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Abstract— Inertial sensing is a technology that enables mo-
tion capture outside of well-defined studio environments. Yet,
there are several hurdles that have be overcome in order to
achieve a high-quality user experience. Among them is enabling
robust wireless communication. Thanks to strict requirements
on throughput and far-field operation along with existing issues
of occlusion and client interference, packet-loss rates in wireless
inertial-sensing systems can amplify pose-tracking errors by as
much as 39%. In this paper, we develop a new type of sequence-
predictors based on long short-term memory neural networks
that can be used to significantly conceal packet losses in inertial
pose-tracking systems. To lower computational overheads, we
systematically exploit spatio-temporal correlations of data and
distribute sensor loads among multiple predictors. Through
experiments conducted with 3.5 hrs. of high-frequency inertial
motion-capture data, we demonstrate that our approach is able
to fully conceal packet losses at rates of up to 20%.

I. Introduction
Human pose-tracking, also known as motion capture, is a
process that requires continuous estimation of joint angles
in 3-dimensional space. Traditionally, this task has been
accomplished with the use of cameras that directly detect
and track limbs or reflective markers that are attached to the
body [cite,cite]. Unfortunately, these methods restrict subject
movement to within the camera’s field-of-view. Non-optical
techniques such as those based on inertial sensing provide
us with an alternative that has no such restrictions [cite,cite].
However, to achieve complete mobility, inertial pose-tracking
systems need to be operated wirelessly [1], [2].

Existing wireless inertial pose-tracking systems face many
challenges. Among them, an important one is data corruption
that occurs due to factors such as channel interference,
large operating distances and limb occlusions. Typically,
data corruptions manifest as packet losses in the network.
Fig. 1 shows the measured packet loss rate (PLR) for a WiFi
network at different throughput levels. In this experiment, we
utilized user datagram protocol (UDP) with single socket
bindings and a stack buffer limit of 1365 Bytes. For com-
parison purposes, 18 IMUs within a wireless inertial pose-
tracking system, transmitting 4 Bytes of single-precision
measurements via 9 channels each at 30 Hz, require a
throughput of ∼150 kbps. At this rate, we see from the figure
that data quality degrades significantly when distances from
the router are greater than about 60 m; PLR steadily increases
to 10% at 90 m. In fact, with an increase in the client or
sensor density, these numbers can easily get worse.

At a system level, as PLRs increase, data quality suffers
leading to jitter in pose tracking. Furthermore, effective

Fig. 1 Measured PLR at different WiFi UDP throughput levels and distances
between sensors and the router. Basic inertial pose-tracking in interference-
free environments requires a throughput of 150 kbps. Consequently, relia-
bility of data in such a system suffers beyond 60 m of operating distance.

operating distances get restricted. In both cases, quality of
pose-analysis suffers making it unsuitable for applications
that require robust real-time tracking over long distances such
as monitoring everyday gait and on-field sports performance.
In this paper, we tackle the increase in PLRs by exploiting
the temporal relationships in sensor data from inertial motion
units (IMUs). Specifically, we develop machine-learning
(ML) models that learn to predict sequential dependencies
in IMU data and fill in missing packets at the receiver
enabling a smooth tracking performance. Following are the
key contributions that we make:

• For the first time, we propose a methodology to exploit
recurrent neural networks (RNNs) as sequence predic-
tors to conceal packet losses in wireless networks.

• We apply our methodology to the problem of inertial
pose tracking that comprises sensor data with natural
temporal dependencies suitable for RNN modeling.

• To lower computational costs of packet-loss conceal-
ment (PLC), we develop a technique for vector-RNN
processing based on clustered sensor channels.

• We demonstrate that our approach can fully conceal
PLRs up to 20%, with modest computational costs.

The rest of the paper is organized as follows. In Sec. II,
we present related work on PLC along with background on
existing PLR models and long short-term memory (LSTM)
networks, which are a specific type of RNN architecture. In
Sec. III, we present our proposed methodology of PLC with
different neural-network architectures including vectorized
learning with sub-clusters of sensor channels. In Sec. IV,
we describe our experimental framework and present results
along with justifications for different LSTM configurations
that we choose. Finally, we conclude in Sec. V.



II. Background and RelatedWork

In this section, we provide an overview of existing methods
for PLC along with a mathematical background on LSTMs
and PLR models that are widely used in the literature.

