

warwick.ac.uk/lib-publications

Original citation:
Suresh, Lalith, Bodik, Peter, Menache, Ishai, Canini, Marco and Ciucu, Florin (2017)
Distributed resource management across process boundaries. In: SoCC '17 Symposium on
Cloud Computing, Santa Clara, California, 24-27 Sep 2017. Published in: SoCC '17
Proceedings of the 2017 Symposium on Cloud Computing pp. 611-623.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/92926

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
"© ACM, 2017. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
SoCC '17 Proceedings of the 2017 Symposium on Cloud Computing pp. 611-623.,
http://dx.doi.org/10.1145/3127479.3132020

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/92926
http://dx.doi.org/10.1145/3127479.3132020
mailto:wrap@warwick.ac.uk

Distributed Resource Management Across Process
Boundaries

Lalith Suresh1
VMware Research Group

Peter Bodik
Microsoft Research

Ishai Menache
Microsoft Research

Marco Canini
KAUST

Florin Ciucu
University of Warwick

ABSTRACT
Multi-tenant distributed systems composed of small services, such
as Service-oriented Architectures (SOAs) and Micro-services, raise
new challenges in attaining high performance and efficient resource
utilization. In these systems, a request execution spans tens to thou-
sands of processes, and the execution paths and resource demands on
different services are generally not known when a request first enters
the system. In this paper, we highlight the fundamental challenges of
regulating load and scheduling in SOAs while meeting end-to-end
performance objectives on metrics of concern to both tenants and
operators. We design Wisp, a framework for building SOAs that
transparently adapts rate limiters and request schedulers system-
wide according to operator policies to satisfy end-to-end goals while
responding to changing system conditions. In evaluations against pro-
duction as well as synthetic workloads, Wisp successfully enforces
a range of end-to-end performance objectives, such as reducing av-
erage latencies, meeting deadlines, providing fairness and isolation,
and avoiding system overload.

CCS CONCEPTS
• Computer systems organization→ Cloud Computing; n-tier ar-
chitectures;

KEYWORDS
Microservices, Service-Oriented Architectures, Resource Manage-
ment, Rate Limiting, Scheduling.

ACM Reference Format:
Lalith Suresh1, Peter Bodik, Ishai Menache, Marco Canini, and Florin Ciucu.
2017. Distributed Resource Management Across Process Boundaries. In
Proceedings of SoCC ’17, Santa Clara, CA, USA, September 24–27, 2017,
13 pages.
https://doi.org/10.1145/3127479.3132020

1Part of the work was done while at Microsoft Research.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-5028-0/17/09. . . $15.00
https://doi.org/10.1145/3127479.3132020

1 INTRODUCTION
Many organizations including Netflix, Amazon, Uber, SoundCloud,
Google and Spotify have adopted Service-oriented Architectures
(SOAs) [25] and Micro-services [52] to build large-scale Web ap-
plications [8, 47, 48, 53, 64, 70] and infrastructure systems [3, 71].
SOAs comprise fine-grained, loosely coupled services that commu-
nicate via lightweight API calls over the network. Every service
comprises multiple service instances or processes, each running
inside a physical or virtual machine. For instance, Netflix has sepa-
rate services for managing movie and user data, authentication, and
recommendations [49]. Typically, these divisions align with devel-
oper team structures [53]. These systems are commonly shared by
multiple tenants, where tenants may represent different external cus-
tomers or consumers, but also internal product groups, applications,
or system background tasks.

SOAs have three characteristics that complicate managing their
end-to-end latency and throughput. First, request execution in SOAs
spans tens to hundreds of services, forming a DAG across the service
topology [37]. The exact structure of the DAG is often unknown
when the request first enters the system, since it depends on multi-
ple factors like the APIs invoked at each encountered service, the
supplied arguments, the content of caches, as well as the use of load
balancing along the service graph. Second, by design, individual
services in SOAs lack end-to-end visibility into the service topology
and by extension, the request execution graph; in fact, services view
each other as black boxes. Third, requests from different tenants
contend for shared resources within individual processes of a ser-
vice such as threadpools, locks, blocking queues, and connection
objects. Isolation mechanisms at the host OS or hypervisor fail here,
as they lack visibility into the existence of multiple tenants as seen
by individual processes.

The above characteristics lead to fundamental resource manage-
ment challenges. The lack of end-to-end visibility and complex
request execution structures make it challenging to regulate two
key metrics in an SOA across multiple tenants (§3.2): (i) the end-
to-end throughput (and thereby, the load at every process) and (ii)
the end-to-end latency. To regulate system load, we must correctly
attribute overload to a specific subset of tenants, and rate limit the
entire chain of API invocations for only those tenants, with minimal
impact on others. Meeting end-to-end latency goals requires local
request scheduling decisions at every hop despite limited visibility
into the full request execution graph. Adaptively rate limiting and
scheduling requests is necessary to meet several performance objec-
tives that tenants and operators care about, such as avoiding overload,
guaranteeing throughput, sustaining fairness, meeting deadlines, en-
suring priorities, and achieving low latencies.

https://doi.org/10.1145/3127479.3132020
https://doi.org/10.1145/3127479.3132020

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA L. Suresh et al.

Unfortunately, existing libraries [50, 69] for building SOAs are
ill-equipped to deliver on the above performance objectives. These
libraries require extensive tuning of static thresholds for rate lim-
iters, circuit breakers [17], and timeouts to regulate both load and
latency. Setting these thresholds manually in a complex distributed
system is fragile and becomes out of date quickly as systems evolve
and workloads change [39, 51]. Furthermore, several case studies
highlight how complex interactions in SOAs not only lead to sharp
degradation in performance (e.g., lower throughput and higher laten-
cies), but also trigger cascading behaviors that result in wide-spread
application outages [7, 32, 34, 68]. These challenges necessitate
adaptive, end-to-end resource management for SOAs.

In this paper, we highlight the unique challenges involved in
meeting the above performance objectives in multi-tenant SOAs,
which are fundamentally different than typical network scenarios.
Our key contribution is the design of novel adaptive techniques for
SOAs that leverage existing building blocks (rate limiters and request
schedulers) to meet end-to-end performance goals, despite the lack
of global visibility into request execution DAGs and their load at
every service. These techniques are embodied in Wisp, a framework
for managing resources in SOAs with minimal operator intervention.

Wisp’s design hinges on the observation that rate limiting and
scheduling mechanisms at each process, only informed by measure-
ments of their local neighborhood, suffice to realize a broad set of
performance policies in SOAs. Wisp uses rate-limiting and back-
pressure mechanisms that operate at the granularity of groups of
requests which we term workflows. Wisp rate limits workflows such
that they share resources at every process according to throughput-
related policies, e.g., bottleneck fairness [45] or dominant resource
fairness [26]. Wisp also operates at the level of individual requests
and prioritizes their execution at each process according to latency-
related policies, such as Earliest Deadline First (EDF) [65] or Least
Slack Time First (LSTF) [35].

Enforcing the above policies, however, requires end-to-end knowl-
edge of bottlenecks in the service topology, and characteristics of the
request execution graphs. Wisp overcomes these obstacles through
several mechanisms. Wisp uses causal propagation of workflow
identifiers throughout the system to attribute resource utilization to
individual workflows. It then uses a novel distributed rate adapta-
tion mechanism §4.1, where upstream services throttle workflows
according to bottlenecks that emerge on their execution graph. The
aggressiveness of the throttling is determined through a configurable
parameter that tunes a tradeoff between high utilization and the
request drop probability (due to overload). Lastly, Wisp realizes end-
to-end variants of policies such as EDF and LSTF by dynamically
estimating end-to-end properties of each request (e.g., remaining
processing time). Importantly, Wisp decouples policy from mecha-
nism, and meets different performance objectives by only leveraging
building blocks that are already present in typical SOAs (namely,
rate limiters and schedulers). Our contributions are:
• We present characteristics of SOAs through a measurement

study of large production systems (§2) and highlight fundamental
challenges in meeting end-to-end performance objectives in multi-
tenant SOA settings (§3).
•We design Wisp (§4), a framework to enforce a diverse range

of resource management policies in SOAs by adaptively tuning rate
limiters and schedulers based only on local measurements at each

0.00

0.25

0.50

0.75

1.00

0 50 100 150

Unique services
per workflow

E
C

D
F

0.00

0.25

0.50

0.75

1.00

0 20 40 60

Workflows
per service

E
C

D
F

Figure 1: Workflows in production.

process. Importantly, Wisp achieves these goals through fully dis-
tributed mechanisms, without requiring prior knowledge of request
execution graphs and resource demands.
•We evaluate a Wisp prototype (§6). Our results show that Wisp

enforces a wide range of performance objectives such as avoid-
ing cascading failures, meeting soft end-to-end deadlines (e.g., 10x
improvement in the 99th percentile latency-deadline ratio), and iso-
lating low-latency workflows from high-throughput workflows (2x
improvement in average latencies).

2 SOAS IN PRODUCTION
We now discuss relevant characteristics of SOAs using a combination
of measurements from a large cloud provider and prior reports on
systems from other environments [8, 37, 47, 48, 53, 64, 70].

