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ABSTRACT

Multi-tenant distributed systems composed of small services, such
as Service-oriented Architectures (SOAs) and Micro-services, raise
new challenges in attaining high performance and efficient resource
utilization. In these systems, a request execution spans tens to thou-
sands of processes, and the execution paths and resource demands on
different services are generally not known when a request first enters
the system. In this paper, we highlight the fundamental challenges of
regulating load and scheduling in SOAs while meeting end-to-end
performance objectives on metrics of concern to both tenants and
operators. We design Wisp, a framework for building SOAs that
transparently adapts rate limiters and request schedulers system-
wide according to operator policies to satisfy end-to-end goals while
responding to changing system conditions. In evaluations against pro-
duction as well as synthetic workloads, Wisp successfully enforces
a range of end-to-end performance objectives, such as reducing av-
erage latencies, meeting deadlines, providing fairness and isolation,
and avoiding system overload.
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1 INTRODUCTION

Many organizations including Netflix, Amazon, Uber, SoundCloud,
Google and Spotify have adopted Service-oriented Architectures
(SOAs) [25] and Micro-services [52] to build large-scale Web ap-
plications [8, 47, 48, 53, 64, 70] and infrastructure systems [3, 71].
SOAs comprise fine-grained, loosely coupled services that commu-
nicate via lightweight API calls over the network. Every service
comprises multiple service instances or processes, each running
inside a physical or virtual machine. For instance, Netflix has sepa-
rate services for managing movie and user data, authentication, and
recommendations [49]. Typically, these divisions align with devel-
oper team structures [53]. These systems are commonly shared by
multiple fenants, where tenants may represent different external cus-
tomers or consumers, but also internal product groups, applications,
or system background tasks.

SOAs have three characteristics that complicate managing their
end-to-end latency and throughput. First, request execution in SOAs
spans tens to hundreds of services, forming a DAG across the service
topology [37]. The exact structure of the DAG is often unknown
when the request first enters the system, since it depends on multi-
ple factors like the APIs invoked at each encountered service, the
supplied arguments, the content of caches, as well as the use of load
balancing along the service graph. Second, by design, individual
services in SOAs lack end-to-end visibility into the service topology
and by extension, the request execution graph; in fact, services view
each other as black boxes. Third, requests from different tenants
contend for shared resources within individual processes of a ser-
vice such as threadpools, locks, blocking queues, and connection
objects. Isolation mechanisms at the host OS or hypervisor fail here,
as they lack visibility into the existence of multiple tenants as seen
by individual processes.

The above characteristics lead to fundamental resource manage-
ment challenges. The lack of end-to-end visibility and complex
request execution structures make it challenging to regulate two
key metrics in an SOA across multiple tenants (§3.2): (i) the end-
to-end throughput (and thereby, the load at every process) and (ii)
the end-to-end latency. To regulate system load, we must correctly
attribute overload to a specific subset of tenants, and rate limit the
entire chain of API invocations for only those tenants, with minimal
impact on others. Meeting end-to-end latency goals requires local
request scheduling decisions at every hop despite limited visibility
into the full request execution graph. Adaptively rate limiting and
scheduling requests is necessary to meet several performance objec-
tives that tenants and operators care about, such as avoiding overload,
guaranteeing throughput, sustaining fairness, meeting deadlines, en-
suring priorities, and achieving low latencies.
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Unfortunately, existing libraries [50, 69] for building SOAs are
ill-equipped to deliver on the above performance objectives. These
libraries require extensive tuning of static thresholds for rate lim-
iters, circuit breakers [17], and timeouts to regulate both load and
latency. Setting these thresholds manually in a complex distributed
system is fragile and becomes out of date quickly as systems evolve
and workloads change [39, 51]. Furthermore, several case studies
highlight how complex interactions in SOAs not only lead to sharp
degradation in performance (e.g., lower throughput and higher laten-
cies), but also trigger cascading behaviors that result in wide-spread
application outages [7, 32, 34, 68]. These challenges necessitate
adaptive, end-to-end resource management for SOAs.

In this paper, we highlight the unique challenges involved in
meeting the above performance objectives in multi-tenant SOAs,
which are fundamentally different than typical network scenarios.
Our key contribution is the design of novel adaptive techniques for
SOAs that leverage existing building blocks (rate limiters and request
schedulers) to meet end-to-end performance goals, despite the lack
of global visibility into request execution DAGs and their load at
every service. These techniques are embodied in Wisp, a framework
for managing resources in SOAs with minimal operator intervention.

