability has a
non-negligible impact on the application performance, which
makes it impossible to accurately estimate the execution time
in advance [26].

Manuscript received January 18, 2017; revised August 5, 2017 and
October 27, 2017; accepted November 30, 2017; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor X. Liu. Date of publication
December 22, 2017; date of current version February 14, 2018. This work was
supported in part by the Aalborg University’s Talent Management Programme
through the Project PreLytics and in part by the German Ministry for
Education and Research through the Berlin Big Data Center. (Corresponding
author: Stefan Schmid.)

C. Fuerst was with the Technical University of Berlin, 10623 Berlin,
Germany. He is now with SAP, 14469 Potsdam, Germany.

S. Schmid is with the University of Vienna, 1090 Vienna, Austria, and
also with the Faculty of Engineering and Science, Department of Computer
Science, Aalborg University, 9220 Aalborg, Denmark (e-mail: schmiste@
gmail.com).

L. Suresh is with VMware Research, Palo Alto, CA 94304 USA.
P. Costa is with Microsoft Research, Cambridge CB1 2FB, U.K.
Digital Object Identifier 10.1109/TNET.2017.2782006

Over the last years, several solutions have been proposed to
improve the sharing of network bandwidth among tenants,

by leveraging admission control and bandwidth reservations,
thus enabling tenants to specify absolute guarantees [5], [9],
[17], [21], [30], [31], [33]. In particular, many of these
proposals offer a virtual cluster abstraction [5], [9], which
provides the tenants with the illusion of having their own
dedicated network. A virtual cluster guarantees a specified
minimal bandwidth between all tenant’s virtual machines,
independently of their locations in the datacenter topology.

However, the vast majority of existing solutions providing
absolute bandwidth guarantees are based on offline and con-
stant reservations schemes [5], [9], [17], [21], [28], [33]: they
require that tenants announce the entire resource reservation
schedule ahead of time, i.e., at job submission time. They typi-
cally assume that the corresponding resource reservations need
to be constant over time, and hence tenants or operators either
have to over-provision during idle times (thus reducing effi-
ciency and inflating cost) or under-provision during peak times
(thus reducing application performance), or both. Notable
exceptions are Cicada [22], which offers predictive instead of
absolute guarantees, and Proteus [9], which allows tenants to
specify time-varying bandwidth reservations. However, even
with Proteus, the reservations must be made at the startup
time and they cannot be changed afterwards. This inflexibility
is at odds with the cloud computing paradigm, which enables
elasticity by allowing to “scale out” or “scale in” applications
at runtime. We argue that in most cases it is very hard
to accurately estimate application resource needs ahead
of time, rendering offline reservation schemes inadequate.
Several factors contribute to this unpredictability including
unexpected events such as stragglers and failures [3], [4] as
well as spikes in application demand (flash crowds). As a
consequence, tenants would be likely to either over-estimate
the network usage, which would consequently inflate their
expenditure, or to under-estimate it, which would result in
poor application performance, and, as previously observed [5],
in potentially longer job running times, which would also
lead to higher customer costs. Over-estimation of network
resourc would also negatively impact the cloud provider as
it would reduce its ability to accomodate more clients, thus
reducing its market share. In contrast, we believe that a
more principled solution would be to enable re-configuring
network reservations at runtime so as to better match tenant
requirements and avoiding resource over- or under-provision.

A naive approach to enable runtime reconfiguration would
be to restart the resource allocation from scratch every time

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7798-1711

FUERST et al.: KRAKEN: ONLINE AND ELASTIC RESOURCE RESERVATIONS FOR CLOUD DATACENTERS 423

an update request is received. This, however, would introduce
an unacceptable overhead as most (if not all) the compute
resources such as VMs need be migrated. At the other extreme,
there are approaches such as Blender [33] that support a
weak form of reconfiguration by allowing tenants to update
rate limiters at runtime. This, however, prevents users from
upgrading both compute and network resources at the same
time. More importantly, as we show in the evaluation, since
no migration is considered, the efficacy of the solution is
very limited. In this paper, we strike a balance between these
two approaches by allowing users to dynamically reconfigure
both compute and network resources simultaneously while
minimizing the number of migrations.

A. Our Contribution

We make the following contributions.
1) The need for online resource reservation schemes: We

show that offline resource reservation schemes are insuf-
ficient: Even for simple Hadoop jobs, small internal
changes can lead to significantly different executions.
Therefore, in order to meet application performance
goals, not only strict resource isolation needs to be pro-
vided, but also a possibility to update these reservations
at runtime.

2) The Kraken system: We design Kraken, a system which
supports the online (and joint) update of both bandwidth
as well as the compute resources. Kraken can also
perform migrations in order to satisfy upgrade requests:
While the migration of entire virtual machines may be
expensive in practice, Kraken only assumes that compute
units, the endpoints of traffic flows, can be migrated.
Kraken comes with provable performance guarantees
and ensures (i) the satisfaction of all upgrade/downgrade
requests for which this is possible, (ii) minimal recon-
figuration and resource costs, (iii) low runtimes.

3) Benefits of online resource reservations: Our simulations
show the benefits of elastic resource reservations. We
also demonstrate the feasibility of our approach in prac-
tice, through a preliminary implementation of Kraken on
top of Hadoop.

Kraken can be used for many applications that benefit
from resource elasticity, including batch-processing applica-
tions (e.g., graph processing or distributed databases) or high-
performance computing applications.

B. Scope and Non-Goals

We focus on how to efficiently embed and reconfigure
virtual clusters; a detailed discussion of when to change a
virtual network specification is left for future work. The
time and extent of upgrades and downgrades depend on the
setting, on the type of application, as well as on the tenants’
resp. operators’ objectives. We also note on this occasion that
Kraken is not online in the sense of competitive analysis [10].

In general, Kraken is agnostic to where the update requests
come from: they can come from the operator itself (e.g., by
monitoring network traffic or other application metrics similar
to Amazon Auto scaling), form the application framework

(e.g., a Kraken-aware version of Hadoop could issue an update
request when the shuffhle phase is about to start/end) or could
be triggered by the tenants themselves to improve application
performance by removing network bottlenecks, in a way
similar to how today’s tenants can increase the number VMs
rented to speed-up their applications or services. Kraken is not
tied to any of these approaches and can support all of them.
While this paper only focuses on providing the mechanisms,
we think it is an interesting direction for future work to devise
the policies that can be built on top of Kraken.

C. Organization

We first motivate the online approached pursued in this
paper in Section II. In Section III, we describe our model and
give an example illustrating the challenge of dynamic resource
reservation schemes. The Kraken system and its embedding
and reconfiguration algorithms are presented in detail and
analyzed formally in Section IV. We present our simulation
results in Section V and report on a preliminary prototype
in Hadoop in Section VI. After reviewing related work in
Section VII, we conclude in Section VIII.

II. MOTIVATION FOR AN ONLINE APPROACH

Before presenting our solution in detail, we argue that
today’s offline reservation schemes are not sufficient to ensure
application performance guarantees in an efficient manner.

We distinguish between two offline reservation schemes:
(1) schemes with constant resource reservations such as the
ones proposed in [5] and [17]; and (2) schemes such as
Proteus [9] with time-varying resource reservations which,
however, need to be announced ahead of time and, hence,
require accurately predicting a job’s resource-utilization over
time, e.g., using data from previous runs.

Constant reservation schemes are wasteful for any appli-
cation with time-varying resource demands, such as MapRe-
duce applications, which cycle between network-intensive and
compute-intensive phases [9], or an online computer game
whose demand is subject to time-of-day effects [35].

While offline and time-varying reservations may be possible
in idealized conditions, in practice, this is rarely the case.
This is obvious for continuously running applications, such as
a web-service or video-on-demand service, whose popularity
can change significantly and unexpectedly. But, as we show
next, even the resource pattern of very simple MapReduce
applications are hard to predict accurately. It has been reported
that stragglers can be several times slower than the median
task completion time [3], [4], [12], [20], [34]. Stragglers occur
due to a variety of environmental factors such as slow disks
and failures. Cluster frameworks typically use control loops
based on these factors to (re-)schedule tasks, e.g., Hadoop’s
speculative executor. This makes it hard to predict if there will
be stragglers in the first place and if so, when and where the
cluster framework will re-schedule a slow task.