2.1 Services, processes and workflows
A single application such as bing.com, amazon.com, or netflix.com
is composed of multiple services. These services are typically main-
tained by separate teams (or even third parties) and communicate
exclusively over well-specified APIs [52]. Each service runs multi-
ple instances (OS processes), distributed across multiple servers or
virtual machines. Requests are dispatched to instances based on the
type of service; for example, requests can be load-balanced among
processes of a stateless service, whereas routing in stateful services
is typically based on some form of hashing. While a request typically
enters the system through an entry point service such as a set of fron-
tend web servers, requests may also originate from internal systems
that access shared infrastructure services. A workflow represents
application-specific “groups" of requests, that form an execution
DAG across a set of services [37]. For instance, all requests from
the same tenant may be classified as the same workflow.

2.2 Analysis of shared services
Bing. Figure 1 presents characteristics of the Bing SOA [37].

Here, each workflow is an execution DAG, and corresponds to dif-
ferent features of the larger offered application (including, but not
limited to, web, video, and image search). These workflows contend
for shared, in-memory resources such as threadpools at different
services.

Figure 1 depicts the number of services involved in the execution
of different workflows (left), and the number of unique workflows
seen per service (right). We note that 50% of workflows execute
across at least 13 services, and 5% of workflows even hit 78+ ser-
vices. Similarly, while several services process only one workflow,
we note that tens of core services are shared by multiple workflows.

bing.com
amazon.com
netflix.com

Distributed Resource Management Across Process Boundaries SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

!"!!#$

!"!#!$

!"#!!$

#"!!!$

#!"!!!$

% #& &%

!
"
#
$
%
&'
(
)
'
!
)
*
'
"
+
)
&(
)
,
-
"
.
&$
-
)

/
'
0
%
)
'
!
)
#
11
)
*
'
"
+
)
&(
)
,
2
,
%
-
3
4

!"#$%&$'("()*$'"*#+,$''$-".)"/"'$#01,$#Workflows	processed	by	a	service

Figure 2: Fraction of overall request processing time spent per service
in production. Each dot is a service, x-axis is the number of workflows
in that service, y-axis is the fraction of overall processing time spent
per-service.

For instance, 24 services are shared by at least 10 different work-
flows, with two services supporting 64 unique workflows. These
workflows have further semantics that affect their performance needs
(e.g., requests from real users require higher priority in the system
than those from bots).

Importantly, shared services (services processing two or more
workflows) are responsible for a large fraction of overall request
processing time (or work) in the system. Misbehaving workflows in
shared services can impact throughput and latency for other work-
flows (§2.4). We traced processing time statistics for each workflow
across all services (Figure 2). We observe that 53.7% of services
process at least two workflows. Nevertheless, they account for a
much larger fraction of the total work: 86% of request processing
time in the system is spent within shared services; 53% within ser-
vices that handle 5+ workflows, and 31% within services handling
10+ workflows. Shared services are therefore critical for end-to-end
performance.

Azure Storage. We also consider the Azure Storage platform [13].
It supports tens of external APIs, corresponding to reads, inserts,
deletes and scans of both data and metadata. The system comprises
services shared across workflows such as the front ends (FE), parti-
tion servers (PS), and extent nodes (ENs). The total CPU cycles for
serving a request within a service can vary by up to four orders of
magnitude across workflows [46]. Such variability calls for careful
resource accounting and management, e.g., to avoid starvation of
short requests. We discuss more characteristics about the system in
the evaluation (§6).

2.3 Opaque request execution DAGs
A crucial aspect of request execution in all these SOAs is the opacity
of the execution graph and its corresponding resource consumption
at each service. That is, each service is typically oblivious to the
(i) end-to-end execution graph of the request, which depends on
load balancing, multiple levels of caching, number of instances per
service, and API parameters used to invoke different services, (ii)
request amplification, wherein a single request at an upstream service
might correspond to thousands of requests at a downstream service,
and (iii) request cost, where different requests at an upstream service
may have varying costs further downstream; for instance, the cost of
loading an object in Azure Storage is proportional to the object size
and is potentially unknown when a request first enters the system at

an entry point. Lastly, request execution characteristics may change
as the codebase for individual services evolve, further aggravating
the opacity of request execution graphs [39].

2.4 Shared services and outages
The fact that different workflows contend for common resources
within shared services has led to outages among production sys-
tems. Visual Studio Online experienced an outage [34] caused by
an interaction of two different workflows in a hierarchy of services.
A single workflow was accessing a slow database deep in the ser-
vice hierarchy. The blocking RPC calls from the upstream service
eventually exhausted the service’s thread pool. This subsequently
starved other unrelated requests that were trying to connect to an
authentication service, causing widespread application unavailability.
A similar interaction across tiers led to an Amazon AWS outage [32].
Services therefore have to be aware of potential bottlenecks among
their downstream services. In another episode, a slowdown of some
Amazon EBS instances triggered a sequence of bottlenecks in re-
lated services. During the firefighting effort, operators manually
intervened to throttle upstream EC2 service APIs to reduce load on
the downstream EBS service, which affected more customers than
necessary [7]. Such manual intervention is challenging and error
prone.

3 OVERVIEW OF WISP
Wisp is a framework for building SOAs that enables end-to-end
resource management for diverse request types. Wisp creates groups
called workflows, defined as a set of requests that belong to the same
class or tenant and are bound by the same resource management cri-
teria. Tagging workflows provides fine-grained visibility into request
execution, which facilitates attribution of resource utilization and
processing activity to specific request groups. It allows processes
to differentiate between requests that are causally connected to dif-
ferent workflows. Wisp enforces resource sharing policies through
workflow-level mechanisms. In addition, Wisp uses request-level
mechanisms to prioritize request execution according to latency-
related policies. For instance, in the Bing SOA discussed in §2.2,
each request type may be classified as a workflow, allocated a fair
share of resources, and scheduled according to its urgency. On the
other hand, all requests originating from bots can be treated as a low
priority workflow, and be scheduled with no deadline targets.

In this section, we describe the performance goals of Wisp (§3.1),
and highlight the challenges in achieving them in a distributed setting
(§3.2). We then present in §3.3 the main building blocks of our
solution. A detailed description of the design follows in §4.

3.1 Performance objectives
We note that there are two classes of performance objectives of
interest in the SOA setting.

The first class pertains to regulating workflow-level end-to-end
throughput. This includes achieving high utilization to avoid wasteful
over provisioning [20], avoiding overload [32, 34], fairness and
performance isolation among competing workflows [26, 45, 61],
and provisioning shared services to offer a subset of users minimum
throughput guarantees (with best effort for others) [21].

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA L. Suresh et al.

w1

Process

2x
a1

b1

e1 e2

c1 c2

2x 2x

w2

a1

b1

e1 e2

c1 c2

a1

b1

e2

w3

Service

100rps 100rps100rps

Load:
400rps

Load:
400rps

Load:
100rps

Load:
100rps

Load:
100rps

Figure 3: Example service topology, workflows in §4.1. Services are sets
of processes. Workflows execute within processes, forming an execution
DAG. We depict the relevant parts of the service topology separately for
each workflow.

The second class of performance policies relate to managing
request-level end-to-end latencies. This includes differentiated ser-
vices or statically prioritizing some workflows over others (e.g.,
premium vs. free users, or interactive vs. background tasks) [20], or
meeting end-to-end latency deadlines (user facing web-sites often
need to load a page in under 100-400ms)[21, 63].

3.2 Challenges
The complex request execution DAGs and lack of global visibility
in the SOA setting poses unique challenges in meeting the above
performance goals.

Rate limiting must account for bottlenecks end-to-end. Con-
sider the services from Figure 3 and the three workflows w1, w2
and w3, all of which contend at processes a1. Assume a purely local
approach where all processes rate limit according to their local bottle-
necks. In this case, if w1 requests execute and timeout in overloaded
e2, the work they executed (and contention they introduced) in a1,
b1, c1 and c2 is wasted. Instead, an approach that rate limits w1 at a1
reduces wasted resources and increases the throughput ofw2 andw3
since more resources in a1 and e2 would be available. However, a1 is
not aware of (i) the downstream bottleneck e2, (ii) which workflows
use e2, and (iii) the load imposed by each workflow on e2. This
makes it challenging to determine rate limits for each workflow at a1.
Furthermore, as workflows contend for shared resources, their rate
limits at every hop have mutual dependencies and therefore cannot
be tuned independently of each other.

Meeting latency deadlines requires dynamic request-specific in-
formation. Scheduling requests at every process to meet end-to-end
latency guarantees is challenging due to the complex structure of
execution DAGs and the inherently stochastic nature of the problem
(e.g., queuing effects at each process). Specifically, achieving latency
goals depends on the processing times for each workflow at every
service of their execution DAGs [37]. In Figure 3, if w3 has a 300ms
end-to-end deadline and requires 250ms of processing time at e2, it
only has a budget of 50ms to complete at a1 and b1.

Despite myriad existing scheduling algorithms to prioritize re-
quests with different performance objectives (e.g., shortest remaining

Table 1: Notation used for algorithm description

w Workflow w
s Service s, defined as a set of processes
p Process p

αwp,d Amplification factor for w from p to process d
σwp Admission rate of w at p

time first (SRTF) [18] and least slack time first (LSTF) [35]), realiz-
ing these policies in a fully distributed setting remains non-trivial.
These algorithms rely on information such as the remaining pro-
cessing time and slack to deadlines, which need to be dynamically
estimated across diverse workflows.