Wisp’s design hinges on the observation that rate limiting and
scheduling mechanisms at each process, only informed by measure-
ments of their local neighborhood, suffice to realize a broad set of
performance policies in SOAs. Wisp uses rate-limiting and back-
pressure mechanisms that operate at the granularity of groups of
requests which we term workflows. Wisp rate limits workflows such
that they share resources at every process according to throughput-
related policies, e.g., bottleneck fairness [45] or dominant resource
fairness [26]. Wisp also operates at the level of individual requests
and prioritizes their execution at each process according to latency-
related policies, such as Earliest Deadline First (EDF) [65] or Least
Slack Time First (LSTF) [35].

Enforcing the above policies, however, requires end-to-end knowl-
edge of bottlenecks in the service topology, and characteristics of the
request execution graphs. Wisp overcomes these obstacles through
several mechanisms. Wisp uses causal propagation of workflow
identifiers throughout the system to attribute resource utilization to
individual workflows. It then uses a novel distributed rate adapta-
tion mechanism §4.1, where upstream services throttle workflows
according to bottlenecks that emerge on their execution graph. The
aggressiveness of the throttling is determined through a configurable
parameter that tunes a tradeoff between high utilization and the
request drop probability (due to overload). Lastly, Wisp realizes end-
to-end variants of policies such as EDF and LSTF by dynamically
estimating end-to-end properties of each request (e.g., remaining
processing time). Importantly, Wisp decouples policy from mecha-
nism, and meets different performance objectives by only leveraging
building blocks that are already present in typical SOAs (namely,
rate limiters and schedulers). Our contributions are:

e We present characteristics of SOAs through a measurement
study of large production systems (§2) and highlight fundamental
challenges in meeting end-to-end performance objectives in multi-
tenant SOA settings (§3).

o We design Wisp (§4), a framework to enforce a diverse range
of resource management policies in SOAs by adaptively tuning rate
limiters and schedulers based only on local measurements at each
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Figure 1: Workflows in production.

process. Importantly, Wisp achieves these goals through fully dis-
tributed mechanisms, without requiring prior knowledge of request
execution graphs and resource demands.

o We evaluate a Wisp prototype (§6). Our results show that Wisp
enforces a wide range of performance objectives such as avoid-
ing cascading failures, meeting soft end-to-end deadlines (e.g., 10x
improvement in the 99th percentile latency-deadline ratio), and iso-
lating low-latency workflows from high-throughput workflows (2x
improvement in average latencies).

2 SOAS IN PRODUCTION

‘We now discuss relevant characteristics of SOAs using a combination
of measurements from a large cloud provider and prior reports on
systems from other environments [8, 37, 47, 48, 53, 64, 70].

2.1 Services, processes and workflows

A single application such as bing.com, amazon.com, or netflix.com
is composed of multiple services. These services are typically main-
tained by separate teams (or even third parties) and communicate
exclusively over well-specified APIs [52]. Each service runs multi-
ple instances (OS processes), distributed across multiple servers or
virtual machines. Requests are dispatched to instances based on the
type of service; for example, requests can be load-balanced among
processes of a stateless service, whereas routing in stateful services
is typically based on some form of hashing. While a request typically
enters the system through an entry point service such as a set of fron-
tend web servers, requests may also originate from internal systems
that access shared infrastructure services. A workflow represents
application-specific “groups" of requests, that form an execution
DAG across a set of services [37]. For instance, all requests from
the same tenant may be classified as the same workflow.

2.2 Analysis of shared services

Bing. Figure 1 presents characteristics of the Bing SOA [37].
Here, each workflow is an execution DAG, and corresponds to dif-
ferent features of the larger offered application (including, but not
limited to, web, video, and image search). These workflows contend
for shared, in-memory resources such as threadpools at different
services.

Figure 1 depicts the number of services involved in the execution
of different workflows (left), and the number of unique workflows
seen per service (right). We note that 50% of workflows execute
across at least 13 services, and 5% of workflows even hit 78+ ser-
vices. Similarly, while several services process only one workflow,
we note that tens of core services are shared by multiple workflows.
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Figure 2: Fraction of overall request processing time spent per service
in production. Each dot is a service, x-axis is the number of workflows
in that service, y-axis is the fraction of overall processing time spent
per-service.

For instance, 24 services are shared by at least 10 different work-
flows, with two services supporting 64 unique workflows. These
workflows have further semantics that affect their performance needs
(e.g., requests from real users require higher priority in the system
than those from bots).

Importantly, shared services (services processing two or more
workflows) are responsible for a large fraction of overall request
processing time (or work) in the system. Misbehaving workflows in
shared services can impact throughput and latency for other work-
flows (§2.4). We traced processing time statistics for each workflow
across all services (Figure 2). We observe that 53.7% of services
process at least two workflows. Nevertheless, they account for a
much larger fraction of the total work: 86% of request processing
time in the system is spent within shared services; 53% within ser-
vices that handle 5+ workflows, and 31% within services handling
10+ workflows. Shared services are therefore critical for end-to-end
performance.