To highlight this, we rely on a very simple experiment
wherein we run a Hadoop cluster in an OpenStack-based
testbed. For this we use five physical servers (8 CPU cores and
64GB of RAM) with one virtual machine each. Each virtual

424 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Fig. 1. Execution unpredictability—Bandwidth utilization for the same
TeraSort workload with three different datasets of the same size generated
via TeraGen. Bandwidth utilization over time varies between the runs,
necessitating the need for online bandwidth reservation schemes as opposed
to offline ones.

machine is allocated 4 virtual cores with 4 GB of RAM.
Each node of the Hadoop cluster is mapped to a virtual
machine each (one master, four slaves). The Hadoop workload
consists of a TeraSort job, operating on 150 million 100-byte
records. We repeat the experiment five times with speculative
execution enabled. Figure 2 (left) indicates the variance in job
completion times across the runs: a range of 150 seconds.
This observation is also supported by Figure 2 (right) which
indicates the number of straggling tasks that were speculatively
re-executed by the Hadoop cluster.

Figure 1 indicates the bandwidth consumption in the
cluster across three different runs of the TeraSort job executed
without speculative execution enabled. In each run, the dataset
is generated afresh using the TeraGen command. Note that
the bandwidth utilization has varying profiles over time in
each case. These observations serve to demonstrate that even
with the same workload and a dataset of the same size being
re-executed, it is difficult to predict how a job progresses
over time.

Note that since TeraSort is IO-bound and all data are
randomly generated with a uniform distribution, its behavior
is much more regular than most other jobs used in data
analytics, which can suffer from skewed data distribution,
irregular computation patterns, etc. Therefore, we expect real
jobs to exhibit even higher variance across runs, as it is often
reported in literature [3], [4], [12], [20].

In conclusion, we argue that offline approaches for resource
reservations such as Proteus do not suffice, as cloud envi-
ronments such as Amazon EC2 [34] are likely to be much
more noisy than our environment studied here. This makes it
more difficult to predict performance of an application a priori,
which underlines the need for dynamic and online reservation
schemes. The need for online solutions is exacerbated in

Fig. 2. Execution unpredictability—Completion times of jobs in the presence
of speculative execution (left) and the number of speculated tasks (right).

systems in which demand can vary over time, e.g., long-
running applications or streaming applications.

III. MODEL & EXAMPLE

We start by introducing the settings and the virtual network
abstraction considered in this paper, and subsequently
highlight the algorithmic challenge.

A. Setting

We consider the standard Virtual Cluster abstraction to
model virtual networks with strict performance guarantees [5],
[9], [26]. A virtual cluster offers the tenant the illusion for
all her Compute Units (CUs) to be attached to a single non-
oversubscribed switch with a minimum bandwidth b guaran-
teed. If excess bandwidth is available, it can be used in addition
to the reserved bandwidth, e.g., leveraging recently proposed
extensions to TCP such as Seawall [32].

A virtual cluster VC(n, b) has two parameters: n, the
number of (identical) CUs in the cluster, and b, the band-
width reservation from each CU to the virtual switch. Virtual
clusters belonging to different tenants need to be embedded
on a given substrate: a physical network connecting a set
of servers. In this paper, we focus on multi-rooted tree
(or fat-tree) like physical network topologies [1], [16] as they
are the predominant topology in today’s datacenters. These
topologies are hierarchical and are recursively made of sub-
trees at each level. A fat-tree consists of a set of pods which
are interconnected by core routers. Pods comprise a set of
racks which are interconnected by the aggregation switch,
and racks comprise multiple servers (or hosts) which are
interconnected by the Top-of-Rack (ToR) switch. Each server
can host a fixed number of CUs. As done in previous work,
e.g., [5], [9], given the amount of multiplexing and assuming
the availability of a multi-path routing protocol such as ECMP,
we can approximate these links as a single aggregate link for
bandwidth reservations.

To save costs, some datacenter operators introduce some
degree of over-subscription, typically at the higher levels of the
hierarchy. We model these configurations with two parameters
γ1, γ2 ≥ 1 (called the over-subscription factors in [5]): γ1

denotes the factor of reduced capacity on the aggregation
network (between ToR and aggregation switches) and γ2 the
factor of reduced capacity between the aggregation switches
and the core switch.

FUERST et al.: KRAKEN: ONLINE AND ELASTIC RESOURCE RESERVATIONS FOR CLOUD DATACENTERS 425

Fig. 3. Upgrade of a virtual cluster VC: Left - the initial state: VC(7,1) is embedded on the right-most rack of a pod of the fat-tree. The dashed lines
indicate the current bandwidth reservations. Middle - the upgrade request: VC(7,1) needs to be upgraded to VC(8,2). Right - after the upgrade: Three CUs
were migrated in order to find a new feasible embedding of VC which does not violate the capacity on the servers’ uplinks.

The embedding of a virtual cluster describes its resource
allocation in the substrate: an embedding maps each CU of
the virtual cluster to a physical server in the substrate network;
multiple CUs may be hosted on the same server. In addition,
the embedding specifies the amount of bandwidth on each
link reserved for the tenant. Intuitively, a “valid” embedding
is one that does not oversubscribe server or network resources.
A “good” embedding additionally chooses servers that are
close in the physical network, thus minimizing unnecessary
resource reservations on the physical links.

B. The Challenge

The goal of this paper is to support virtual clusters whose
guarantees can be adjusted over time, in an online fashion.
Specifically, we want to be able to (1) upgrade a virtual
cluster VC(n,b) consisting of n CUs and with a bandwidth
guarantee b, both in size (i.e., number of CUs) as well as
in the minimum bandwidth, that is, to a virtual cluster with
x ≥ 0 more nodes and a factor δ ≥ 1 more bandwidth, i.e., to
VC(n + x,b · δ); (2) downgrade a virtual cluster in both size
and bandwidth; (3) or a combination of both (e.g., upgrade
size and downgrade bandwidth).

How to support such reconfigurations is also an algorithmic
problem. Ideally, new feasible embeddings should be effi-
ciently computable, i.e., at low runtime; moreover, we would
like to avoid or at least minimize migrations in order to satisfy
a reconfiguration request; finally, the resulting embeddings
should have small network footprints, in the sense that no
unnecessary bandwidth is reserved (on substrate links) to
implement the virtual cluster guarantees.

C. Example

To illustrate both the model and the challenge, let us
consider an example. Figure 3 (left) shows a part of a fat-tree,
i.e., a single pod consisting of three racks with two servers
each; each server has 4 CU slots. We assume that the uplinks of
the servers have a capacity of 4 units and the fat-tree provides
full bisection bandwidth (γ1 = γ2 = 1), resulting in a capacity
of 8 units on the ToR switches’ uplinks and a capacity of
24 units on the links between the aggregation switches and the
core switch. On the right most rack, currently a virtual cluster

VC is embedded; the dashed line indicates the path along with
bandwidth is reserved to connect the CUs. At some point, VC
is upgraded, from VC(7,1) to VC(8,2), see Figure 3 (middle).

How can this request be satisfied? Theoretically, the right
server in the rack still has a free CU slot which could be
used to accommodate the additional CU; however, doubling
the bandwidth reservations for each the CUs will violate the
bandwidth capacities on the uplinks of the servers. Hence
it becomes necessary to distribute the CUs in the substrate,
in order to reduce the bandwidth utilization of the uplinks of
the two servers. Thus, in this scenario, some CUs need to
be migrated to satisfy the request. Figure 3 (right) shows a
solution: the resulting embedding is valid.

IV. THE SYSTEM

In this section, we first formalize the goals of the developed
system, and then introduce the main concepts underlying
Kraken and describe its key components.

A. Objectives

Kraken is designed to accept and implement any embedding
and upgrade request whenever there are sufficient resources
available in the substrate. Downgrade requests, instead, can
always be satisfied.

Besides satisfying upgrade requests whenever this is possi-
ble, Kraken is designed (1) to optimize the embedding cost
of the virtual cluster, i.e., the amount of bandwidth which
needs to be reserved in the physical network to host the virtual
cluster; and (2) to reconfigure existing embeddings locally,
i.e., to minimize the migration cost. To avoid affecting the
performance of other tenants, we do not allow the migration
of CUs belonging to other tenants, although in some cases
this might result in lower embedding costs. The standard
metric to evaluate the embedding cost (see also [5], [9]),
is to measure the embedding footprint F (VC) of a virtual
cluster VC: F (VC) is given by the overall network resources
consumed by the VC, i.e., the sum of bandwidth reservations
over all substrate links. (Note that the number of used CU
slots is independent of the embedding.)

In order to measure the reconfiguration costs, we count the
number of CUs which need to be embedded to a different
location during an upgrade.