3.3 Design principles
Given the scale and heterogeneity of the applications we aim to
support, the design of Wisp is driven by three core requirements:
(i) avoid centralized coordination, (ii) exchange minimal informa-
tion between services, (iii) operate without prior knowledge of a
workflow’s costs and graph structure. At the same time, Wisp must
provide building blocks for operators to enforce flexible system-
wide policies depending on their requirements with minimal tuning.
These considerations led us to a design with the following key func-
tionalities:

Workflow-level distributed rate adaptation. Processes use a lo-
cal policy to identify admission rates for requests of different work-
flows and share them with their upstream neighbors. Next, Wisp
uses a novel distributed rate adaptation protocol to bubble these
admission rates through the service chain, calibrating rate limiters
at upstream services to account for bottlenecks downstream. This
ensures that workflows are rate limited as early as possible instead
of only being throttled at the point of congestion (§3.2). Furthermore,
we perform admission control to avoid wasting resources on requests
that will not complete within their deadlines.

Request-level scheduling. Wisp leverages request schedulers at
every process to mediate access to local resources. Schedulers may
enforce fair queuing across requests from different workflows to
guarantee performance isolation, or use policies such as shortest job
first (SJF), earliest deadline first (EDF), and least slack time first
(LSTF) to optimize for a range of end-to-end performance goals.
Wisp dynamically estimates end-to-end properties of requests such
as their remaining processing time to execute algorithms such as
LSTF.

4 DESIGN
We now discuss our solutions for workflow-level distributed rate
adaptation and request-level scheduling.

4.1 Workflow-level rate adaptation
Following from §3.2, we design an algorithm which seeks to balance
the overall system utilization and the request drop probability (due
to overload), by setting appropriate rate limits at all processes in a
fully distributed manner. We outline our distributed algorithm for
adapting per-workflow rate limits system-wide in §4.1.1, provide an

Distributed Resource Management Across Process Boundaries SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

Algorithm 1 Rate adaptation at p ∈ w (every 100ms)

Constants: q: quantile parameter
1: σw

p ← LocalResourceSharinдPolicy ()

2: for all D | downstream services do
3: for all d | processes in service D do ▷ In parallel
4: σw

d ← GetRates (d)/αwp,d

5: σwp ←min(σwp ,Q (σwd (d ∈ D),q))

illustrative example in §4.1.2, and further comment on its tuning in
§4.1.3.

4.1.1 Distributed rate adaptation algorithm
The goal of each process p is to set a rate limit σwp for each workflow
w , to enforce a specific resource sharing policy across workflows,
while balancing the system utilization and the request drop prob-
ability. Concretely, every process p, for a workflow w , computes
a rate limit σwp as the minimum between the local rate limit and
the rate limits of downstream services of p. p periodically executes
Algorithm 1 (see notation in Table 1).

Monitoring workflow characteristics. To determine their local
rate limits as well as those of their downstream services, processes re-
quire information about each workload w . Specifically, each process
p monitors the average load on local resources by each workflow. It
also maintains αwp,d , the amplification factor of w from process p to
a downstream process d. For instance, in Figure 3, if the measured
arrival rates at a1 and b1 for w1 are 100 and 200, respectively, then
αw1
a1,b1 = 2; in other words, a single request of w1 in a1 triggers two

requests to b1 on average.

Adapting local rate limits (Line 1). Our algorithm starts with p
computing its local rate limits through an operator-specified policy
(§4.3). Policies observe the load on local resources by different
workflows to infer their costs (§5). They then compute local rate
limits such that the resulting share of each resource by a workflow
corresponds to a policy (say, bottleneck fairness). As the resource
share or cost for w changes, the local rate limits adapt accordingly.
In Line 1, p initializes σwp to the local rate limits by executing the
policy.

Trading off utilization for dropped requests (Lines 2-5). Next,
for each downstream service D, p queries the rate limits of the pro-
cesses d ∈ D, scaled by the amplification factor αwp,d (Lines 2-4).
Intuitively, if every process p sets its σwp according to the mini-
mum of its local rate limit and that of its downstream processes, we
avoid overload along the service topology. However, this approach
is conservative and may significantly reduce resource utilization. For
example, if a process communicates with 100 downstream processes,
a slowdown in one of those processes directly reduces the admission
rate which then propagates upstream.

Instead of using the minimum, we propose using a quantile func-
tion Q, which depends on a quantile knob q ∈ [0, 1] (Line 5). For
example, q = 0.5 uses the median downstream rate and makes Q ro-
bust to outliers; however, the overloaded downstream services drop
requests that are in excess of their announced rate limits. Navigating

this trade-off allows us to increase resource utilization. We discuss
the tuning of the knob q in §4.1.3.

Computing σwp (Line 5). Finally, p adjusts its announced rate
σwp as the minimum between the current rate and the value of Q ,
which can be regarded as the per-service aggregate rate (of D). p
distributes its announced σwp to its upstream processes in proportion
to their demands, when the upstream processes invoke GetRates (·)
(Line 4).

In summary, every iteration of Algorithm 1 bubbles up admis-
sion rates through the service topology, with processes of upstream
services enforcing rate limits that account for downstream service
rates according to the quantile knob q.

4.1.2 Rate adaptation trade-off by example
We now present a simple example to describe the behavior of Al-
gorithm 1. Consider the setting in Figure 3. The three workflows
w1, w2, and w3 have an arrival rate (demand) of 100rps each at a1,
and a subsequent load at (e1, e2) of (400, 400)rps, (100, 100)rps, and
(0, 100)rps respectively. Assume that all processes have a capacity
of 500rps each.

This implies that the total load at e2 from all three workflows
exceeds its capacity of 500rps. Assume running a max-min fairness
policy at e2, which, observing the load per workflow, asserts that w1
is exceeding its fair share of 300rps and needs to be rate limited.

With q = 0, σw1
a1 is computed to be 75rps, which guarantees that

e1 and e2 receive 300rps of load from w1, but thereby leaves 100rps
of spare capacity at e1. With q = 1, σw1

a1 in turn becomes 100rps.
This maximizes utilization at e1 (400rps), but e2 now drops 100rps
(incident load of 400rps, and rate limit of 300rps). This is a funda-
mental trade-off in the workflow rate limiting problem: calibrating
end-to-end rate limits to match the slowest process of bottlenecked
services risks under-utilization (q = 0), whereas matching the fastest
process risks wasting resources and dropping requests (q = 1).

4.1.3 Guidelines for setting the quantile knob
As the advertised rates in Algorithm 1 are non-decreasing in the
quantile knob q, both the request drop probability and system uti-
lization increase with q. Operators can leverage this property and
set q to properly balance the two. Suppose that the operator wishes
to minimize a weighted sum between the average request drop rate
and the average unused capacity. Let us focus first on a system with
a single service and a large number of processes. Assume that the
advertised rates σwd from Line 4 in Algorithm 1 are represented by a
random variable X with support [0,M] and density f (x), and also
αwp,d = 1. The goal of the quantile knob q can be expressed in terms
of minimizing a weighted sum of residual values

h(a) := E [(a − X)1a≥X] + βE [(X − a)1a≤X]

=

∫ a

0
(a − x) f (x)dx + β

∫ M

a
(x − a) f (x)dx .

The expectations correspond to the average drop rate and average
unused capacity under some arrival rate (demand) a; 1{ · } denotes
the indicator function and β is the weighting factor. Differentiating
h(a),

h′(a) =

∫ a

0
f (x)dx − β

∫ M

a
f (x)dx

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA L. Suresh et al.

W1 W2

b1

b1 c1

b1

b1 c1

Time

a1

b1 c1

W1

W2

W1
Deadline

W2
Deadline

W1
Deadline

W2
Deadline

Time

EDF:
W2 request
misses deadline

LSTF:
W1 and W2
meet deadline

(a1 b1 c1)(a1 b1)

W1

W2

Figure 4: Scheduling example: requests from w1 and w2 contend at a1
and b1. (Right) requests from w1 have a shorter deadline than w2, but
w2 requires additional processing time (at c1). (Top schedule) EDF pri-
oritizes w1 at b1 because of the closer deadline; w2 misses its deadline.
(Bottom schedule) LSTF considers the slack for w2 with progress met-
rics, and meets both deadlines.

and setting h′(a) = 0, we obtain that the optimal value of a, which
would be returned by the quantile function Q (·) in Line 5, must
satisfy P (X ≤a)

P (X ≥a) = β . In the particular case when β = 1 then a is the
median of X and consequently q = 0.5; as another example, if β = 3
then a would be the third quartile and q = 0.75.

Now consider a more general system with a DAG of n services.
Suppose the admission rates in each (process, service) pair are identi-
cally distributed. For β = 1, it can be shown that setting the quantile
to q = 0.5 and using our algorithm for rate adaptation would lead to
an optimal solution (the only difference in the analysis is that the
differential of the weighted sum of residual values would be nh′(a));
different values of β would lead to different optimal values of q.