A. Existing Methods to Conceal Packet Losses

The issue of packet losses in wireless networks is extensively
addressed in communication theory. Primarily, specific rout-
ing and medium-access protocols for sensor networks have
been developed based on analyses of packet-delivery perfor-
mance in dense indoor and outdoor wireless environments
[3]–[5]. Typically, these approaches achieve PLC within the
network-layer by efficient channel coding or re-transmission
of data. On the source-coding side, existing techniques rely
on dual-channel communication or compressed sensing [6]–
[8]. Our approach is closely related to these latter ones. In
contrast, however, we employ data-driven methods that treat
lost packets as samples within time-series data. Thus, we
avoid communication overheads. Consequently, our proposed
techniques can also be applied when factors other than packet
losses degrade data quality, such as motion artifacts in free-
mode body sensor networks [2], [9].

B. Modeling Packet Loss Rates

PLR in a wireless network can be modeled via probabilistic
techniques. We specifically focus on UDP, which is desirable
for real-time performance in pose-tracking systems. For this
protocol, the Gilbert Model is a simple and effective PLR
model that is widely used in the literature [cite]. It relies on
the fact that the probability of losing a contiguous sequence
of k packets decreases geometrically with increasing k [10].
It is modeled as a second-order Markov chain with a single
random variable X, where X = 1 and X = 0 represent loss
and no-loss of a packet, respectively. For this model, with
state probabilities shown in Fig. 2, the matrix of transition
probabilities can be expressed as follows:[

1 − p q
p 1 − q

] [
P(X=0)
P(X=1)

]
=

[
P(X=0)
P(X=1)

]
.

Thus, the conditional and unconditional probabilities of
packet loss are given by the following equations:

P(X = 1) =
p

p + q
and P(X = 1 | X = 1) = 1 − q,

respectively. Furthermore, since the probability of packet loss
only depends on the previous state, the probability of having
a loss episode of length k (i.e., Pk), is given by the following:

Pk = (1 − q)k−1 p.

The average PLR is p/p+q. When q equals 1− p, this model
reduces to a Bernoulli model that is memory less and does
not fully characterize burst packet-loss behavior.

Fig. 2 Gilbert PLR model is based on a 2-stage Markov chain and captures
burst behavior. If p = 1−q, it reduces to the much simpler Bernoulli model.

Fig. 3 Unrolled LSTM network with n time steps or hidden units. Its internal
memory cell can be controlled via the input and forget gates.

C. State Prediction with LSTM Networks

LSTM networks comprise individual units that make use of
recurrent connections. Thus, the weighted activation of an
LSTM unit is fed back to itself with a delay, which provides
it with a memory (hidden value) of past activations allow-
ing the network to learn temporal dynamics in sequential
data. Fig. 3 shows an unrolled LSTM network. Each unit
comprises three simple gates or neurons: input, output and
forget. The output of the LSTM unit is computed as follows:

ct = ft ∗ ct−1 + it ∗ tanh(Wxcxt + Whcht−1 + bc)
ht = ot ∗ tanh(ct) (1)

where at time instant t, the outputs of the memory cell and
the input, output and forget gates are denoted by ct, it, ot

and ft, respectively. Furthermore, xt and ht are the input and
outputs of the LSTM unit, respectively, while bc is a biasing
constant and Wic’s represent weights between the cell and
gate i. Next, we show how to exploit the temporal modeling
capacity of LSTMs by training them to predict future IMU
data in inertial pose tracking.

III. Proposed Approach to Conceal Packet Losses

In this section, we present details on transforming PLC into
a sequence-prediction problem. We also demonstrate how
to cluster correlated sensor channels to vectorize the PLC
computation process.

A. Data-driven LSTM Models for PLC

Once trained with labeled data, an LSTM network can
be used to predict 1-dimensional sequences. In order to
train it, we utilize the previous n − 1 data samples, i.e.,
x1, x2, . . . xn−1, and constrain the nth hidden state to be the
expected sequence output xn. With this constraint in place,
we minimize gradients over a large number of training
examples and back propagate errors to update the LSTM
network weights. Thus, we map k individual IMU channels to
separate LSTM networks. In this case, n is a hyper parameter
that we optimize to achieve the most accurate prediction for
all k channels. A summary of our technique is presented in
the upper half of the block diagram shown in Fig. 4. Once
trained, the network is able to utilize n− 1 previous samples
to predict the nth sample. Thus, if the nth sample is missing
because of a lost or corrupted packet, the LSTM fills it in
with an estimate of the sample and conceals this defect. In
order to maintain consistent internal state of the LSTM units,



Fig. 4 Overview of the proposed approach. In the basic model, we utilize separate LSTM networks for PLC in individual sensor channels (top of figure).
To speed up evaluation on sequential processors, we exploit sensor correlations to optimize the network configuration (bottom of figure).

we need to continually operate all k networks using a sliding
window of n − 1 samples to separately predict xn’s for all
k channels. This is not the case if the network is stateless,
when we can simply utilize the instantaneous set of n − 1
previous samples to predict the nth sample.