426 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Notice that there is a trade-off between the two metrics:
sometimes, at the price of higher reconfiguration costs,
smaller footprints can be realized. In the following, we
design our algorithms according to the following priorities
(cf Section IV-F for a discussion of alternative objectives
supported by Kraken): (1) the top priority is to satisfy a
reconfiguration request; (2) the second priority is to minimize
reconfiguration costs; and (3) the third priority, is to minimize
the embedding footprint, i.e., among all solutions of the same
reconfiguration costs, we compute the most resource efficient
embedding.

Kraken provides the following worst-case guarantees.
1) Request Satisfiability: As long as a feasible solution

exists all upgrade and downgrade requests are satisfied.
2) Minimal Reconfiguration: The reconfiguration cost is

always minimized. In particular, if a solution without
migrations exists, it is used. CUs of other tenants are
never migrated.

3) Optimal Allocation: Among all possible solutions with
minimal reconfiguration costs, Kraken computes the one
with the minimal embedding footprint.

4) Complexity: The time complexity of re-configuring (or
embedding) a virtual cluster is linear in the substrate
size, in the worst-case.

B. Algorithmic Concepts

At the heart of Kraken lie two main concepts: (1) The
center-of-gravity (or simply: center) of a virtual cluster
and (2) the slotCount values. The center-of-gravity concept
(introduced in [31]) allows us to decouple the embedding of
the individual Compute Units (CUs), in the sense that, given
the location of the center-of-gravity, the CUs can be mapped
“greedily”, one after the other, avoiding the combinatorial
complexity and rendering the problem polynomial time
solvable. The slotCount(v) values provide an aggregate
information about the number of available CU slots in the
sub-tree of the fat-tree below a given node v; they constitute
the main data structure used by Kraken. While previous
virtual cluster embedding algorithms used a similar concept
[5], [9], [14], only the combination with the center-of-gravity
concept allows a modification which enables the low runtime
of the dynamic algorithm (roughly linear in the substrate size).

Center-of-Gravity. The virtual cluster abstraction offers
tenants a network where each CU is connected to a virtual
switch at bandwidth b [5]. While this virtual switch is only
a logical concept, its position in the substrate matters, as
resources need to be reserved from it to each CU.1 The center-
of-gravity may also be located on a server, not only on a switch
(e.g., if many CUs of the virtual cluster are collocated on the
same server). Given a mapping of the CUs of a given virtual
cluster VC, we will refer to the optimal position of the virtual
switch (with respect to embedding footprint) as the center-of-
gravity COG of VC.

Given any node v in the fat-tree (either a server or a switch),
we can partition the nodes of VC into two sets with respect

1Note that there could be multiple positions with the same embedding cost,
and that in a fat-tree, a distributed switch mapping does not reduce costs.

to v: the set of CUs at or below the node v in the fat-tree,
and the remaining CUs above (or “outside”) v. Sometimes, we
use the same terminology to refer to the location of substrate
components relative to each other.

When applying the COG concept to the fat-tree topology, we
have two important properties, which Kraken leverages: (1) no
more than half of the nodes, can be above COG and (2) no
more than half of the nodes are below one of the children of
COG. The correctness of this property can be shown easily by
contradiction: If more than half of the CUs are behind one link,
moving the COG in this direction will decrease the bandwidth
costs for more than half of the CUs by 1 and increase the costs
for the other CUs by 1, resulting in a smaller footprint.

Moreover, when computing the embedding footprint of a
virtual cluster VC, it is often helpful to count the number
of CUs which are embedded below COG(VC); we will refer
to this number as β. The remaining CUs of VC which are
embedded above COG(VC), fall into three classes: the α(p)

“far-away” CUs located in a different pod, the α(r) CUs in
the same pod but in a different rack, and the α(s) CUs in the
same rack but on a different server. This classification results
in simple formulas for the embedding footprint of a virtual
cluster. For instance, if COG(VC) is embedded to a top-of-
rack switch, the embedding footprint is given by F (VC) =
β + 3 · α(r) + 5 · α(p) as the distance to servers in the same
rack (β) is 1 and the distance to all servers in the same pod
but in different racks (α(r)) is 3 while the distance to servers
in other pods (α(p)) is 5.

slotCount-Values. The second core concept of Kraken is
the slotCount(v)-value: intuitively, the slotCount(v)-value
indicates how many additional CUs can be placed below a
certain substrate node v (a server or switch), such that the
currently available server and link resources are all satisfied.

The number of CUs which can be placed below a certain
substrate node v depends on two factors: the available
bandwidth and the available CU slots. For Kraken it is
sufficient to compute the bandwidth criteria for cases
where COG is above v. This eases the computation of
these values significantly, since the resulting interval of
possible amounts of CUs becomes continuous. In order to
keep the runtime of the slotCount computation low, we
leverage the optimal sub-problem property in our dynamic
program: We start by computing the slotCount-values on the
host level. For each server s we compute slotCount(s) =
min(spareCUs(s), �spareBW (s) /b�) where spareCUs(s)
denotes the available CU slots of a server s and
spareBW (s) denotes the available bandwidth on the
uplink. The slotCount of a rack r is then defined as:
slotCount(r) = min(

∑
s∈r slotCount(s), �spareBW (s) /b�).

The slotCount(p)-values for pods can subsequently be
computed from the racks’ slotCount-values.

Overview. Based on these concepts, in order to embed or
reconfigure a virtual cluster VC, Kraken simply cycles through
all possible center-of-gravity locations in the substrate network
(servers and switches): for each possible COG location v,
Kraken determines the minimal number of migrations needed,
in order to shift the center to v. This is a fast operation since it
does not scale with the size of the substrate, but with the size

FUERST et al.: KRAKEN: ONLINE AND ELASTIC RESOURCE RESERVATIONS FOR CLOUD DATACENTERS 427

Fig. 4. Example embedding of a VC(10, 1). The COG is on the left
top-of-rack switch. The 8 CUs located in the left most slot are below the COG
and entail a unit bandwidth cost each. The two remaing CUs are above (αr)
the COG and inflict three units of bandwidth cost each. Moving the virtual
switch to one of the servers in the left rack would reduce the bandwidth costs
for the 4 CUs on that server by 1, but increase the costs for the other 6 CUs
by 1. Moving it to the pod would decrease the costs for the two CUs in the
middle rack, but increase the costs for the other 8 CUs.

of the VC. If COG can be implemented on v with minimal
migration costs, the slotCount values are used to calculate the
best possible embedding footprint of a mapping with the center
at v. As we will show, this also does not require scanning the
entire substrate, and is fast. For an illustration, we refer to
Figs. 4 and 5.

C. Upgrade Algorithm

Algorithm 1 shows the pseudo-code of Kraken’s algorithm
to implement an upgrade operation upgrade, from VC(n, b)
to VC(n+x, δ · b) with x ≥ 0 more nodes and a factor δ ≥ 1
more bandwidth. We use μ to denote the embeddings.

Algorithm 1 Algorithm Upgrade(VC,x,δ)
Output: success or failure
1: for all nodes v in the fat-tree: compute slotCount(v) values
2: m∗ ←∞; F ∗ ←∞; cog∗ ← ⊥;
3: for all v in substrate do
4: M ← minMig(v)
5: if |M | ≤ m∗ then
6: F ← footprint(v, |M |)
7: if F <∞∧ (|M | < m∗ ∨ F < F ∗) then
8: cog∗ ← v
9: m∗ ← |M |

10: F ∗ ← F
11: end if
12: end if
13: end for
14: if m∗ =∞ then
15: return failure
16: end if
17: μ← computeEmbedding(VC, cog∗)
18: return success

Kraken first pre-computes the slotCount-values for the entire
substrate network, i.e., for each substrate node v (a server
or switch). Subsequently, Kraken computes the new center-
of-gravity COG for VC which minimizes the reconfiguration

Fig. 5. Example for slotCount computations. Already embedded are a
VC1(10, 1) (light gray) and a VC2(2, 4) (dark gray). We assume that the
substrate has a maximum bandwidth of 4 on the links connecting the servers
to the top-of-rack switches and that the currently processed request has the
form VC3(n, 1). Obviously, the left rack is full and hence all slot count
values are 0. The center rack has one completely free server (slotCount = 4)
and one half free server (slotCount = 2) resulting in a slotCount = 6 on the
top-of-rack switch. The two servers in the right rack are partially occupied
by VC2, but could potentially host 3 CUs of VC3 (e.g., when n = 3).
However, slotCount is based on the assumption, that COG is above the node
and the two CUs of VC2 occupy the entire bandwidth. Hence, the slotCount
values are 0 for this rack, too.

costs in terms of the number of to be released, i.e., migrated
CUs M (function minMigs) and embedding footprint F
(function footprint), by iterating over all nodes in the
substrate. Subsequently, the best found solution is embedded
(function computeEmbedding).