Naturally, it is hard to a-priori determine the optimal value of
q for a general system as it depends on the distributions of the ad-
mission rates of the processes for each service, and also on the
distributions of the amplification factors. In fact, the operator can
theoretically benefit by setting different quantile values for each
(service, workflow) pair, e.g., via line-search procedure at a slow
time-scale. Nonetheless, guided by the above analysis and for sim-
plicity, we use q = 0.5 by default in our experiments (§6 presents a
sensitivity analysis of q).

4.2 Request-level scheduling
While regulating the system load already improves latency, we also
schedule requests at processes to further meet different performance
goals. In particular, we combat stochastic effects that inflate end-to-
end latencies such as bursty arrivals, and queuing at every hop.

Schedulers in Wisp enforce policies such as performance iso-
lation between requests of different workflows (e.g., protect low
latency workflows from head-of-line blocking due to throughput
heavy workloads [20]) or prioritize their execution based on end-to-
end performance objectives (e.g., meeting deadlines).

Need for estimating progress. Consider the goal of meeting end-
to-end deadlines. A natural scheduling algorithm to execute at every
hop is EDF, which prioritizes requests with closer deadlines. We

Table 2: Propagated metadata and components that use them
(*progress metrics (§4.2)).

Metadata Used by
Workflow ID Rate limiters, fair queuing, resource

accounting
Elapsed service time * LSTF, SRTF
Total service time * LSTF
Work so far * LASF
Total work * SJF
Deadline EDF, LSTF, drop logic

discuss an execution of EDF in the context of Figure 4. Requests
fromw1 execute serially at a1 and then b1. Requests fromw2 contend
with those from w1 at a1 and b1, but additionally also execute at c1.
At b1, requests from w1 have a closer deadline than those from w2.
EDF in this scenario causes b1 to prioritize w1 over w2, eventually
causing w2 to miss its deadline (Figure 4, top schedule).

Algorithms such LSTF remedy this by prioritizing requests ac-
cording to their remaining processing time and their deadline (Fig-
ure 4, bottom schedule). However, Wisp by design operates with-
out prior knowledge of the costs and DAG structure of workflows.
Therefore, to benefit from scheduling algorithms such as LSTF, Wisp
needs to estimate metrics such as the total and the remaining process-
ing time for each request as they execute. We achieve this through
progress metrics. Note, the processing time for a request differs from
its end-to-end latency (which includes waiting times). This is impor-
tant, because if a request needs only 1ms of processing at a process,
but the same workflow experienced 100ms of queuing delay in the
past, an “expected processing time" of 100ms mischaracterizes the
request’s priority for algorithms such as LSTF.

Progress metrics. We refer to metrics that reflect a request’s true
execution progress as progress metrics. Progress metrics can be
queried for the total end-to-end estimate, elapsed, and remaining
values at any point in the request execution. Example metrics we
track are the processing time and total work (demand divided by
capacity), which enable multiple scheduling algorithms (Table ??).
Every request therefore is “tagged" with the necessary progress
metrics, which is updated by processes as the request executes.

Our solution to track a request’s progress emulates the standard
recursive algorithm to compute the sum of all vertices in a DAG
(every process adds its local sum to the sum reported by its child
sub-trees). For metrics such as the remaining processing time, pro-
cesses scale the computed sums from their children by the degree
of parallelism. An alternative approach is to consider the maximum
reported sub-tree sum, which however tends to over-estimate the
expected processing time at other sub-trees. For metrics such as the
total expended work, a sum gives the desired result. As each request
executes, processes have an estimate of the elapsed value of the
metricm so far (melapsed). When a request’s execution completes
end-to-end at the originating process, the resulting total for every
metric (mtotal) is maintained at the entry points as an exponen-
tially weighted moving average (EWMA). For future invocations
of the workflow, mtotal is propagated with the request. Scheduling

Distributed Resource Management Across Process Boundaries SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

algorithms that use the remaining value of a metric (e.g., SRTF and
LSTF) estimate it asmtotal −melapsed at any instant.

4.3 Example operator policies
Policies to compute rate limits. Processes may choose to pro-

vide static throughput guarantees, calculate rates based on bottleneck
fairness, or receive feedback from the local queue schedulers and
resources. As long as processes expose their per-workflow rate limits
to their upstream neighbors, the rate aggregation mechanism trans-
parently ensures that upstream processes converge to rate limits that
factor in downstream restrictions (§4.1.1). We implemented a bottle-
neck fairness policy similar to [45]. With this policy, each process
p checks if a local resource is overloaded. If not, it ramps up the
announced rate limits for every workflow for which p is a leaf (no
further downstream services), by an additive probe factor β , scaled
according to the amount of spare capacity available (this increases
the rate faster when there is spare capacity available and is conser-
vative otherwise). If instead a local resource is bottlenecked, the
system calculates max-min fair shares for the contending workflows.

Local scheduling policies. We now discuss multiple scheduling
policies realized using our framework. We implemented a multi-
resource fair queuing scheme similar to [62]. Fair queuing across
workflows protects short and bursty workflows that do not benefit
from rate limiting (§??). The scheduler uses the deficit round-robin
algorithm [61], wherein every workflow gets a number of credits
per-round and credits are consumed based on the expected cost
of the requests. A fixed number of credits per-round are budgeted
across each workflow in proportion to the shares per-workflow (com-
puted via a bottleneck fairness allocation or via DRF [26]). To meet
end-to-end deadlines, our LSTF policy favors requests with the
least remaining slack (§??). All scheduling policies are enabled by
progress metrics and other metadata propagated via the requests.

Admission control and drop policies. To regulate queue lengths
system-wide (rate limiters, scheduler, and resource queues), requests
need to be dropped according to different policies. For instance, a
drop policy we use ensures that when a request from a workflow
w arrives at a rate-limiter in p (shaping at rate σwp), the rate-limiter
only queues a request such that it is feasible to meet the deadline.
The policy computes the maximum tolerable queuing delay for a
request from the request’s deadline, the average observed end-to-end
latency for w from p onwards, and the elapsed time so far. If the
expected queuing delay on the rate-limiter (inferred from the back-
log) exceeds the calculated tolerance, the request is dropped. Wisp
thus drops requests that have little chance of completing within their
deadlines, freeing up resources for other requests. Note, typically,
SOAs gracefully degrade service when sub-systems cannot service
a request [12].

5 WISP IMPLEMENTATION
We find that the basic building blocks to introduce Wisp are available
in most SOA frameworks [50, 69, 72], making it feasible to realize
these ideas today. Our prototype is implemented as a C# library.

Execution model. We align our design with execution models
of SOA frameworks today. Wisp comprises three components (Fig-
ure 5): (i) the user code which contains the business logic for the

Request

Distributed
rate control

Cicero
Instance

Request SubTask SubTask

Rate Limiter SubTask
Scheduler

SubTask

Local model and
measurements

Policies

Rate Limiter

Request

User
code

Wisp
Instance

Request

Distributed
rate control

Wisp
Instance

Metadata
Propagation

Rate control
protocol

Distributed
rate control

Figure 5: Wisp architecture. Policies examine resource utilization by
different workflows locally and determine rate limiting and sub-task
scheduler behavior. Distributed rate control automatically tunes up-
stream rate limits to reflect downstream bottlenecks. Metadata prop-
agation enables end-to-end scheduling policies.

application, (ii) a core that monitors workflow and resource charac-
teristics, and transparently executes the distributed rate adaptation
algorithm and metadata propagation for scheduling, and (iii) the
operator specified policies that define how to compute local rate
limits and scheduling decisions. Developers building micro-services
express business logic as compositions of sub-tasks triggered by
the arrival of requests (sub-tasks are equivalent to Hystrix com-
mands [50] and Xenon tasks [72]). Rate limiting decisions are made
against requests, whereas scheduling decisions are made against
sub-tasks.

The core bridges user code and operator policies. As sub-tasks
execute, they utilize resources such as connection pools, locks, and
threadpools. Each request in Wisp has a context object propagated
with it, which holds necessary metadata required for the operator
policies such as the workflow ID, deadline and metrics that estimate
request progress (§4.2). Furthermore, Wisp monitors utilization of
the local resources and infers properties of the workflows. The meta-
data propagation and local model inform resource management
decisions by the operator policies (§4.3). The distributed rate adap-
tation then automatically translates the constraints exposed by the
rate limiting policies at each process into upstream rate limits, while
factoring in workflow characteristics (Algorithm 1). The sub-task
scheduler is invoked between each execution of a sub-task, wherein
it prioritizes sub-tasks based on the scheduling policies specified by
the operator.

Estimating workflow and resource characteristics. The algo-
rithms in §4 assume the availability of some measurements at every
process. This includes the arrival rates of requests per-workflow,
the number of further calls per-request to downstream services (am-
plification factors, α), the load per workflow per resource, and the
average completion time of a workflow once admitted. We track EW-
MAs of these measurements over a control interval. Furthermore,
resources managed by Wisp track the load by workflow (similar
abstraction as in Retro [45]). For instance, for threadpool resources,
the average service time of each workflow’s task execution gives us
the load. Other in-process resources such as connection pools and
objects are wrapped by semaphores as in Hystrix [50] to limit con-
currency, and the duration for which a workflow holds a semaphore
is used to compute the load.

Metadata propagation. Mechanisms to propagate metadata across
process boundaries are a standard feature in several SOA frameworks.

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA L. Suresh et al.