Azure Storage. We also consider the Azure Storage platform [13].
It supports tens of external APIs, corresponding to reads, inserts,
deletes and scans of both data and metadata. The system comprises
services shared across workflows such as the front ends (FE), parti-
tion servers (PS), and extent nodes (ENs). The total CPU cycles for
serving a request within a service can vary by up to four orders of
magnitude across workflows [46]. Such variability calls for careful
resource accounting and management, e.g., to avoid starvation of
short requests. We discuss more characteristics about the system in
the evaluation (§6).

2.3 Opaque request execution DAGs

A crucial aspect of request execution in all these SOAs is the opacity
of the execution graph and its corresponding resource consumption
at each service. That is, each service is typically oblivious to the
(i) end-to-end execution graph of the request, which depends on
load balancing, multiple levels of caching, number of instances per
service, and API parameters used to invoke different services, (ii)
request amplification, wherein a single request at an upstream service
might correspond to thousands of requests at a downstream service,
and (iii) request cost, where different requests at an upstream service
may have varying costs further downstream; for instance, the cost of
loading an object in Azure Storage is proportional to the object size
and is potentially unknown when a request first enters the system at
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an entry point. Lastly, request execution characteristics may change
as the codebase for individual services evolve, further aggravating
the opacity of request execution graphs [39].

2.4 Shared services and outages

The fact that different workflows contend for common resources
within shared services has led to outages among production sys-
tems. Visual Studio Online experienced an outage [34] caused by
an interaction of two different workflows in a hierarchy of services.
A single workflow was accessing a slow database deep in the ser-
vice hierarchy. The blocking RPC calls from the upstream service
eventually exhausted the service’s thread pool. This subsequently
starved other unrelated requests that were trying to connect to an
authentication service, causing widespread application unavailability.
A similar interaction across tiers led to an Amazon AWS outage [32].
Services therefore have to be aware of potential bottlenecks among
their downstream services. In another episode, a slowdown of some
Amazon EBS instances triggered a sequence of bottlenecks in re-
lated services. During the firefighting effort, operators manually
intervened to throttle upstream EC2 service APIs to reduce load on
the downstream EBS service, which affected more customers than
necessary [7]. Such manual intervention is challenging and error
prone.

3 OVERVIEW OF WISP

Wisp is a framework for building SOAs that enables end-to-end
resource management for diverse request types. Wisp creates groups
called workflows, defined as a set of requests that belong to the same
class or tenant and are bound by the same resource management cri-
teria. Tagging workflows provides fine-grained visibility into request
execution, which facilitates attribution of resource utilization and
processing activity to specific request groups. It allows processes
to differentiate between requests that are causally connected to dif-
ferent workflows. Wisp enforces resource sharing policies through
workflow-level mechanisms. In addition, Wisp uses request-level
mechanisms to prioritize request execution according to latency-
related policies. For instance, in the Bing SOA discussed in §2.2,
each request type may be classified as a workflow, allocated a fair
share of resources, and scheduled according to its urgency. On the
other hand, all requests originating from bots can be treated as a low
priority workflow, and be scheduled with no deadline targets.

In this section, we describe the performance goals of Wisp (§3.1),
and highlight the challenges in achieving them in a distributed setting
(§3.2). We then present in §3.3 the main building blocks of our
solution. A detailed description of the design follows in §4.

3.1 Performance objectives

We note that there are two classes of performance objectives of
interest in the SOA setting.

The first class pertains to regulating workflow-level end-to-end
throughput. This includes achieving high utilization to avoid wasteful
over provisioning [20], avoiding overload [32, 34], fairness and
performance isolation among competing workflows [26, 45, 61],
and provisioning shared services to offer a subset of users minimum
throughput guarantees (with best effort for others) [21].
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Figure 3: Example service topology, workflows in §4.1. Services are sets
of processes. Workflows execute within processes, forming an execution
DAG. We depict the relevant parts of the service topology separately for
each workflow.

The second class of performance policies relate to managing
request-level end-to-end latencies. This includes differentiated ser-
vices or statically prioritizing some workflows over others (e.g.,
premium vs. free users, or interactive vs. background tasks) [20], or
meeting end-to-end latency deadlines (user facing web-sites often
need to load a page in under 100-400ms)[21, 63].

3.2 Challenges

The complex request execution DAGs and lack of global visibility
in the SOA setting poses unique challenges in meeting the above
performance goals.