1) Minimal Migrations: To compute the minimal number
of migrations, function minMig proceeds as follows, see
Algorithm 2: For each node v in the substrate (i.e., all servers
and switches), it computes a list of CUs which have to be
“released” (i.e., put in a pool of CUs which will be embedded
somewhere else by the algorithm), to be able to realize the
new center-of-gravity at node v.

Algorithm 2 Minmig(Substrate Node v)
Output: set of CUs
1: M ← ∅
2: L← computeConflictLinks(v)
3: sort L with decreasing distance from v
4: for all links � ∈ L do
5: while � oversubscribed do
6: let c be an arbitrary CU below �
7: M ←M ∪ {c}
8: end while
9: end for

10: M ←M ∪ extraCUs(v)
11: return M

ComputeConflictLinks computes the set of links L
whose capacity would be oversubscribed if the center-of-
gravity cog was on v and the bandwidth was increased to
b · δ under the current embedding μ of the existing CUs.
Subsequently, we iteratively release CUs until a critical link
� ∈ L is no longer oversubscribed. This yields the first part
of the set M of CUs which need to be migrated. The conflict
resolution is ordered by distance to the center-of-gravity.

428 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

While releasing the CUs so far in M ensures that no link
is oversubscribed, additional CUs may have to be moved to
guarantee that the center-of-gravity is realized at the desired
physical node: thus, extraCUs adds more CUs to the set M ,
such that the sum of the CUs which are currently hosted
below v and the cardinality of M reach n/2. To make v
the center-of-gravity of the virtual cluster, it is necessary and
sufficient that at least n/2 CUs are below v.

2) Minimal Footprint: After determining the number of
CUs that have to be migrated, we compute the embedding
footprint. Interestingly, Kraken can compute the embedding
cost of a desired center-of-gravity without determining an
explicit embedding of the new virtual cluster, by utilizing the
slotCount-values.

The function footprint is described in Algorithm 3.
It takes a desired center-of-gravity v and a target number m
of CUs which are to be migrated. Let us first observe that the
footprint of a virtual cluster can be computed via the following
case distinction: (1) If v is a core switch, all CUs are located
below v, and hence the distance between v and the CUs is
three. Thus, F (VC) = 3 · β, where β counts the number
of CUs which are embedded below COG(VC). (2) If v is an
aggregation switch of a pod, the CUs of VC are either located
on servers in the same pod, or on servers in different pods.
Clearly, all servers in the same pod are at distance two from v,
and the servers in other pods are at distance four from v. We
have F (VC) = 2·β+4·α(p), where α(p) is the number of CUs
of VC which are embedded above COG(VC), in a different
pod. (3) In case v is embedded to a ToR switch, the embedding
footprint is given by F (VC) = β + 3 · α(r) + 5 · α(p), where
α(r) is the number of CUs of VC which are embedded above
COG(VC), in a different rack. (4) The embedding footprint for
a v on servers is given by F (V C) = 2·α(s)+4·α(r)+6·α(p),
where α(s) is the number of CUs of VC which are embedded
above COG(VC), on a different server. In this case, CUs which
are embedded below the COG are omitted, as they have no
bandwidth costs.

Algorithm 3 Footprint(Substrate Node v, Number of CUs
to Migrate m)
Output: cost value
1: done ← 0
2: for all children v′ of v in the fat-tree do
3: done ← done +slotCount(v′)
4: end for
5: return ST(v)+height(v) ·n+costsAbove(v, m−done)

The function footprint first computes the number of
CUs which can be placed on each of the sub-trees represented
by the direct children of v. Since the center-of-gravity v
is above its children by definition, the slotCount(v)-values
of the children are accurate. Then, the embedding cost is
computed recursively by the formula ST(v) +height(v) ·n+
costsAbove(v, z−done). The first cost term ST(v) accounts
for the static costs, i.e., the costs from CUs which are not
scheduled for migration according to the minimal migrations.
The second cost term height(v) · n depends on the depth of

the center-of-gravity in the tree. The third term computes the
additional costs from the CUs above v, if any, see the function
costsAbove (Algorithm 4): we leverage the fact that the
costs for placing CUs further away from a candidate center v
increases by two for every layer in the fat-tree, regardless of
the layer where v is located. Accordingly, given z flexible CUs,
we add 2z to the costs and execute the function again with the
parent node of v as the new v and z −∑

v′∈V ′ slotCount(v′)
as the new z, where V ′ is the set of siblings of v (i.e., children
of the parent node of v excluding v). If v is the core switch,
or the spare capacity on the uplink of v is less then z · δ · b, v
cannot be the center-of-gravity, and the upgrade request fails
for this specific location of the COG. If this is the case for
all nodes v in the substrate, the upgrade request has to be
rejected.

Algorithm 4 Costsabove(Substrate Node v, Number of
Flexible CUs z)
Output: cost value
1: if z = 0 then
2: return 0
3: end if
4: if (v is a core switch or the uplink from v does not have

z · δ · b spare bandwidth) then
5: return ∞
6: end if
7: done← 0
8: for all for all siblings v′ of v do
9: done← done + slotCount(v′)

10: end for
11: return 2 · z + costsAbove(parent of v, z − done)

D. Downgrade Algorithm

Downgrade operations in Kraken never require any migra-
tions. However, the center-of-gravity may change. Thus, the
downgrade algorithm of Kraken proceeds similar to the
upgrade algorithm, but without functions minMig and without
the need to compute the slotCount(v) values. The main
difference regards how the values are actually used to compute
the costs. While the original algorithm depends on slotCount-
values and the current distribution, we set the current distrib-
ution to 0 and all slotCount-values to the distribution prior to
the upgrade.

E. Formal Guarantees

Since the calculated cost and slotCount values are exact, we
have derived the following result.

Theorem 1: Kraken guarantees:
1) Request Satisfiability: As long as a feasible solution

exists all upgrade and downgrade requests are satisfied.
2) Minimal Reconfiguration: The reconfiguration costs is

always minimized. In particular, if a solution without
migrations exists, it is used.

3) Optimal Allocation: Among all possible solutions with
minimal reconfiguration costs, Kraken computes the one
with the minimal embedding footprint.

FUERST et al.: KRAKEN: ONLINE AND ELASTIC RESOURCE RESERVATIONS FOR CLOUD DATACENTERS 429

4) Complexity: The time complexity of re-configuring (or
embedding) a virtual cluster is bounded by O(N ·n ·Δ)
in the worst-case, where N is the size of the substrate
(number of servers), n is the virtual cluster size, and
Δ = S + R + P is the number of servers in a single
rack S (i.e., the degree of a ToR switch), plus the number
of racks in a single pod R (i.e., the degree of an access
switch), plus the number of pods P (i.e., the degree of
a core switch).

Proof: The optimality proof unfolds in two central
lemmas: Lemma 1 is the key to the Minimal Reconfiguration
property, and Lemma 2 is the key to the Request Satisfaction
property. Finally, in Lemma 3, we prove the runtime
complexity.

Lemma 1: The function minMigs computes the minimal
number of migrations required to shift the center-of-gravity to
a given substrate node v.

Proof: We first note that a node v can only represent
a center-of-gravity of a virtual cluster VC under a new
embedding μ′ if (1) in μ′ at least n/2 CUs are embedded
below v, and if (2) μ′ describes a feasible embedding, i.e.,
no nodes or links are oversubscribed (or critical). If Condi-
tion (1) is violated, the allocation cost under an alternative
center (above v) is strictly lower.

Let L be set the of conflict links of embedding μ (function
computeConflictLinks). For each conflict link � ∈ L,
we can define the non-empty set S� of CUs whose bandwidth
reservation involves �, and whose removal will reduce the load
of link �. Due to the hierarchical structure of the substrate, if
two links � and �′ are on the same path from a host to center-
of-gravity v, and � is lower than �′ in the tree, it holds that
S� ⊆ S�′ . Thus, removing CUs in a descending order
of distance to v (see function minMigs), will minimize
the number of necessary changes. Finally, minMigs fulfills
Condition (2) by adding only the necessary number of CUs
below v. �

Since Kraken iterates over all possible center-of-gravity
locations v, Lemma 1 directly implies the Minimal Recon-
figuration property.

The next lemma shows that Kraken will always find a
feasible realization of a center-of-gravity v if it exists.

Lemma 2: Function footprint(v, |minMig(v)|) only
returns ∞ if it is unfeasible to make v the center-of-gravity.