Front
End

Front
End

Front
End

Front
End

Front
End

Partition
Service

Front
End

Front
End

Auth
Service

Front
End

Front
End

Extent
Nodes

FE

Auth

PS

EN

A-D E F G

x400 x400

x10

x10

x10

x5

Figure 6: (Left) Azure Storage topology used in the evaluation. Work-
flows traverse four services (FE, Auth, PS and EN). Requests to a PS
trigger multiple read/write sub-tasks to the ENs and local computations.
(Right) Workflow DAGs in performance isolation experiment.

For instance, Finagle [69] has Broadcast Request Contexts, and
Xenon [72] has Operation Contexts. We use similar infrastructure to
not only propagate metadata in each request such as the workflow ID
and end-to-end deadlines, but also to dynamically estimate request
progress.

Sharing rate limits with upstream processes. In Wisp, upstream
processes observe the rate limits per-workflow of their downstream
neighbors in order to calibrate their own rate limits (Algorithm 1). In
our implementation, upstream processes directly probe their down-
stream processes for their rate limits. Alternative approaches include
leveraging available publish-subscribe infrastructure [56, 60], or us-
ing in-band mechanisms such as packing rate limits per-workflow in
message response headers. We leave a detailed exploration of such
implementation trade-offs to future work.

6 SYSTEM EVALUATION
We now demonstrate how Wisp enforces different resource man-
agement policies: (i) Avoid overload and provide isolation in the
presence of aggressive workflows, (ii) Meet end-to-end deadlines,
and (iii) Isolate low-latency traffic from high throughput traffic. We
show (iv) how distributed rate adaptation reacts to hotspots, and
(v) how to navigate the goodput vs utilization trade-off using the
quantile knob q.

Experimental Setup. We run our experiments on a testbed com-
prising forty virtual machines. Each VM has a single 2.40 GHz CPU
core, 2GB of RAM and runs Windows Server 2012 R2. All services
make use of the .NET CLR version 4.5. Each instance of a service
in our experiments runs as a process inside a VM.

We setup a topology of services and processes according to that
of Azure Storage, discussed in §2.2; this system exhibits complex
DAGs of operations, as shown in Fig. 6. We reproduce request rout-
ing, execution DAGs, and sub-task cost characteristics of Azure
Storage. Our setup comprises four tiers: front-end (FEs), authen-
tication (AUTH), partition service (PS), and extent nodes (ENs).
FEs are the entry points that accept client requests. FEs first verify
client requests against an AUTH server. They then route requests
to a PS that holds the table for a tenant, determined via consistent
hashing. The PS process then issues multiple reads and writes to the
EN service before executing compute work locally and returning
results.

Our setup comprises ten FEs, five AUTH servers, ten PS instances
and ten EN servers. Wisp monitors resource utilization by workflow

across all thread pools and connection pools in the system. For a
processing stage each within the EN and PS, we vary the service
times for different workflows to study different bottleneck scenarios
(service times are drawn from exponential distributions). We drive
client workloads from five VMs. Every workflow has a fixed number
of PS partitions. Each PS partition corresponds to a fixed number of
blocks on the EN tier, uniformly distributed across all EN processes.
Clients generate requests according to a Poisson process [55].

Can Wisp enforce performance isolation? The workflow DAGs
for this experiment are indicated in Fig. 6 (right). Workflows A-D are
read-write workloads with an arrival rate of 100rps each at the FEs.
Every request from these workflows at a PS triggers a read and write
request to the EN in sequence followed by some compute work at
the PS. Workflow E issues metadata queries that are serviced locally
by the PS without any interactions with the EN layer. Workflow F
is an aggressive tenant’s workload generated by four clients that
exceeds its fair share at the EN tier. Workflow G is bursty traffic
with an arrival rate of one request every two seconds, each of which
triggers 400 reads in parallel, followed by 400 writes to the ENs,
each of which requires a processing time of 200ms on average.

We compare performance across three scenarios: (i) Timeouts
only, where the system only makes use of deadline based timeouts
and does not use fair-queuing or rate-control (baseline), (ii) rate
control only (RC), and (iii) rate control and fair scheduling (FQ+RC).

Fig. 7 demonstrates system behavior across the three scenarios.
When workflow F, the aggressive tenant, activates at time t=50s, the
resulting overload drives all workflows to throughput collapse. Given
the RPC library’s request timeout of ten seconds, requests queue up
internally in the system, blocking different resources and thus inflat-
ing latencies for all workflows.1 Instead, with Wisp’s rate-adaptation
(Fig. 7) this is not the case. The rate-limiting throttles workflow F
whereas other workflows retain their expected throughput. Since F
is an open-loop workload that does not lower its sending rate despite
being throttled, its throughput exhibits the instability seen in the
oscillations in Fig. 7 (center). However, rate-control alone does not
guarantee fair access to local resources at each service. This means
that workflows with a stable rate have a higher degree of presence
across system-wide resource queues, which cause bursty workloads
to suffer from head-of-line blocking. Workflow G thus suffers be-
cause of the higher queue occupancies from the other workflows,
indicated by a timeout fraction of 12% (Fig. 7 (right)). Instead, with
the combination of per-service fair-scheduling and rate-control, G
is guaranteed progress at each stage. The key take-away here is
that thresholds such as timeouts are challenging to set correctly
system-wide with an end-to-end performance objective in mind. In
practice, such thresholds are often hard-coded [45] and therefore
fragile. On the other hand, Wisp automatically adapts rate limits
based on dynamic system conditions.

Can Wisp meet end-to-end deadlines? We replay a trace of 30K
requests from a production instance of Azure Storage, which in-
volves a mix of different APIs. Since the traces do not indicate
deadlines per request, we measure the completion times for each
request in isolation. We then correct for the higher system loads in

1API timeouts for platforms such as Azure [4] and Google Cloud Platform [2] are often
tens of seconds, if not minutes.

Distributed Resource Management Across Process Boundaries SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

B
a

s
e

lin
e

R
C

F
Q

 +
 R

C

40 60 80 100

0
100
200
300
400

0
100
200
300
400

0
100
200
300
400

Time (s)

T
h
ro

u
g
h
p
u
t
(r

e
q
s
/s

e
c
)

Per−workflow throughput

B
a

s
e

lin
e

R
C

F
Q

 +
 R

C

A B C D E F G

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Workflow

D
ro

p
 F

ra
c
ti
o
n
 (

%
)

Timed out requests

Figure 7: Performance isolation experiment. (left) The median smoothed latency timeseries of the experiment shows the aggressive workflow (F, red)
driving the system into overload. End-to-end rate-control throttles F at the ingress and protects other workflows. (center) Throughput obtained by
all workflows. In the baseline, all workflows’ throughputs gradually degrade as requests time out. (right) When running rate-control only, the bursty
tenant is not guaranteed performance isolation as the steady workflows dominate system queues. A fair-queuing scheduler resolves this.

0

30

60

90

120

40 80 120 160 200

Throughput Intensive Clients

R
e

q
s
/s

e
c

Baseline Wisp

Throughput workflows, α = 20

0

25

50

75

100

40 80 120 160 200

Throughput Intensive Clients

L
a

te
 R

e
q

u
e

s
ts

 (
%

)

Baseline Wisp

Low−latency workflows

0

200

400

600

40 80 120 160 200

Throughput Intensive Clients

A
ve

ra
g

e
 L

a
te

n
c
y
 (

m
s
)

Baseline Wisp

Low−latency workflows

Figure 8: Average latencies and fraction of late requests for latency sensitive workflows in the presence of throughput focused clients. The low latency
clients with 300ms deadlines are able to meet a high fraction of deadlines and improve average latency by 2x (200 clients).

the experiment by setting the deadline to four times the base comple-
tion time when measured in isolation. The workload includes APIs
that trigger scans involving thousands of sub-tasks and multiple API
calls that only contend for the local resource at the PS. We vary the
number of client threads that generate these requests in a closed loop
from 100 to 250 to increase system load.

We compare results across a baseline, FIFO+RC, EDF+RC and
LSTF+RC. Table 3 indicates different percentiles for the latencies
normalized by the deadline (LND). An LND of 1.0 implies that
the latency equals the deadline. At higher loads, the baseline incurs
increased latencies and thus misses deadlines by large factors. At the
highest load of 250 clients generating requests, the baseline’s average
LND is 1.33, while the 99th percentile is as high as 19.71. The
improvement in LND is evident when using rate limiting (FIFO+RC),
since the heavier workflows are throttled and dropped before they
cause downstream congestion. With 250 clients, all algorithms with
rate limiting drop close to 21% of requests since it is infeasible to
meet their deadlines (§4.3), freeing up resources for other requests.
We also note that LSTF outperforms EDF across all runs and yields
a 10x improvement over the baseline (250 clients, 99th percentile).
Recall that EDF only prioritizes requests based on the proximity to
the deadline. Therefore, requests might make little progress until it is
too late [14]. On the other hand, LSTF also factors in the remaining
service time which can be estimated because of Wisp’s progress

metrics. LSTF highlights the benefits of scheduling based on end-to-
end characteristics of requests using Wisp.