Rate limiting must account for bottlenecks end-to-end. Con-
sider the services from Figure 3 and the three workflows wi, wa
and ws, all of which contend at processes a;. Assume a purely local
approach where all processes rate limit according to their local bottle-
necks. In this case, if w; requests execute and timeout in overloaded
ez, the work they executed (and contention they introduced) in ay,
b1, c1 and cy is wasted. Instead, an approach that rate limits wy at a;
reduces wasted resources and increases the throughput of wy and w3
since more resources in a; and e; would be available. However, ay is
not aware of (i) the downstream bottleneck ey, (ii) which workflows
use ez, and (iii) the load imposed by each workflow on e. This
makes it challenging to determine rate limits for each workflow at a;.
Furthermore, as workflows contend for shared resources, their rate
limits at every hop have mutual dependencies and therefore cannot
be tuned independently of each other.

Meeting latency deadlines requires dynamic request-specific in-
Jormation. Scheduling requests at every process to meet end-to-end
latency guarantees is challenging due to the complex structure of
execution DAGs and the inherently stochastic nature of the problem
(e.g., queuing effects at each process). Specifically, achieving latency
goals depends on the processing times for each workflow at every
service of their execution DAGs [37]. In Figure 3, if w3 has a 300ms
end-to-end deadline and requires 250ms of processing time at ey, it
only has a budget of 50ms to complete at a; and b;.

Despite myriad existing scheduling algorithms to prioritize re-
quests with different performance objectives (e.g., shortest remaining
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Table 1: Notation used for algorithm description

w | Workflow w

s Service s, defined as a set of processes

p Process p
a}‘;’ d Amplification factor for w from p to process d
oj‘,“’ Admission rate of w at p

time first (SRTF) [18] and least slack time first (LSTF) [35]), realiz-
ing these policies in a fully distributed setting remains non-trivial.
These algorithms rely on information such as the remaining pro-
cessing time and slack to deadlines, which need to be dynamically
estimated across diverse workflows.

3.3 Design principles

Given the scale and heterogeneity of the applications we aim to
support, the design of Wisp is driven by three core requirements:
(i) avoid centralized coordination, (ii) exchange minimal informa-
tion between services, (iii) operate without prior knowledge of a
workflow’s costs and graph structure. At the same time, Wisp must
provide building blocks for operators to enforce flexible system-
wide policies depending on their requirements with minimal tuning.
These considerations led us to a design with the following key func-
tionalities:

Workflow-level distributed rate adaptation. Processes use a lo-
cal policy to identify admission rates for requests of different work-
flows and share them with their upstream neighbors. Next, Wisp
uses a novel distributed rate adaptation protocol to bubble these
admission rates through the service chain, calibrating rate limiters
at upstream services to account for bottlenecks downstream. This
ensures that workflows are rate limited as early as possible instead
of only being throttled at the point of congestion (§3.2). Furthermore,
we perform admission control to avoid wasting resources on requests
that will not complete within their deadlines.

Request-level scheduling. Wisp leverages request schedulers at
every process to mediate access to local resources. Schedulers may
enforce fair queuing across requests from different workflows to
guarantee performance isolation, or use policies such as shortest job
first (SJF), earliest deadline first (EDF), and least slack time first
(LSTF) to optimize for a range of end-to-end performance goals.
Wisp dynamically estimates end-to-end properties of requests such
as their remaining processing time to execute algorithms such as
LSTFE.

4 DESIGN

We now discuss our solutions for workflow-level distributed rate
adaptation and request-level scheduling.

4.1 Workflow-level rate adaptation

Following from §3.2, we design an algorithm which seeks to balance
the overall system utilization and the request drop probability (due
to overload), by setting appropriate rate limits at all processes in a
fully distributed manner. We outline our distributed algorithm for
adapting per-workflow rate limits system-wide in §4.1.1, provide an
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Algorithm 1 Rate adaptation at p € w (every 100ms)

Constants: g: quantile parameter

L: ag" « LocalResourceSharingPolicy()

2: for all D | downstream services do

3: for all d | processes in service D do > In parallel
4: cr{‘i“’ — GetRates(d)/aI‘;’d

5: al‘;’ — min(a;V,Q(a“i“’(d € D),q))

illustrative example in §4.1.2, and further comment on its tuning in
§4.1.3.

4.1.1 Distributed rate adaptation algorithm

The goal of each process p is to set a rate limit o, for each workflow
w, to enforce a specific resource sharing policy across workflows,
while balancing the system utilization and the request drop prob-
ability. Concretely, every process p, for a workflow w, computes
a rate limit crl‘," as the minimum between the local rate limit and
the rate limits of downstream services of p. p periodically executes

Algorithm 1 (see notation in Table 1).