Proof: From the proof of Lemma 1 we know that no
solutions exist with k < |M | migrations, where M is as
defined in minMig. Function footprint first computes
the embedding costs at and below v, after which x =
|M |−∑

v′ slotCount(v′) conflicts below v are left. While each
additionally released CU below v frees up one slot for some
child v′, it at the same time increases the set of conflicts from 1
to |M |. Thus, the resulting number of conflicted CUs to place
above v remains z. A cost footprint(v, |minMig(v)|) =
∞ implies that z > 0, since for z = 0, costsAbove(v, 0) =
0 and hence footprint(v, |minMig(v)|) <∞

On each tier in the substrate, costAbove(v′, z′) can return
∞ if the uplink of v′ does not have enough spare bandwidth
(b · δ · z′). Since minMig generated a conflict-free partial
embedding, we get z′ > 0 if there is a conflict and b and δ are

positive. The relation z′ > 0 implies that no resources are left
on the previous tiers (z′′ >

∑
slotCount(v′′)). Hence, each

released CU will increase the spare capacity on the uplink by
b ·δ, but also increase z′ by one, inhibiting a feasible solution.
Once function costAbove reaches the core switch, ∞ is
returned. In this case, the sum of all slotCount(v)-values for
the pods is less than |M |. Releasing a CU in any pod will
increase the slotCount(v)-values for that pod by one and at
the same time increase |M | by one. Hence this conflict cannot
be resolved by migrating additional CUs. �

Again, since Kraken iterates over all locations v, the Request
Satisfaction holds. The Optimal Allocation property can be
shown along the same lines. The time complexity of Kraken
is as follows.

Lemma 3: The time complexity to satisfy a request is
bounded by O(N ·n ·Δ) in the worst-case, where N is the size
of the substrate (number of servers), n is the virtual cluster
size, and Δ = S +R+P is the number of servers in a single
rack S (i.e., the degree of a ToR switch), plus the number of
racks in a single pod R (i.e., the degree of an access switch),
plus the number of pods P (i.e., the degree of a core switch).

Proof: The computation of the slotCount(v)-values
requires O(N · Δ) time as the dynamic program runs in a
bottom-up manner. Subsequently, Kraken iterates over all pos-
sible center-of-gravity locations in the fat-tree (time O(N)):
for each candidate COG, conflicts are computed along the
links from the assigned server of each CU to the potential
COG (time O(n)), together with the costs for the resulting
embedding (time O(Δ)). The overall runtime for finding the
optimal COG is hence O(N ·n ·Δ) The actual embedding can
utilize the previously computed list of conflicts and distribution
of migrated CUs across the substrate. To generate a feasible
embedding from here it is necessary to traverse through the
sub-trees which should host the migrated CUs afterwards.
During this traversal, we visit at most N nodes and check their
slotCount(v) values, again at a runtime of O(N). Hence, the
overall runtime amounts to O(N · n ·Δ). �

�
Note that Kraken can also be used to embed virtual clusters

from scratch, and ensuring a minimal footprint. Thus, together
with property 4), Kraken also outperforms state-of-the-art
virtual cluster embedding algorithms which do not support
any reconfigurations, e.g., [14], [31], at least in the worst-
case: Our simulations show that Oktopus [5] and Proteus [9]
find fairly good embeddings with small footprints as well.
However, in the worst case, their performance can be arbi-
trarily bad compared to Kraken. In the case of Oktopus, a
small virtual cluster which could be hosted by a single server
(Kraken footprint: 0) may be embedded across multiple servers
(footprint > 1). In the case of Proteus, the ratio of the optimal
footprint computed by Kraken and the footprint by Proteus
can be as high as n/3: such an example can be constructed
by exploiting the fact that Proteus will only consider cross-
pod embeddings if a request cannot be fit in a single pod.
Thus, in case n − 1 slots are available on a single server
in one pod and n times one slot is available on servers in
another pod, the Proteus footprint is 2n while the footprint of
Kraken is 6.

430 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

F. Alternative Migration Cost Models

For ease of exposition, we presented Kraken for a simple
model where the objective of minimizing the number of migra-
tions is prioritized over optimizing the embedding footprint.
However, our algorithms can be extended to other migration
cost models and trade-offs between migration and footprint
costs, without sacrificing optimality. For instance, intra-pod
migration costs could be modeled to be cheaper than inter-
pod migrations, and migration costs could also depend on the
available bandwidth along the migration path.

V. EVALUATION

We conduct extensive simulations to study the feasibility
of online reservation upgrades at runtime. By default, we will
assume the same settings and parameters as used in previous
work [5]. However, given our more dynamic environment, we
also introduce a model for elastic reconfiguration requests,
and conduct a sensitivity analysis, studying the impact of
different factors (such as magnitude of reconfiguration and
system load) by using parameter sweeps.

A. Metrics

We consider the following two metrics:
Acceptance Ratio. Ideally, a system such as Kraken should

be able to accept and satisfy as many requests as possible.
For each request (either arrival of a new virtual cluster or
a reconfiguration request), we distinguish whether or not the
request was satisfied and, if satisfied, whether it was satisfied
(1) with or (2) without migrations. Note that Kraken does not
use “strategic access control” (e.g., to favor “small” requests
to improve that acceptance ratio); in fact, Kraken never rejects
a request if it can be satisfied.

Reconfiguration Costs. While our simulation does not
capture many parameters that determine the actual cost of a
migration, we count the number of migrations; this is a natural
metric given the uniform size of CUs of the virtual cluster.
In particular, we will report on the fraction of migrated CUs
relative to the virtual cluster size, which provides more insights
than an absolute number.

B. Methodology & Runtime

Substrate. We model the datacenter as a three-level fat-
tree. Overall, we have 16,000 servers distributed over P = 10
pods of R = 40 racks each; a rack contains S = 40 servers.
By varying the connectivity and the bandwidth of the links
between the switches, we change the over-subscription of the
physical network. By default, we will assume that the access
network is oversubscribed by a factor γ1 = 4, while the core
is not oversubscribed (γ2 = 1). The available bandwidth is
B = 10 Gbps.

Demand. New virtual cluster requests arrive according to
a Poisson process with λ = 0.36. The lifetime of each virtual
cluster is chosen according to an exponential distribution with
average 3,600 s (one hour). By default, the size of a virtual
cluster and the bandwidth are chosen from an exponential
distribution with mean 49 and 2.5 Gbps respectively.

The parameters are normalized to induce a system load of
0.75 on average. The size of the virtual cluster in numbers
of CUs is chosen randomly from an exponential distribution,
with an average of 49 CUs per cluster.

Elastic Model. To add dynamicity to the virtual cluster
demands, we use six additional Poisson processes2 which
continuously pick virtual clusters for upgrading and/or down-
grading in a multiplicative manner. More precisely, the embed-
ded clusters are continuously reconfigured by these six inde-
pendent processes which randomly choose one of the exist-
ing clusters and perform a multiplicative update, i.e., either
(1)+(2) upgrade or downgrade the bandwidth by a factor fb

(fb corresponds to δ in our formal sections), (3)+(4) increase
or decrease the cluster size by a factor fn (fn is the mul-
tiplicative version of the additive x in our formal sections),
(5)+(6) jointly upgrade or downgrade the bandwidth and the
cluster size by a factor f . By default, we assume that f =
fb = fn = 1.5. With regards to reporting the results, we focus
on the upgrades as these are the ones which trigger migrations.

To ensure the statistical significance, we run our simulations
for 80,000 rounds, which is roughly eighty times the duration
(i.e., lifetime) of a virtual cluster. To avoid artifacts related to
the initial empty substrate, we omit the first 10k requests.

Runtime. In this scenario, Kraken requires 86 ms on
average to satisfy any given request (the 99th percentile is
344 ms), when run on an Intel i3-2310M CPU @ 2.10GHz.

C. Baseline Comparison

Kraken features two main mechanisms for the efficient
upgrade of a virtual cluster: (1) Kraken allows to upgrade
an existing embedding by increasing the bandwidth between
CUs at their current locations, as well as by the extending
the cluster by the local addition of new CUs; (2) if a local
extension is not sufficient to satisfy a request, Kraken also
supports the re-embedding, i.e., migration of existing CUs.

In order to understand the contribution of each of these
two features, we break down the analysis of Kraken into two
steps: We first study a variant of Kraken, called KrakenNP,
which does not perform fine-grained migrations. (NM stands
No (local) Migrations.) That is, KrakenNP is equivalent to
Kraken, but if a request cannot be satisfied with the given CU
embedding, it resorts to embedding the virtual cluster with the
new specification from scratch. Subsequently, we study the
full-fledged Kraken system which can migrate CUs arbitrarily
in order to satisfy requests (subject to the usual constraint
that the number of migrations should be kept minimal).
For a simple baseline comparison, we also re-implemented
Oktopus [5]; we extended Oktopus so that requests can be
satisfied by re-embedding.