Can Wisp protect low-latency workflows? A common scenario
in cloud storage systems is the co-existence of throughput intensive
workflows which involve bulk reads/writes as well as low-latency
workflows that have soft deadlines. Here, we run Wisp with the
bottleneck fairness policy in conjunction with the fair scheduler. We
vary the number of throughput intensive clients from 40 to 200, each
of which runs in a closed loop. Every request from this workflow
arriving at a PS triggers twenty sub-tasks to the EN. Six low latency
clients (one workflow each) submit requests at a rate of 10 requests
per-second (60 rps in total), with every request having a 300ms dead-
line. Fig. 8 illustrates our results. When only 40 high-throughput
clients are active, Wisp and the baseline successfully meet all dead-
lines. The baseline presents an improved average latency for the
low-latency clients because it does not incur the added overhead of
our DRR-based fair scheduler (also observed by [62]). However, at
higher loads, Wisp’s performance degrades gracefully, with a high
fraction of admitted requests meeting their deadlines (∼80% hit
rate with 200 high throughput clients). Our implementation cannot
guarantee latency for a request unless it (i) compromises on being
work-conserving or (ii) preempts on-going work at any resource
(which, for resources such as locks or connection objects is not prac-
tical, and has non-trivial ramifications on user code logic). Thus, a

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA L. Suresh et al.

Clients Algorithm LND LND LND
(Mean) (p95) (p99)

100 Baseline 0.39 0.75 0.98
FIFO+RC 0.34 0.64 0.95
EDF+RC 0.30 0.52 0.71
LSTF+RC 0.32 0.71 0.81

150 Baseline 0.61 1.32 5.68
FIFO+RC 0.33 0.60 0.84
EDF+RC 0.31 0.52 0.69
LSTF+RC 0.3 0.51 0.71

200 Baseline 1.09 2.75 18.47
FIFO+RC 0.71 1.63 2.95
EDF+RC 0.38 0.79 1.17
LSTF+RC 0.34 0.61 0.87

250 Baseline 1.33 4.83 19.71
FIFO+RC 0.98 2.58 10.5
EDF+RC 0.49 1.25 2.15
LSTF+RC 0.46 1.12 1.82

Table 3: Mean, 95th percentile and 99th percentile latencies normalized
by the deadline (LND) for requests from the production workload. An
LND of 1.0 means the end-to-end latency equals the deadline.

B
a
s
e
lin

e
F

IF
O

+
R

C

20 40 60 80

100

1000

100

1000

Time (s)

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

A

B

C

D

Per−workflow latency

Figure 9: Skewed workload test, with a median smoothened timeseries
of the latencies. Workfow B starts at t=40s, contends at the same PS
workflow A is being routed through, and doubles its sending rate at
t=60s. Wisp’s rate-limiting shields A from B in both instances, without
throttling background workflows (dashed, within their fair shares).

request at a service can get unlucky due to bad timing: a sub-task
from a low-latency workflow may arrive right after a burst of other
workflows are scheduled (and thus suffer head-of-line blocking at
the local resources). Wisp shapes the high-throughput clients to their
fair share of resources alongside the low-latency clients.

Can rate adaptation react to hotspots? We now evaluate a sce-
nario where we create a skewed access pattern. Four workflows
activate at different times. A and B are consistently routed to the
same PS, causing a hotspot on the local semaphore protected re-
source. A is an open loop workflow generated by a single client.
B starts at t = 40s with thirty clients, and at t = 60s doubles its
sending rate with an additional thirty clients joining the system. To
study the rate adaptation algorithm in isolation, we only use a FIFO
scheduler at each process. C and D are background workflows that
exert pressure on the ENs. Fig. 9 shows a rolling median of the
latency timeseries with and without Wisp. In the baseline, when A

140

160

180

200

0 0.5 1

Quantile (q)

T
x
P

u
t
(r

e
q
s
/s

e
c
)

q=0 q=0.5 q=1

1000
2000
3000
4000
5000

150
200
250

150
200
250

EN
PS

FE

20 40 60 8020 40 60 8020 40 60 80
Time (s)

σ
(re

qs
/s

ec
)

Figure 10: σ adaptation from the ENs to the FEs for a workflow, for
different values of q. ENs adapt their rates independently based on
their demands, PS’s aggregate the rates to calculate their local σ using
a quantile, and the FE’s repeat the same procedure against the PS’.

activates at t = 40s, the surge of client requests immediately cause
contention at all queues at the PS, including the shared sub-task
scheduler queue as well as a semaphore being contended for. The
resulting head-of-line blocking inflates latencies for B. When using
Wisp, A experiences a spike in latencies at t = 40s when B acti-
vates. However, when B doubles its sending rate at t = 60s, it forces
head-of-line blocking and higher latencies for A as with the baseline
(recall, we are not using local fair-queuing here). However, Wisp
soon computes rate limits based on the observed costs of B. When
the rate-limiters and system queues stabilize from the unexpected
surge, A retains its expected latencies, whereas B is throttled at the
entry point. Wisp also (correctly) avoids throttling the background
workflows which are not contributing to congestion (and stay within
their fair shares).

Quantile knob sensitivity analysis. We show the impact of the
quantile knob q of the rate adaptation mechanism. We consider
a scan workflow generated by 180 client threads, which triggers
ten back-to-back requests between the PS and ENs. This workflow
competes with a lighter open-loop workflow for system resources,
triggering our max-min fairness policy. We study the impact of
the q on the scan workflow’s throughput. Fig. 10 (right) shows a
timeseries where each data point represents

∑
σ (the total advertised

rate limit) per-tier in a second for the scan workflow, for different
values of q. With q = 0, each PS selects the minimum advertised σ
from the individual EN processes, and the FEs repeat the procedure
with the PS processes. This leads to conservative σ values at the
FEs, leading to low utilization at the ENs. This is evident in that
(i) the EN tier probes for more demand by advertising higher rates
(Fig. 10 (top row, left)), and (ii) lower end-to-end throughput for the
workflow (Fig. 10 (left)). With q = 1, the rates aremax aggregated,
and the system thus admits more work up to the ENs. This results in
increased congestion at the ENs, which therefore exert back-pressure
by announcing lower rates. With q = 0.5, for our setting, upstream
services match the capacity of the ENs; σ at FEs does not oscillate
unlike q = 0 and q = 1, leading to a stable load at the EN (Fig. 10
(right)).

Distributed Resource Management Across Process Boundaries SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

Overheads. In our experiments, we did not see performance over-
heads from Wisp in comparison to a baseline with rate limiting and
scheduling disabled (e.g., latencies in Table 3 and Figure 9). Fur-
thermore, SOA frameworks already ship with the building blocks
necessary for Wisp such as rate limiters, thread schedulers and meta-
data propagation. They often monitor several metrics that Wisp
merely leverages to perform adaptive rate control and request sched-
uling (Fig. 5). For instance, Hystrix [50] already aggregates tens of
metrics by “command type". Xenon [72] already performs throttling
per-workflow by tenant using static rate limits.

7 DISCUSSION
Relation to auto-scaling. An alternative approach to handling

overload is to dynamically scale resources [27, 54]. We believe
that scaling resources is orthogonal to Wisp’s rate control, as both
approaches operate at different timescales. The former adds capacity
in response to demand changes whereas Wisp regulates the demand
according to the capacity. Auto-scaling typically works over slower
time scales (minutes) than Wisp’s mechanisms (per-request and
sub-second decisions). Furthermore, overload can be triggered by
performance bugs [32, 32, 34] and slowdowns in third party services.
Auto-scaling is not a silver bullet for these settings.

Network congestion control. Intuitively, one can view the prob-
lems addressed by Wisp through the lens of network congestion
control. However, the workflow rate limiting problem in SOAs dif-
fers fundamentally from the network congestion control problem. In
the TCP context, sources perform rate limiting and coordinate with
endpoints for flow control. They infer congestion in the network
either indirectly through congestion signals (e.g., packet loss and
latency) or through explicit feedback [1, 24] to tune their sending
rates. Endpoints of a network flow are fixed (even for multicast
congestion control [5]). These assumptions do not hold in an SOA.
Upstream services do not know about their transitive dependencies,
and due to effects such as request amplification, caching and routing,
subsequent requests of the same workflow may be processed by
entirely different downstream processes. Upstream services also do
not know a-priori the load they impose downstream. Wisp therefore
uses adaptive rate limiting and scheduling techniques that account
for the unique characteristics of SOAs.

Centralized control. Finally, one may consider applying central-
ized control, as in Retro [45]. However, centralized coordination hin-
ders per-request resource management (as opposed to per-workflow);
e.g., scheduling decisions that account for complex workflow DAG
structures. Furthermore, Retro’s approach does not see causally dis-
joint request execution paths in the system, and instead, throttles
all points through which a workflow traverses. Instead, Wisp only
throttles a workflow along the causal path leading to a bottleneck.

Path to deployment. Wisp leverages building blocks typically
available in SOA frameworks such as rate limiters, request sched-
ulers and metadata propagation. The rate limiting and scheduling
techniques do not depend on each other and can be used in isolation
(e.g., §6 demonstrates the use of rate limiting without scheduling
enabled). Lastly, a system may incrementally deploy Wisp, gradually
expanding the set of services that rely on Wisp for adaptive control.

8 RELATED WORK
SOA libraries. Hystrix [50] and Finagle [69] are libraries created

at Netflix and Twitter to harden their production systems. They use
techniques such as circuit breaking to provide resilience to failures
and overload. However, they require extensive tuning of configu-
ration parameters [51], and cannot enforce multi-tenant resource
management policies end-to-end akin to Wisp.