Monitoring workflow characteristics. To determine their local
rate limits as well as those of their downstream services, processes re-
quire information about each workload w. Specifically, each process
p monitors the average load on local resources by each workflow. It
also maintains a}‘)‘” & the amplification factor of w from process p to

a downstream process d. For instance, in Figure 3, if the measured
arrival rates at a; and by for wy are 100 and 200, respectively, then
“2}111;1 = 2; in other words, a single request of wy in a; triggers two
reqﬁests to by on average.

Adapting local rate limits (Line 1). Our algorithm starts with p
computing its local rate limits through an operator-specified policy
(§4.3). Policies observe the load on local resources by different
workflows to infer their costs (§5). They then compute local rate
limits such that the resulting share of each resource by a workflow
corresponds to a policy (say, bottleneck fairness). As the resource
share or cost for w changes, the local rate limits adapt accordingly.
In Line 1, p initializes af‘j’ to the local rate limits by executing the
policy.

Trading off utilization for dropped requests (Lines 2-5). Next,
for each downstream service D, p queries the rate limits of the pro-
cesses d € D, scaled by the amplification factor a;" 4 (Lines 2-4).

Intuitively, if every process p sets its ag" according to the mini-
mum of its local rate limit and that of its downstream processes, we
avoid overload along the service topology. However, this approach
is conservative and may significantly reduce resource utilization. For
example, if a process communicates with 100 downstream processes,
a slowdown in one of those processes directly reduces the admission
rate which then propagates upstream.

Instead of using the minimum, we propose using a quantile func-
tion Q, which depends on a quantile knob q € [0, 1] (Line 5). For
example, g = 0.5 uses the median downstream rate and makes Q ro-
bust to outliers; however, the overloaded downstream services drop
requests that are in excess of their announced rate limits. Navigating
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this trade-off allows us to increase resource utilization. We discuss
the tuning of the knob ¢ in §4.1.3.

Computing o*l‘,” (Line 5). Finally, p adjusts its announced rate
O';,M as the minimum between the current rate and the value of Q,
which can be regarded as the per-service aggregate rate (of D). p
distributes its announced o*l‘,“’ to its upstream processes in proportion
to their demands, when the upstream processes invoke GetRates(-)
(Line 4).

In summary, every iteration of Algorithm 1 bubbles up admis-
sion rates through the service topology, with processes of upstream
services enforcing rate limits that account for downstream service
rates according to the quantile knob q.

4.1.2 Rate adaptation trade-off by example

We now present a simple example to describe the behavior of Al-
gorithm 1. Consider the setting in Figure 3. The three workflows
w1, wg, and w3 have an arrival rate (demand) of 100rps each at ay,
and a subsequent load at (e1, e2) of (400, 400)rps, (100, 100)rps, and
(0, 100)rps respectively. Assume that all processes have a capacity
of 500rps each.

This implies that the total load at e; from all three workflows
exceeds its capacity of 500rps. Assume running a max-min fairness
policy at ez, which, observing the load per workflow, asserts that wy
is exceeding its fair share of 300rps and needs to be rate limited.

With g = 0, O';;l is computed to be 75rps, which guarantees that
e1 and ez receive 300rps of load from wy, but thereby leaves 100rps
of spare capacity at e;. With g = 1, a;“:l in turn becomes 100rps.
This maximizes utilization at e; (400rps), but ez now drops 100rps
(incident load of 400rps, and rate limit of 300rps). This is a funda-
mental trade-off in the workflow rate limiting problem: calibrating
end-to-end rate limits to match the slowest process of bottlenecked
services risks under-utilization (g = 0), whereas matching the fastest
process risks wasting resources and dropping requests (g = 1).

4.1.3 Guidelines for setting the quantile knob

As the advertised rates in Algorithm 1 are non-decreasing in the
quantile knob g, both the request drop probability and system uti-
lization increase with q. Operators can leverage this property and
set q to properly balance the two. Suppose that the operator wishes
to minimize a weighted sum between the average request drop rate
and the average unused capacity. Let us focus first on a system with
a single service and a large number of processes. Assume that the
advertised rates 0;’ from Line 4 in Algorithm 1 are represented by a
random variable X with support [0, M] and density f(x), and also

al‘;’ =1 The goal of the quantile knob g can be expressed in terms
of minimizing a weighted sum of residual values

h(a) = E[(a—-X)lax>x]+ PE[(X - a)la<x]
a M
= f(a—x)f(x)dx+ﬁf (x—a)f(x)dx .
0 a

The expectations correspond to the average drop rate and average
unused capacity under some arrival rate (demand) a; 1., denotes
the indicator function and S is the weighting factor. Differentiating
h(a),

a M
W (a) = fo fdc-p [ foodx
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Figure 4: Scheduling example: requests from w; and w, contend at a,;
and b;. (Right) requests from w; have a shorter deadline than w,, but
wy requires additional processing time (at c;). (Top schedule) EDF pri-
oritizes w; at b; because of the closer deadline; w, misses its deadline.
(Bottom schedule) LSTF considers the slack for w, with progress met-
rics, and meets both deadlines.