To give a basic understanding of the number of migrations
required to support elastic virtual clusters, Figure 6 plots
the empirical cumulative distribution function (ECDF) of
the migration cost for the three algorithms KrakenNP,
Kraken and Oktopus, and the three operations: add CUs,

2While Poisson distributions are commonly used to describe arrival patterns,
we still lack good empirical models for the kinds of workloads considered in
this paper.

FUERST et al.: KRAKEN: ONLINE AND ELASTIC RESOURCE RESERVATIONS FOR CLOUD DATACENTERS 431

Fig. 6. Reconfiguration costs: KrakenNP vs. Kraken vs. Baseline (augmented
Oktopus)—(left:) cluster size upgrade, (middle:) bandwidth upgrade,
(right:) joint upgrade. The legend on the left is valid for all three plots.

upgrade bandwidth, and joint upgrade of CUs and bandwidth.
Note that when a new embedding is performed to satisfy an
upgrade request, the mechanism will guide the embedding
process to a similar configuration. This means that when
possible, the CUs will be assigned to the same old location,
which, hence, will not be counted toward the migration cost.
This explains why in some cases the migration cost of Oktopus
and KrakenNP can also have values different from zero (no
migrations) and one (all CUs are migrated).

We first discuss a scenario where only the bandwidth is
upgraded. In Figure 6 (middle), we can observe that already
KrakenNP is far superior to Oktopus as it can satisfy 45% of
the upgrade requests without migrations at all, while Oktopus
has to migrate all CUs of a VC for 80% of the upgrade
requests. In general, we find that Oktopus will likely find
similar embeddings (with few migrations) if the upgrade
request happens temporally close to the embedding time.
However, later it becomes likely that virtual clusters will be
embedded on a different sub-tree (or pod), resulting in many
migrations. The performance of Kraken is very similar to the
one of KrakenNP. However, the missing support of partial and
coordinated migrations leads to ≈ 50% cases where KrakenNP
has to migrate all CUs, while Kraken can avoid migrating more
then 50% of the CUs for nearly 80% of the requests.

The corresponding results for cluster size upgrades are
shown in Figure 6 (left). While Oktopus can only embed
about 10% of the upgrade requests without migrating any CUs,
Kraken can upgrade 70% of the requests without migration.
KrakenNP achieves a similar performance, and only for 10%
of the requests, we can observe an improvement ≥ 5% with
Kraken in terms of reconfiguration costs.

Figure 6 (right) studies joint upgrades (bandwidth and clus-
ter size). Here, the overall performance of Oktopus remains the
same, and the performance of Kraken and KrakenNP becomes
a mixture of the previous cases. While both variants of Kraken
need no migrations for 35% of the requests, KrakenNP has to
migrate all CUs for 40% of the requests, while Kraken can
satisfy about 70% of all requests without migrating all CUs.

D. Sensitivity Study

Next, we conducted a sensitivity study of Kraken, in which
we performed parameter sweeps for the up- and downgrade
ratios fb and fn, the mean number of CUs per request, the
bandwidth requirements per CU, the substrate load, and the
access network over-subscription ratio. We will first study

Fig. 7. Kraken acceptance ratios: without migration (dark gray), with
migration (light gray)—(left:) cluster size upgrade, (middle:) bandwidth
upgrade, (right:) joint upgrade.

Fig. 8. Scatter plot of reconfiguration cost vs. fan-out ration—(left:) cluster
size upgrade, (right:) bandwidth upgrade.

the effect of the upgrade ratios fb = fn in greater detail,
and subsequently, we report on our general observations for
the other parameters.

Figure 7 shows the acceptance ratio for virtual cluster
upgrades as bar plots. The dark gray area corresponds to
upgrade requests that do not require migration. The light
gray component of the bar corresponds to those requests that
can be satisfied by Kraken but require migration. We again
have three subplots corresponding to the three operations:
adding CUs, upgrading bandwidth, and joint upgrades of
CUs and bandwidth. The impact of the upgrade factor f is
significant, opening a spectrum from “accepting almost all
requests without migrations” (for factors close to one) to “no
migration for only 50% of the cluster size upgrade requests”.
The impact of f on the bandwidth upgrades is even more
articulated. As expected in the joint upgrade scenario, the two
factors are amplified. Indeed, the problem is unfeasible for
more than 40% of the requests if the upgrade factor is 2.

To explain why it is often possible to satisfy cluster size
upgrade requests without migrations, Figure 8 plots (for
upgrade factor 1.5) the reconfiguration cost (in terms of
migrations) vs. the fan-out ratio (number of used servers), i.e.,
the fan-out after the upgrade operation divided by the fan-out
before the upgrade. Let us start with the cluster size upgrades.
Figure 8 (left) has two interesting areas: First, the one with no
migrations which corresponds to zero reconfiguration costs.
Here the fan-out ratio increases up to a factor of three as
additional CUs can simply be added in the corresponding
sub-tree. Second, those that require migrations require full
re-configurations and therefore fall to the right hand side of
the plot. There are not that many requests in between the
two extremes, and the fan-out is often around 1.5 if there

432 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Fig. 9. Kraken reconfiguration costs for upgrades with migrations—(left:)
cluster size upgrade, (middle:) bandwidth upgrade, (right:) joint upgrade.

are partial migrations, which is reasonable given the 50 %
upgrade. The plot for bandwidth upgrades (Figure 8 (right)) is
quite different. Since only the bandwidth is upgraded, the fan-
out does not change if no CU is migrated. In this case, there are
many upgrade requests with relatively small reconfiguration
costs while the cluster size upgrades created more extremes.
This can be explained by the collocation strategy used by
Kraken: for instance, if three CUs are hosted on a single server
prior to the upgrade, a bandwidth increase may require that
one CU be moved to another server to alleviate the load on
the uplink.

To better understand the difference between adding CUs
and upgrading the bandwidth, Figure 9 zooms into the light-
gray area and plots the distribution of the relative number
of migrations, given that the upgrade required at least one
migration. While in most cases it is sufficient to migrate less
than half of the CUs for bandwidth upgrades, it is necessary to
migrate more than 90% of the CUs, if any reconfigurations are
necessary during a size upgrade. This can be explained by the
different triggers of migrations for the two operations: In many
situations, the CUs of a VC are collocated with each other.
Adding CUs in this cases does not require reconfigurations,
as long as there is sufficient spare bandwidth on the sub-
tree, which currently hosts the VC. Contrary, even a small
bandwidth upgrade can change the maximum number of CUs
which can be collocated (e.g., a bandwidth upgrade from
2.4 Gbps to 2.6 Gbps changes maximum number of collocated
CUs from 4 to 3), which will require a share of the CUs
(in this case 25%) to be migrated. The only case in which
adding CUs will actually trigger migrations, occurs when the
sub-tree which currently hosts the VC is already highly filled,
and the center has to be moved in order to meet the bandwidth
guarantees. This can also happen during a bandwidth upgrade,
but the first case occurs more often, and hence has a strong
impact on the outcome shown in Figure 9. The joint upgrade
case, shows the combined effects of the other two described
upgrades.

We will now report on our observations for the other
parameters: Varying any of the above parameters by 50% never
caused the acceptance ratio to drop below 80%. Moreover, the
acceptance ratio for CU as well as bandwidth upgrades are
comparable to those of Figure 7. Joint upgrades are slightly
more complex but the acceptance ratio is still above 80%. The
largest difference we observed in the worst case acceptance
ratio was 6%.

With regards to the reconfiguration costs we find that cluster
size upgrades are typically more expensive. This is fully
consistent with the observations above. It also points out that

Fig. 10. CDF of the available bandwidth to migrate a compute unit for
upgrades which require migrations. Left: avg. bandwidth; Right: min. band-
width.

even local greedy search strategies for re-embedding CU size
upgrades can be fairly successful.

In general, we see that most parameters only have a
very small effect on the reconfiguration costs of bandwidth
upgrades, and a small effect on the joint upgrade. On average
across all evaluated parameters, bandwidth upgrades need
approximately one third reconfigurations per CU, while joint
upgrades typically require two third reconfigurations per CU.
This indicates that these operations benefit from the rigorous
optimizations of Kraken.