Admission control and latency reduction mechanisms. Trading
off completeness for latency is a common approach to managing
overload [37, 43]. User code in Wisp can use these techniques to
gracefully degrade service. [23, 33, 44, 75] are potential admission
control policies for Wisp. [59] focuses on the design of distributed
rate limiters for network flows. Themis [40] manages overload for
federated stream processing systems by degrading query quality
fairly across users, presenting a potential rate limiting policy for
Wisp.

Network flow scheduling and congestion control. Recent work
has focused on resource allocation and scheduling to quickly com-
plete one or multiple transfers [15, 16, 22], achieving low latency
[9, 29, 36, 38, 76] and fair sharing network bandwidth [42, 57, 58].
While they provide insights for potential Wisp policies, these spe-
cific solutions do not directly apply because of differences between
network flows and request execution in SOAs (§7).

Distributed systems. We discuss Retro [45] in §7 as an alternative
to Wisp. Pulsar [10] provides an abstraction of a virtual data center
where tenants run VMs, access appliances, and a centralized sched-
uler enforces rates at the level of network flows. Pulsar focuses only
on throughput goals and cannot enforce request-level scheduling
decisions since appliances are treated as blackboxes. Kwiken [37]
considers interactive systems where requests execute in a DAG of
services. However, it relies mostly on centralized resource man-
agement whereas Wisp is fully decentralized. Enforcing high-level
scheduling policies and fair sharing have been explored in the con-
text of distributed storage systems [30, 31, 62, 67, 73, 74]; however,
they typically consider simpler execution structures (e.g., client to
server) whereas Wisp focuses on a general DAG wherein individual
processes lack end-to-end visibility. Lastly, several proposals exist
for optimizing job completion times for DAGs of tasks in big-data
systems [11, 28, 77, 78]. However, data analytics jobs are often
orders of magnitude longer than those serviced by the SOA systems
targeted by Wisp (which operate under the additional constraint of
limited end-to-end visibility).

Stream processing systems. Stream processing systems often
support backpressure along the processing topology. The topology
of a streaming job is part of the job specification and is therefore
known in advance. Heron [41] takes an approach where a slow pro-
cessing node stops asking for new tuples, causing upstream buffers
to fill up, eventually leading to queuing at the ingress nodes. Heron
relies on static thresholds on the buffer sizes to trigger backpressure.
Storm [66] uses Zookeeper [6] to coordinate backpressure across
nodes. Das et al. [19] propose dynamically adjusting batch sizes
to improve latency and throughput. Contrary to these approaches,
Wisp’s rate limiting approach does not assume knowledge of the full

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA L. Suresh et al.

service topology, dynamically computes rate limits based on mea-
sured resource utilization instead of static thresholds, is multi-tenant
aware, and does not require centralized coordination.

9 CONCLUSION
In this paper, we highlight unique challenges in managing resources
for SOAs. We present Wisp, which targets achieving end-to-end
throughput and latency objectives with minimal operator interven-
tion. To this end, Wisp applies a combination of techniques, in-
cluding estimating local workload models based on measurements
of immediate neighborhoods, distributed rate control and metadata
propagation. Our design incorporates important practical considera-
tions: It leverages existing building blocks in SOA frameworks (rate
limiters and schedulers), does not require centralized coordination
and does not assume prior knowledge of request characteristics.

ACKNOWLEDGEMENTS
We thank our shepherd, Iqbal Mohomed, and the anonymous re-
viewers for their feedback. We thank Madan Musuvathi, Srikanth
Kandula and Virajith Jalaparti for useful discussions.

REFERENCES
[1] 802.1Qbb - Priority-based Flow Control. http://www.ieee802.org/1/pages/802.

1bb.html. 2016.
[2] Dealing with DeadlineExceededErrors. https://cloud.google.com/appengine/

articles/deadlineexceedederrors. 2012.
[3] Openstack. https://www.openstack.org/.
[4] Setting Timeouts for Blob Service Operations. https://msdn.microsoft.com/en-us/

library/azure/dd179431.aspx. 2016.
[5] TCP-Friendly Multicast Congestion Control (TFMCC): Protocol Specification.

https://tools.ietf.org/html/rfc4654, 2006.
[6] Apache Zookeeper. http://zookeeper.apache.org/, 2008.
[7] Summary of the October 22, 2012 AWS Service Event in the US-East Region,

2012. https://aws.amazon.com/message/680342/.
[8] Docker at Spotify. http://goo.gl/53t3XN, 2013.
[9] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and

S. Shenker. pfabric: Minimal near-optimal datacenter transport. In Proceedings
of the ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM), pages 435–446, New
York, NY, USA, 2013. ACM.

[10] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska. End-to-end
performance isolation through virtual datacenters. In Proceedings of USENIX
Symposium on Operating Systems Design and Implementation (OSDI), pages
233–248, Berkeley, CA, USA, 2014. USENIX Association.

[11] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L. Zhou.
Apollo: scalable and coordinated scheduling for cloud-scale computing. In Pro-
ceedings of USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 285–300, Broomfield, CO, Oct. 2014. USENIX Association.

[12] E. A. Brewer. Lessons from giant-scale services. Internet Computing, IEEE,
5(4):46–55, 2001.

[13] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu,
S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards,
V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq,
D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Manivan-
nan, and L. Rigas. Windows azure storage: A highly available cloud storage service
with strong consistency. In ACM Symposium on Operating systems principles
(SOSP), SOSP ’11, pages 143–157, New York, NY, USA, 2011. ACM.

[14] S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley. Performance evaluation of
two new disk scheduling algorithms for real-time systems. Real-Time Systems,
3(3):307–336, 1991.

[15] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing data
transfers in computer clusters with orchestra. SIGCOMM Comput. Commun. Rev.,
41(4):98–109, Aug. 2011.

[16] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with varys.
In Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM), pages
443–454, New York, NY, USA, 2014. ACM.

[17] B. Christensen. Application Resilience in a Service-oriented Architecture. http:
//goo.gl/0TKDmQ, 2013.

[18] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection scheduling in web
servers. In USENIX Symposium on Internet Technologies and Systems, volume 10,
pages 243–254, 1999.

[19] T. Das, Y. Zhong, I. Stoica, and S. Shenker. Adaptive stream processing using
dynamic batch sizing. In Proceedings of the ACM Symposium on Cloud Computing,
SOCC ’14, pages 16:1–16:13, New York, NY, USA, 2014. ACM.

[20] J. Dean and L. A. Barroso. The Tail At Scale. Communications of the ACM,
56:74–80, 2013.

[21] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. In ACM Symposium on Operating systems principles
(SOSP), pages 205–220, New York, NY, USA, 2007. ACM.

[22] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. Decentralized task-
aware scheduling for data center networks. In Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM), pages 431–442. ACM, 2014.

[23] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat. Model-based
resource provisioning in a web service utility. In Proceedings of the 4th Confer-
ence on USENIX Symposium on Internet Technologies and Systems - Volume 4,
USITS’03, pages 5–5, Berkeley, CA, USA, 2003. USENIX Association.

[24] N. Dukkipati and N. McKeown. Why flow-completion time is the right metric for
congestion control. SIGCOMM Comput. Commun. Rev., 36(1):59–62, Jan. 2006.

[25] T. Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and Design .
Prentice Hall, 2005.

[26] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dom-
inant resource fairness: Fair allocation of multiple resource types. In Proceedings
of the 8th USENIX Conference on Networked Systems Design and Implementa-
tion, Proceedings of USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 323–336, Berkeley, CA, USA, 2011. USENIX
Association.

[27] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource scaling for cloud
systems. In 2010 International Conference on Network and Service Management,
pages 9–16. IEEE, 2010.

[28] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-
resource packing for cluster schedulers. In Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM), pages 455–466. ACM, 2014.

[29] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore, S. Hand,
and J. Crowcroft. Queues Don’t Matter When You Can JUMP Them! In Proceed-
ings of USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 1–14, Oakland, CA, May 2015. USENIX Association.

[30] A. Gulati, I. Ahmad, C. A. Waldspurger, et al. Parda: Proportional allocation
of resources for distributed storage access. In Proceedings of the International
Conference on File and Storage Technologies (FAST), pages 85–98, Berkeley, CA,
USA, 2009. USENIX Association.

[31] A. Gulati, A. Merchant, and P. J. Varman. mclock: handling throughput variability
for hypervisor io scheduling. In Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 437–450, Berkeley, CA, USA,
2010. USENIX Association.

[32] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo, T. Bergan, M. Musu-
vathi, Z. Zhang, and L. Zhou. Failure recovery: When the cure is worse than the
disease. In Presented as part of the 14th Workshop on Hot Topics in Operating
Systems, Berkeley, CA, 2013. USENIX.

[33] V. Gupta and M. Harchol-Balter. Self-adaptive admission control policies for
resource-sharing systems. ACM SIGMETRICS Performance Evaluation Review,
37(1):311–322, 2009.

[34] B. Harry. Explanation of July 18th outage. http://goo.gl/DPuJBm, 2014.
[35] R. G. Herrtwich. An introduction to real-time scheduling. International Computer

Science Institute, 1990.
[36] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly with preemptive

scheduling. In Proceedings of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM), SIGCOMM ’12, pages 127–138, New York, NY, USA, 2012. ACM.