and setting h’(a) = 0, we obtain that the optimal value of a, which
would be returned by the quantile function Q(-) in Line 5, must
satisfy % = f. In the particular case when f = 1 then a is the
median of X and consequently g = 0.5; as another example, if § = 3
then a would be the third quartile and g = 0.75.

Now consider a more general system with a DAG of n services.
Suppose the admission rates in each (process, service) pair are identi-
cally distributed. For § = 1, it can be shown that setting the quantile
to ¢ = 0.5 and using our algorithm for rate adaptation would lead to
an optimal solution (the only difference in the analysis is that the
differential of the weighted sum of residual values would be nh’(a));
different values of  would lead to different optimal values of q.

Naturally, it is hard to a-priori determine the optimal value of
q for a general system as it depends on the distributions of the ad-
mission rates of the processes for each service, and also on the
distributions of the amplification factors. In fact, the operator can
theoretically benefit by setting different quantile values for each
(service, workflow) pair, e.g., via line-search procedure at a slow
time-scale. Nonetheless, guided by the above analysis and for sim-
plicity, we use g = 0.5 by default in our experiments (§6 presents a
sensitivity analysis of q).

4.2 Request-level scheduling

While regulating the system load already improves latency, we also
schedule requests at processes to further meet different performance
goals. In particular, we combat stochastic effects that inflate end-to-
end latencies such as bursty arrivals, and queuing at every hop.

Schedulers in Wisp enforce policies such as performance iso-
lation between requests of different workflows (e.g., protect low
latency workflows from head-of-line blocking due to throughput
heavy workloads [20]) or prioritize their execution based on end-to-
end performance objectives (e.g., meeting deadlines).

Need for estimating progress. Consider the goal of meeting end-
to-end deadlines. A natural scheduling algorithm to execute at every
hop is EDF, which prioritizes requests with closer deadlines. We
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Table 2: Propagated metadata and components that use them
(*progress metrics (§4.2)).

Metadata Used by

Workflow ID Rate limiters, fair queuing, resource
accounting

Elapsed service time * | LSTF, SRTF

Total service time * LSTF

Work so far * LASF

Total work * SJF

Deadline EDF, LSTF, drop logic

discuss an execution of EDF in the context of Figure 4. Requests
from wj execute serially at a; and then b;. Requests from wy contend
with those from wj at a; and by, but additionally also execute at c;.
At by, requests from wy have a closer deadline than those from ws.
EDF in this scenario causes b; to prioritize wj over wy, eventually
causing wy to miss its deadline (Figure 4, top schedule).

Algorithms such LSTF remedy this by prioritizing requests ac-
cording to their remaining processing time and their deadline (Fig-
ure 4, bottom schedule). However, Wisp by design operates with-
out prior knowledge of the costs and DAG structure of workflows.
Therefore, to benefit from scheduling algorithms such as LSTF, Wisp
needs to estimate metrics such as the total and the remaining process-
ing time for each request as they execute. We achieve this through
progress metrics. Note, the processing time for a request differs from
its end-to-end latency (which includes waiting times). This is impor-
tant, because if a request needs only 1ms of processing at a process,
but the same workflow experienced 100ms of queuing delay in the
past, an “expected processing time" of 100ms mischaracterizes the
request’s priority for algorithms such as LSTF.

Progress metrics. We refer to metrics that reflect a request’s true
execution progress as progress metrics. Progress metrics can be
queried for the total end-to-end estimate, elapsed, and remaining
values at any point in the request execution. Example metrics we
track are the processing time and total work (demand divided by
capacity), which enable multiple scheduling algorithms (Table ??).
Every request therefore is “tagged” with the necessary progress
metrics, which is updated by processes as the request executes.