E. Bandwidth for Migrations

While compute units can be small and light-weight, it may
sometimes be desirable to migrate more state or entire VMs.
Therefore, we investigate the bandwidth available during CU
migrations. Figure 10 shows that for bandwidth upgrades,
on average, approximately 3 Gbps can be guaranteed along
the migration path of each CU on average; the minimum is
around 2 Gbps. For joint upgrades, the values are 2 Gbps
on average and 1 Gbps for the CU with the lowest available
bandwidth. These values are encouraging, indicating that even
large migrations are feasible in reasonable time. However, we
also see that on the occasion where cluster size upgrades
trigger migrations, the bandwidth can become critical: only
10% of the requests can guarantee more then 1Gbps of
bandwidth for the migrations. In such settings, one may have
to resort to a separate management network for migration.

VI. CASE STUDY WITH HADOOP

We now go back to the Hadoop case study introduced in
Section II. Hadoop is an appealing application for Kraken, as
the Hadoop framework natively supports tracking the progress
of a task. In Hadoop-YARN, MapReduce tasks inform the
Application Master about the progress of a task periodically.
The Application Master uses this information, for instance,
to speculate tasks that are straggling. A Kraken scheduler
can easily leverage this information. Moreover, the notion
of compute units in Kraken fit cleanly with Hadoop-YARN’s
model in which tasks execute inside containers, an abstraction
for a fixed amount of resources. Hadoop also supports the
re-spawning of tasks at other Node Managers, a facility
already employed by the speculative execution mechanism.
Therefore, the Kraken model can be implemented within
Hadoop, wherein a container also includes a specification of

FUERST et al.: KRAKEN: ONLINE AND ELASTIC RESOURCE RESERVATIONS FOR CLOUD DATACENTERS 433

Fig. 11. Top: Map and reduce progress of a TeraSort job in best effort
conditions (dotted) and when using Kraken (solid lines). The X marks indicate
the point of job completion. Bottom: Bandwidth utilization for a TeraSort
job (black) with online bandwidth reservations (red) via Kraken.

bandwidth, and the Application Master may migrate tasks
to different containers in order to satisfy upgrade and/or
placement requests.

While we defer a full-fledged implementation of Kraken
as future work, in the following, we report on a preliminary
prototype, essentially a simplified version of the bandwidth-
reservation mechanism demonstrated in PANE [11]: however,
while PANE enforces bandwidth reservations as specified by
the administrator, we envision Kraken to feed a system like
PANE with the exact guarantees to enforce.

We implemented a simple controller that runs inside a
virtual machine and uses the Linux tc utility in order to make
bandwidth reservations. We instrumented the Hadoop source
code such that tasks inform the controller prior to executing
a shuffle. If there is spare bandwidth to be allocated, the
controller increases the corresponding endpoint’s bandwidth
reservation. Once the shuffle is completed, the Hadoop frame-
work informs the controller of the same in order to release its
reservations. Migrations are not supported yet.

Using this framework, we then executed the TeraSort bench-
mark against a dataset size of 100 million 100-byte records
(a total of ~10 GB of data). We co-locate the Hadoop data
nodes against a set of VMs that generate UDP flows on
the network using iperf. The UDP flows are set to last
400 seconds at a throughput of 600 Mbps, which significantly
stresses the underlying 1 Gbps network. Hadoop is initially
allocated only 100 Mbps of bandwidth, but requests additional
bandwidth when shuffles are to be executed (with the UDP
tenant given best-effort service, and left to consume the
remaining bandwidth throughout). Figure 11 (top) indicates the
map and reduce progress with and without online reservations.
Without online reservations, the UDP tenant interferes heavily
with Hadoop’s network usage, thus prolonging the TeraSort
job until the UDP flows terminate. With online reservations
however, Hadoop requests bandwidth when it needs it, leading

to just under 300 seconds of improvement in job completion
time. Figure 11 (bottom) indicates the the bandwidth reserva-
tions over time as requested by Hadoop (red) and the actual
bandwidth used by Hadoop (black). Note that this is in contrast
to having to provision for the peak utilization for the entire
duration of the run, which would in turn affect efficiency.

VII. RELATED WORK

Cloud Network Performance. Over the last few years,
researchers and practitioners have recognized the importance
of predictable network performance in a multi-tenant
datacenter [26]. One solution is the one adopted by Amazon’s
Compute Cluster approach, which avoids multi-tenancy
entirely but comes at the cost of reduced efficiency (limited
or no resource sharing). Other solutions, instead, extend the
max-min per-flow based fairness model provided by TCP to
support new per-tenant fairness models [21], [23], [28], [32].
With these proposals, however, the performance for a given
tenant is still dependent on the number of other tenants and
their workload, and, hence, cannot be accurately predicted.

In contrast, solutions based on explicit bandwidth reser-
vations [5], [9], [17], [29], [30] allow the tenant to specify
the desired bandwidth, usually assuming a Hose model [13],
and sometimes even with work-conservation guarantees [18].
The main motivation for our work is that none of these
solutions allows tenants to update their bandwidth reservation
at runtime.

Proteus [9] introduces the concept of Time-Interleaved
Virtual Clusters which model the time-varying nature of
networking requirement of cloud applications such as Hadoop.
However, in contrast to Kraken, the number of virtual
machines as well as their location in the substrate is constant
(i.e., fixed) during the entire execution; only the bandwidth
reservation between the CUs can be changed over time. Also,
it may not be possible to satisfy certain time-varying requests
upfront, as they can only be realized with migrations. Finally,
Proteus is an offline approach: In Proteus, each application is
profiled first, and the inferred execution patterns are then taken
into account when embedding the virtual networks. As we
have argued, we believe that this approach is problematic
in multi-tenant datacenters, where unexpected events and
stragglers are a reality; moreover, it limits the approach to
batch-processing type of applications with limited runtimes
only (long-running services like interactive web-sites or data
stores cannot be modeled). Finally, even in the absence of
failures or stragglers, we argue that execution patterns may
significantly differ from execution to execution, due to factors
such as varying data inputs and differences in data-locality
caused by the application.

Elastic Computing: A recent class of systems exploit
the so-called time malleability of many batch processing
framework to reconfigure at runtime the amount of resources
allocated to each job. For example, Amoeba [2] and Natjam [8]
use task preemption to re-distribute at runtime the resources
allocated to running jobs. This can be used, for instance,
to compensate for deviations from the expected perfor-
mance due to stragglers [12] or to enable flexible pricing
mechanisms [25].

434 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Due to the lack of systems that enable dynamic reconfig-
uration of network resources, all these systems only focus
on computation resources. However, in real workloads, a
large fraction of the time of a job is spent on network
transfers [24]. Therefore, by disregarding network resources,
the effectiveness of these systems is greatly reduced.

We believe that Kraken can be successfully integrated with
these systems to provide comprehensive solutions that take
into account both compute and network resources. We leave
the exploration of these opportunities to future work.

Kraken can also be applied to systems such as Bazaar [19]
that provide a job-centric interface and allow the provider to
select the best combination of CUs and network resources.
By adding the ability of reallocating CUs and network
resources at runtime, we can expand the range of scheduling
opportunities.

Embedding: Many existing systems try to maximize the
number of virtual networks that can be hosted concurrently
on a given physical infrastructure, while providing the spec-
ified resource isolation [6]. Accordingly, embedding and/or
scheduling algorithms have been proposed to multiplex virtual
networks. Since the underlying problems are often computa-
tionally hard in many models [7], approximation algorithms
or heuristics are typically used.

This paper focuses on the embedding of virtual clusters in
fat-tree networks, and hence, from an embedding algorithm
point of view, Oktopus and Proteus are the papers most related
to ours. Both systems are based on a collocation strategy which
try to place CUs of the same virtual network close to each
other, in order to minimize the overall bandwidth allocation.
As a side contribution of our current paper, we also present a
linear-time algorithm to solve the virtual cluster embedding
problem in the fat-tree optimally: the problem considered
in [5] and [9] is not NP-hard and our algorithm is significantly
faster than the algorithms presented in [14] and [31] for other
topologies.

Bibliographic Note. A shorter version of this paper
(without detailed analysis and prototype) appeared at the
IEEE INFOCOM 2016 conference [15].

VIII. DISCUSSION

This paper presented the Kraken system which allows to
dynamically scale up and down the bandwidth and compute
resources allocated to a cloud application at runtime. Thus,
Kraken overcomes the weaknesses of existing solutions, in
which resource reservations either cannot be changed [5],
[17], [30], in which the entire resource schedule has to be
computed at job submission time [9], or in which either only
the bandwidth or the compute resources can be adapted, but
not both [9], [27], [33].