[37] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan. Speeding
up Distributed Request-Response Workflows. In Proceedings of the ACM SIG-
COMM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), pages 219–230, New York, NY, USA,
2013. ACM.

[38] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo: Predictable message latency
in the cloud. In Proceedings of the ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM), pages 435–448, New York, NY, USA, 2015. ACM.

[39] E. Jones. Retries considered harmful. http://www.evanjones.ca/
retries-considered-harmful.html, 2015.

[40] E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch. Themis: Fairness in
federated stream processing under overload. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, San Francisco, CA, USA,
06/2016 2016. ACM, ACM.

http://www.ieee802.org/1/pages/802.1bb.html
http://www.ieee802.org/1/pages/802.1bb.html
https://cloud.google.com/appengine/articles/deadlineexceedederrors
https://cloud.google.com/appengine/articles/deadlineexceedederrors
https://www.openstack.org/
https://msdn.microsoft.com/en-us/library/azure/dd179431.aspx
https://msdn.microsoft.com/en-us/library/azure/dd179431.aspx
https://tools.ietf.org/html/rfc4654
http://zookeeper.apache.org/
https://aws.amazon.com/message/680342/
http://goo.gl/53t3XN
http://goo.gl/0TKDmQ
http://goo.gl/0TKDmQ
http://goo.gl/DPuJBm
http://www.evanjones.ca/retries-considered-harmful.html
http://www.evanjones.ca/retries-considered-harmful.html

Distributed Resource Management Across Process Boundaries SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

[41] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,
K. Ramasamy, and S. Taneja. Twitter heron: Stream processing at scale. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, pages 239–250, New York, NY, USA, 2015. ACM.

[42] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C. Zermeno,
C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila, M. Robin, A. Siganporia,
S. Stuart, and A. Vahdat. Bwe: Flexible, hierarchical bandwidth allocation for wan
distributed computing. In Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Commu-
nication (SIGCOMM), SIGCOMM ’15, pages 1–14, New York, NY, USA, 2015.
ACM.

[43] G. Kumar, G. Ananthanarayanan, S. Ratnasamy, and I. Stoica. Hold ’em or Fold
’em? Aggregation Queries under Performance Variations. In EuroSys, 2016.

[44] L. Lu, L. Cherkasova, V. de Nitto Persone, N. Mi, and E. Smirni. AWAIT: Efficient
overload management for busy multi-tier web services under bursty workloads.
Springer, 2010.

[45] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi. Retro: Targeted resource
management in multi-tenant distributed systems. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages 589–603,
Oakland, CA, May 2015. USENIX Association.

[46] J. Mace, P. Bodik, M. Musuvathi, R. Fonseca, and K. Varadarajan. 2dfq: Two-
dimensional fair queuing for multi-tenant cloud services. In Proceedings of the
ACM SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), SIGCOMM ’16, pages
144–159, New York, NY, USA, 2016. ACM.

[47] C. Munns. I Love APIs 2015: Microservices at Amazon. http://goo.gl/aVWlpY,
2015.

[48] Netflix. Adopting Microservices at Netflix: Lessons for Architectural Design.
https://goo.gl/sNuQPj, 2012.

[49] Netflix. Embracing the Differences : Inside the Netflix API Redesign. http:
//techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html, 2012.

[50] Netflix. Introducing Hystrix for Resilience Engineering. http://goo.gl/h9brP0,
2012.

[51] Netflix. Strategy for tuning the hystrix configuration. https://github.com/Netflix/
Hystrix/issues/866, 2015.

[52] S. Newman. Building Microservices. O’Reilly Media, 2015.
[53] Nginx. Adopting Microservices at Netflix: Lessons for Team and Process Design.

https://goo.gl/KOrUfT, 2015.
[54] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. Agile: Elastic distributed

resource scaling for infrastructure-as-a-service. In Proceedings of the 10th Inter-
national Conference on Autonomic Computing (ICAC 13), pages 69–82, 2013.

[55] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling
Memcache at Facebook. In Proceedings of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 385–398, Berkeley, CA, USA,
2013. USENIX Association.

[56] Pivotal Software. RabbitMQ. https://www.rabbitmq.com/, 2012.
[57] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and I. Stoica.

FairCloud: Sharing the Network in Cloud Computing. In Proceedings of the
ACM SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), pages 187–198, New York,
NY, USA, 2012. ACM.

[58] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R. San-
tos. ElasticSwitch: Practical Work-Conserving Bandwidth Guarantees for Cloud
Computing. In Proceedings of the ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM), 2013.

[59] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C. Snoeren.
Cloud control with distributed rate limiting. In ACM Sigcomm Computer Commu-
nication Review, volume 37, pages 337–348. ACM, 2007.

[60] Y. Sharma, P. Ajoux, P. Ang, D. Callies, A. Choudhary, L. Demailly, T. Fer-
sch, L. A. Guz, A. Kotulski, S. Kulkarni, S. Kumar, H. Li, J. Li, E. Makeev,
K. Prakasam, R. V. Renesse, S. Roy, P. Seth, Y. J. Song, B. Wester, K. Veer-
araghavan, and P. Xie. Wormhole: Reliable pub-sub to support geo-replicated
internet services. In Proceedings of USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 351–366, Oakland, CA, 2015. USENIX
Association.

[61] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin.
SIGCOMM Comput. Commun. Rev., 25(4):231–242, Oct. 1995.

[62] D. Shue, M. J. Freedman, and A. Shaikh. Performance isolation and fairness
for multi-tenant cloud storage. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, OSDI’12, pages 349–362,
Berkeley, CA, USA, 2012. USENIX Association.

[63] S. Souders. Velocity and the bottom line. http://radar.oreilly.com/2009/07/
velocity-making-your-site-fast.html, 2009.

[64] SoundCloud. Building products at SoundCloud - part I: Dealing with the monolith.
https://goo.gl/Qra2tA, 2014.

[65] J. A. Stankovic, K. Ramamritham, and M. Spuri. Deadline Scheduling for Real-
Time Systems: EDF and Related Algorithms. Kluwer Academic Publishers, 1998.

[66] A. Storm. http://storm.apache.org/.
[67] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron, T. Talpey,

R. Black, and T. Zhu. IOFlow: A Software-Defined Storage Architecture. In ACM
Symposium on Operating systems principles (SOSP), pages 182–196, New York,
NY, USA, 2013. ACM.

[68] S. Tonse. MicroServices at Netflix - challenges of scale. http://goo.gl/9j5wSv,
2014.

[69] Twitter. Finagle: A Protocol-Agnostic RPC System. https://goo.gl/ITebZs, 2011.
[70] Uber. Service-oriented Architecture: Scaling the Uber Codebase as We Grow.

https://eng.uber.com/soa/, 2015.
[71] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.

Large-scale cluster management at Google with Borg. In Proceedings of the Euro-
pean Conference on Computer Systems (EuroSys), pages 18:1–18:17, Bordeaux,
France, 2015. ACM.

[72] VMware. Xenon. https://github.com/vmware/xenon, 2017.
[73] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica. Cake: Enabling

High-level SLOs on Shared Storage Systems. In Proceedings of the ACM Sympo-
sium on Cloud Computing (SoCC), SoCC ’12, pages 14:1–14:14, New York, NY,
USA, 2012. ACM.

[74] H. Wang and P. Varman. Balancing Fairness and Efficiency in Tiered Storage
Systems with Bottleneck-aware Allocation. In FAST, pages 229–242, Berkeley,
CA, USA, 2014. USENIX Association.

[75] M. Welsh and D. Culler. Overload management as a fundamental service design
primitive. In Proceedings of the 10th workshop on ACM SIGOPS European
workshop, pages 63–69. ACM, 2002.

[76] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late:
meeting deadlines in datacenter networks. In Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM), pages 50–61, New York, NY, USA, 2011.
ACM.

[77] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In Proceedings of the European Conference on Computer Systems
(EuroSys), pages 265–278, New York, NY, USA, 2010. ACM.

[78] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo. Automated profiling and
resource management of pig programs for meeting service level objectives. In
Proceedings of the 9th international conference on Autonomic computing, pages
53–62. ACM, 2012.

http://goo.gl/aVWlpY
https://goo.gl/sNuQPj
http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html
http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html
http://goo.gl/h9brP0
https://github.com/Netflix/Hystrix/issues/866
https://github.com/Netflix/Hystrix/issues/866
https://goo.gl/KOrUfT
https://www.rabbitmq.com/
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://goo.gl/Qra2tA
http://goo.gl/9j5wSv
https://goo.gl/ITebZs
https://eng.uber.com/soa/
https://github.com/vmware/xenon

	Abstract
	1 Introduction
	2 SOAs in production
	2.1 Services, processes and workflows
	2.2 Analysis of shared services
	2.3 Opaque request execution DAGs
	2.4 Shared services and outages

	3 Overview of Wisp
	3.1 Performance objectives
	3.2 Challenges
	3.3 Design principles

	4 Design
	4.1 Workflow-level rate adaptation
	4.2 Request-level scheduling
	4.3 Example operator policies

	5 Wisp Implementation
	6 System evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	References