Our solution to track a request’s progress emulates the standard
recursive algorithm to compute the sum of all vertices in a DAG
(every process adds its local sum to the sum reported by its child
sub-trees). For metrics such as the remaining processing time, pro-
cesses scale the computed sums from their children by the degree
of parallelism. An alternative approach is to consider the maximum
reported sub-tree sum, which however tends to over-estimate the
expected processing time at other sub-trees. For metrics such as the
total expended work, a sum gives the desired result. As each request
executes, processes have an estimate of the elapsed value of the
metric m so far (m¢!4P5€4) When a request’s execution completes
end-to-end at the originating process, the resulting total for every
metric (mf°49!) is maintained at the entry points as an exponen-
tially weighted moving average (EWMA). For future invocations
of the workflow, m*°*! is propagated with the request. Scheduling
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algorithms that use the remaining value of a metric (e.g., SRTF and
LSTF) estimate it as m!°tal — melapsed 3¢ any instant.

4.3 Example operator policies

Policies to compute rate limits. Processes may choose to pro-
vide static throughput guarantees, calculate rates based on bottleneck
fairness, or receive feedback from the local queue schedulers and
resources. As long as processes expose their per-workflow rate limits
to their upstream neighbors, the rate aggregation mechanism trans-
parently ensures that upstream processes converge to rate limits that
factor in downstream restrictions (§4.1.1). We implemented a bottle-
neck fairness policy similar to [45]. With this policy, each process
p checks if a local resource is overloaded. If not, it ramps up the
announced rate limits for every workflow for which p is a leaf (no
further downstream services), by an additive probe factor f, scaled
according to the amount of spare capacity available (this increases
the rate faster when there is spare capacity available and is conser-
vative otherwise). If instead a local resource is bottlenecked, the
system calculates max-min fair shares for the contending workflows.

Local scheduling policies. We now discuss multiple scheduling
policies realized using our framework. We implemented a multi-
resource fair queuing scheme similar to [62]. Fair queuing across
workflows protects short and bursty workflows that do not benefit
from rate limiting (§2?). The scheduler uses the deficit round-robin
algorithm [61], wherein every workflow gets a number of credits
per-round and credits are consumed based on the expected cost
of the requests. A fixed number of credits per-round are budgeted
across each workflow in proportion to the shares per-workflow (com-
puted via a bottleneck fairness allocation or via DRF [26]). To meet
end-to-end deadlines, our LSTF policy favors requests with the
least remaining slack (§2?). All scheduling policies are enabled by
progress metrics and other metadata propagated via the requests.

Admission control and drop policies. To regulate queue lengths
system-wide (rate limiters, scheduler, and resource queues), requests
need to be dropped according to different policies. For instance, a
drop policy we use ensures that when a request from a workflow
w arrives at a rate-limiter in p (shaping at rate o,’), the rate-limiter
only queues a request such that it is feasible to meet the deadline.
The policy computes the maximum tolerable queuing delay for a
request from the request’s deadline, the average observed end-to-end
latency for w from p onwards, and the elapsed time so far. If the
expected queuing delay on the rate-limiter (inferred from the back-
log) exceeds the calculated tolerance, the request is dropped. Wisp
thus drops requests that have little chance of completing within their
deadlines, freeing up resources for other requests. Note, typically,
SOAs gracefully degrade service when sub-systems cannot service
arequest [12].

5 WISP IMPLEMENTATION

We find that the basic building blocks to introduce Wisp are available
in most SOA frameworks [50, 69, 72], making it feasible to realize
these ideas today. Our prototype is implemented as a C# library.

Execution model. We align our design with execution models
of SOA frameworks today. Wisp comprises three components (Fig-
ure 5): (i) the user code which contains the business logic for the
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Figure 5: Wisp architecture. Policies examine resource utilization by
different workflows locally and determine rate limiting and sub-task
scheduler behavior. Distributed rate control automatically tunes up-
stream rate limits to reflect downstream bottlenecks. Metadata prop-
agation enables end-to-end scheduling policies.

application, (ii) a core that monitors workflow and resource charac-
teristics, and transparently executes the distributed rate adaptation
algorithm and metadata propagation for scheduling, and (iii) the
operator specified policies that define how to compute local rate
limits and scheduling decisions. Developers building micro-services
express business logic as compositions of sub-tasks triggered by
the arrival of requests (sub-tasks are equivalent to Hystrix com-
mands [50] and Xenon tasks [72]). Rate limiting decisions are made
against requests, whereas scheduling decisions are made against
sub-tasks.

The core bridges user code and operator policies. As sub-tasks
execute, they utilize resources such as connection pools, locks, and
threadpools. Each request in Wisp has a context object propagated
with it, which holds necessary metadata required for the operator
policies such as the workflow ID, deadline and metrics that estimate
request progress (§4.2). Furthermore, Wisp monitors utilization of
the local resources and infers properties of the workflows. The meta-
data propagation and local model inform resource management
decisions by the operator policies (§4.3). The distributed rate adap-
tation then automatically translates the constraints exposed by the
rate limiting policies at each process into upstream rate limits, while
factoring in workflow characteristics (Algorithm 1). The sub-task
scheduler is invoked between each execution of a sub-task, wherein
it prioritizes sub-tasks based on the scheduling policies specified by
the operator.