We described algorithms to find a configurable and opti-
mal trade-off between embedding and reconfiguration costs,
and complemented the formal guarantees by simulation and
through a preliminary Hadoop prototype.

While we have motivated our approach for batch-processing
applications such as MapReduce, the problem is relevant
more generally. We also believe that our perspective nicely
complements the recent work on time malleable systems like

Amoeba [2] and Natjam [8] or scheduling frameworks such
as Jokey [12]. Kraken can also be applied to systems such
as Bazaar [19] that provide a job-centric interface and allow
the provider to select the best combination of CUs and net-
work resources. The ability of reallocating CUs and network
resources at runtime can expand the range of scheduling
opportunities.

We believe that our work opens several interesting direc-
tions for future research. On the theoretical side, it will
be interesting to study how to generalize our algorithms
beyond fat-tree networks: related work (such as [31]) on single
request embeddings without support for migration suggests
that polynomial-time algorithms may still exist. The main open
question however concerns the study of scheduling algorithms
that leverage the Kraken interface to better schedule executions
over time, also leveraging possible prediction models.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM SIGCOMM, 2008,
pp. 63–74.

[2] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and
I. Stoica, “True elasticity in multi-tenant data-intensive compute clus-
ters,” in Proc. ACM SOCC, 2012, Art. no. 24.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. USENIX NSDI, 2013,
pp. 185–198.

[4] G. Ananthanarayanan et al., “Reining in the outliers in Map-Reduce
clusters using mantri,” in Proc. USENIX OSDI, 2010, p. 24.

[5] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. ACM SIGCOMM, 2011,
pp. 242–253.

[6] A. Belbekkouche, M. M. Hasan, and A. Karmouch, “Resource discovery
and allocation in network virtualization,” IEEE Commun. Surveys Tuts.,
vol. 14, no. 4, pp. 1114–1128, 4th Quart., 2012.

[7] C. Chekuri, F. B. Shepherd, G. Oriolo, and M. G. Scutella, “Hardness
of robust network design,” Networks, vol. 50, no. 1, pp. 50–54, 2007.

[8] B. Cho et al., “Natjam: Design and evaluation of eviction policies for
supporting priorities and deadlines in MapReduce clusters,” in Proc.
ACM SOCC, 2013, Art. no. 4.

[9] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: Incorporating time-varying network reservations in data
centers,” in Proc. ACM SIGCOMM, 2012, pp. 199–210.

[10] G. Even, M. Medina, G. Schaffrath, and S. Schmid, “Competitive and
deterministic embeddings of virtual networks,” Theor. Comput. Sci.,
vol. 496, pp. 184–194, Jul. 2013.

[11] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An API for application control of SDNs,” in
Proc. ACM SIGCOMM, Hong Kong, Aug. 2013, pp. 327–338.

[12] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: Guaranteed job latency in data parallel clusters,” in Proc. 7th
ACM EuroSys, 2012, pp. 99–112.

[13] J. A. Fingerhut, S. Suri, and J. S. Turner, “Designing least-cost non-
blocking broadband networks,” J. Algorithms, vol. 24, pp. 287–309,
Aug. 1997.

[14] C. Fuerst, M. Pacut, P. Costa, and S. Schmid, “How hard can it
be?: Understanding the complexity of replica aware virtual cluster
embeddings,” in Proc. 23rd IEEE Int. Conf. Netw. Protocols (ICNP),
Nov. 2015, pp. 11–21.

[15] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
elastic resource reservations for multi-tenant datacenters,” in Proc. 35th
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[16] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. ACM SIGCOMM, 2009, pp. 51–62.

[17] C. Guo et al., “SecondNet: A data center network virtualization archi-
tecture with bandwidth guarantees,” in Proc. ACM CoNEXT, 2010,
Art. no. 15.

[18] S. Hu et al., “Providing bandwidth guarantees, work conservation and
low latency simultaneously in the cloud,” in Proc. IEEE INFOCOM,
Apr. 2016, pp. 1–9.

FUERST et al.: KRAKEN: ONLINE AND ELASTIC RESOURCE RESERVATIONS FOR CLOUD DATACENTERS 435

[19] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
“Bridging the tenant-provider gap in cloud services,” in Proc. SOCC,
2012, Art. no. 10.

[20] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “SkewTune in action:
Mitigating skew in MapReduce applications,” Proc. VLDB Endowment,
vol. 5, no. 12, pp. 1934–1937, 2012.

[21] L. Popa et al., “FairCloud: Sharing the network in cloud computing,”
in Proc. ACM SIGCOMM, 2012, pp. 187–198.

[22] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner, “Cicada:
Introducing predictive guarantees for cloud networks,” in Proc. 6th
USENIX Workshop Hot Topics Cloud Comput. (HotCloud), Philadelphia,
PA, USA, Jun. 2014, pp. 14–19.

[23] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese, “NetShare:
Virtualizing data center networks across services,” Univ. California,
San Diego, CA, USA, Tech. Rep. CS2010-0957, 2010.

[24] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” in Proc.
ACM SIGCOMM, 2011, pp. 98–109.

[25] L. Mai, E. Kalyvianaki, and P. Costa, “Exploiting time-malleability in
cloud-based batch processing systems,” presented at the LADIS, 2013.

[26] J. C. Mogul and L. Popa, “What we talk about when we talk about
cloud network performance,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 5, pp. 44–48, 2012.

[27] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing per-
formance interference effects for QoS-aware clouds,” in Proc. EuroSys,
2010, pp. 237–250.

[28] L. Popa et al., “ElasticSwitch: Practical work-conserving bandwidth
guarantees for cloud computing,” in Proc. ACM SIGCOMM, 2013,
pp. 351–362.

[29] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and
A. C. Snoeren, “Cloud control with distributed rate limiting,” in Proc.
ACM SIGCOMM, 2007, pp. 337–348.

[30] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. O. Guedes,
“Gatekeeper: Supporting bandwidth guarantees for multi-tenant data-
center networks,” in Proc. 3rd Conf. I/O Virtualization (WIOV), 2011,
p. 6.

[31] M. Rost, C. Fuerst, and S. Schmid, “Beyond the stars: Revisiting virtual
cluster embeddings,” ACM SIGCOMM Comput. Commun. Rev., vol. 45,
no. 3, pp. 12–18, 2015.

[32] A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Seawall: Performance
isolation for cloud datacenter networks,” in Proc. USENIX HotCloud,
2010, pp. 1–7.

[33] K. C. Webb, A. Roy, K. Yocum, and A. C. Snoeren, “Blender: Upgrading
tenant-based data center networking,” in Proc. ANCS, 2014, pp. 65–75.

[34] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
in Proc. USENIX OSDI, 2008, pp. 29–42.

[35] Measuring EC2 System Performance. Accessed: Aug. 1, 2017. [Online].
Available: http://goo.gl/V5zhEd

Carlo Fuerst received the Diploma and Ph.D.
degrees in computer science from the Technical
University of Berlin, Germany, in 2011 and 2016,
respectively. He is currently with the SAP Innova-
tion Center Potsdam. His research interests revolve
around the reliable performance for elastic cloud
environments and algorithms for virtual network
embeddings.

Stefan Schmid received the M.Sc. and Ph.D.
degrees from ETH Zurich, Switzerland, in 2004 and
2008, respectively. In 2009, he held a post-doctoral
position at the Technical University of Munich and
the University of Paderborn. From 2009 to 2015,
he was a Senior Research Scientist with Telekom
Innovations Laboratories, Berlin, Germany. From
2015 to 2017, he was an Associate Professor with
Aalborg University, Denmark. He is currently a
Professor with the University of Vienna, Austria. His
research interests revolve around the fundamental

and algorithmic problems of networked and distributed systems.

Lalith Suresh received the joint master’s degree
in distributed computing from KTH, Stockholm,
and IST, Lisbon, and the Ph.D. degree from the
Technical University of Berlin, under the supervision
of Prof. A. Feldmann and Prof. M. Canini. He is
currently a Research Scientist with the VMware
Research Group, Palo Alto.

Paolo Costa received the M.Sc. and Ph.D. degrees
in computer engineering from the Politecnico di
Milano. He has been a Research Faculty with
the Imperial College London and a Post-Doctoral
Researcher with the Computer Systems Group,
Vrije Universiteit Amsterdam. He is currently a
Researcher with the Systems and Networking Group,
Microsoft Research, and an Honorary Lecturer with
the Department of Computing, Imperial College
London. His research interests include the inter-
section of distributed systems and networking with

particular emphasis on large-scale data centers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