Estimating workflow and resource characteristics. The algo-
rithms in §4 assume the availability of some measurements at every
process. This includes the arrival rates of requests per-workflow,
the number of further calls per-request to downstream services (am-
plification factors, «), the load per workflow per resource, and the
average completion time of a workflow once admitted. We track EW-
MAs of these measurements over a control interval. Furthermore,
resources managed by Wisp track the load by workflow (similar
abstraction as in Retro [45]). For instance, for threadpool resources,
the average service time of each workflow’s task execution gives us
the load. Other in-process resources such as connection pools and
objects are wrapped by semaphores as in Hystrix [50] to limit con-
currency, and the duration for which a workflow holds a semaphore
is used to compute the load.

Metadata propagation. Mechanisms to propagate metadata across
process boundaries are a standard feature in several SOA frameworks.



SoCC ’'17, September 24-27, 2017, Santa Clara, CA, USA

x10

Partition
Service

x10
Extent
Nodes

Figure 6: (Left) Azure Storage topology used in the evaluation. Work-
flows traverse four services (FE, Auth, PS and EN). Requests to a PS
trigger multiple read/write sub-tasks to the ENs and local computations.
(Right) Workflow DAGs in performance isolation experiment.
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For instance, Finagle [69] has Broadcast Request Contexts, and
Xenon [72] has Operation Contexts. We use similar infrastructure to
not only propagate metadata in each request such as the workflow ID
and end-to-end deadlines, but also to dynamically estimate request
progress.

Sharing rate limits with upstream processes. In Wisp, upstream
processes observe the rate limits per-workflow of their downstream
neighbors in order to calibrate their own rate limits (Algorithm 1). In
our implementation, upstream processes directly probe their down-
stream processes for their rate limits. Alternative approaches include
leveraging available publish-subscribe infrastructure [56, 60], or us-
ing in-band mechanisms such as packing rate limits per-workflow in
message response headers. We leave a detailed exploration of such
implementation trade-offs to future work.

6 SYSTEM EVALUATION

We now demonstrate how Wisp enforces different resource man-
agement policies: (i) Avoid overload and provide isolation in the
presence of aggressive workflows, (ii) Meet end-to-end deadlines,
and (iii) Isolate low-latency traffic from high throughput traffic. We
show (iv) how distributed rate adaptation reacts to hotspots, and
(v) how to navigate the goodput vs utilization trade-off using the
quantile knob q.

Experimental Setup. We run our experiments on a testbed com-
prising forty virtual machines. Each VM has a single 2.40 GHz CPU
core, 2GB of RAM and runs Windows Server 2012 R2. All services
make use of the NET CLR version 4.5. Each instance of a service
in our experiments runs as a process inside a VM.

We setup a topology of services and processes according to that
of Azure Storage, discussed in §2.2; this system exhibits complex
DAGs of operations, as shown in Fig. 6. We reproduce request rout-
ing, execution DAGs, and sub-task cost characteristics of Azure
Storage. Our setup comprises four tiers: front-end (FEs), authen-
tication (AUTH), partition service (PS), and extent nodes (ENs).
FEs are the entry points that accept client requests. FEs first verify
client requests against an AUTH server. They then route requests
to a PS that holds the table for a tenant, determined via consistent
hashing. The PS process then issues multiple reads and writes to the
EN service before executing compute work locally and returning
results.

Our setup comprises ten FEs, five AUTH servers, ten PS instances
and ten EN servers. Wisp monitors resource utilization by workflow
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across all thread pools and connection pools in the system. For a
processing stage each within the EN and PS, we vary the service
times for different workflows to study different bottleneck scenarios
(service times are drawn from exponential distributions). We drive
client workloads from five VMs. Every workflow has a fixed number
of PS partitions. Each PS partition corresponds to a fixed number of
blocks on the EN tier, uniformly distributed across all EN processes.
Clients generate requests according to a Poisson process [55].

Can Wisp enforce performance isolation? The workflow DAGs
for this experiment are indicated in Fig. 6 (right). Workflows A-D are
read-write workloads with an arrival rate of 100rps each at the FEs.
Every request from these workflows at a PS triggers a read and write
request to the EN in sequence followed by some compute work at
the PS. Workflow E issues metadata queries that are serviced locally
by the PS without any interactions with the EN layer. Workflow F
is an aggressive tenant’s workload generated by four clients that
exceeds its fair share at the EN tier. Workflow G is bursty traffic
with an a