B. Clustering Sensor Channels to Speed up Prediction

The model proposed above requires k LSTMs to be trained
separately for k IMU channels. Thus, this approach does
not fully exploit the inter-relationships between IMU data
channels and introduces potential computational overheads
at training and inference time. In this section, we propose
a methodology to train LSTM networks that simultaneously
predict multiple input channels, naturally exploiting tempo-
ral relationships in IMU data. Thus, we implicitly enable
vectorized-inference utilizing subsets of k sensor channels at
a time. Our methodology lowers the number of overall LSTM
networks required and even speeds up evaluation on single-
core processors that are extremely resource constrained.
Unfortunately, experiments show that training one LSTM
network for all k channels does not achieve convergence.
Therefore, we propose to cluster sensor channels based on
signal correlations.

Our clustering approach is illustrated at the bottom half of
the block diagram in Fig. 4 and Algorithm 1. Specifically,
since each IMU has 9 channels, we compute the sum of
channel-wise correlation coefficients for all s sensors in the
pose-tracking system. Thus, between any two sensors i and j,
we denote the total correlation coefficient value across all 9
channels by ci j, which lies in the range [0,9]. Subsequently,
we perform k-means clustering on these pair-wise sensor-
level total correlation values to identify m clusters. To make
group index assignments to individual sensors, we consider
the frequency of occurrence of each sensor in the m clusters,
and choose the cluster index that has the highest occurrence
of pair-wise total correlations from a particular sensor. Fi-
nally, we train LSTM networks per individual group indices
to predict all channels in the group together. Compared
to few other potential grouping heuristics, we empirically
verify that our approach achieves the best convergence during
training time. We posit that this behavior is due to the
high levels of correlation between sensor channels that are
exploited in individual groups. Next, we present results that
demonstrate the benefits of our approach.

Algorithm 1 Correlation-based LSTM Input Clustering

Input: xpq[n], p ∈ [1, s] sensors, q ∈ [1, 9], # clusters m
Output: LSTM sensor groups {g1, g2, . . . , gm}

1: initialize Correlation matrix C = {ci j}, i, j ∈ [1, s]
2: for (xiq, x jq) = 1 to sC2 do // Over all sensor pairs
3: ci j =

∑9
q=1 ρ(xiq, x jq) // Sum correlation coefficients

4: end for
5: Cluster centroids, σk ← k-means[ci j], k ∈ [1,m]
6: for p =1 to s do // Over all sensor indices
7: Group index of xpq ← cluster k where xpq appears

most frequently
8: end for
9: Group {gt} = set of sensors with group index t, t ∈ [1,m]

IV. Experimental Results

In this section, we present details on the data, pose-tracking
algorithm and metrics used for evaluation. We demonstrate
that sequence prediction with LSTMs is able to significantly
conceal packet losses for wireless inertial pose tracking.

A. Evaluation Framework
An overview of our evaluation framework is shown in Fig. 5.
It comprises the following key components: (a) kinematics-
based algorithm for pose tracking, (b) data and packet-loss
injection, (c) LSTM sequence prediction and (d) network
clustering architectures. Next, we present details on each of
these components.

Kinematics-based pose tracking. At the center of the
framework is an algorithm that we used to estimate the joint
angles. The algorithm is based on kinematic methods that
are well-known in the literature [2], [11], [12]. Essentially,
we rely on a homogeneous transformation of points in 3D
space. For instance, any point can be transformed from frame
X to frame Y via the rotation matrix RY

X . Suppose Bi, S i

and G represent coordinate frames associated with the body
segment i, corresponding sensor on the body segment i, and
the global reference (aligned with the Earth’s magnetic field)
at calibration time, respectively. Further suppose B′i and S ′i
represent the body and sensor frames after arbitrary motion.
We can express any imaginary point P via a transformation
of coordinate systems between body segments i and j as
follows:

RG
S ′i

RS ′i
B′i

RB′i
B′j

P = RG
S ′j

R
S ′j
B′j

P (2)



Fig. 5 The proposed experimental framework comprises (a) kinematics-
based algorithm for pose tracking, (b) data and packet-loss injection, (c)
LSTM sequence prediction and (d) network clustering architectures.

By simplifying this expression with matrix inversion, we get:

RB′i
B′j

= RB′i
S ′i

RG
S ′i

−1
RG

S ′j
R

B′j
S ′j

−1
(3)

RG
S ′i

and RG
S ′j

are the outcomes of the IMU sensor-fusion

algorithm computed dynamically [13]. RB′i
S ′i

and R
B′j
S ′j

represent
displacement between sensors and body parts. They are
obtained during calibration and assumed to remain the same
through the course of motion. Thus, by measuring RG

S ′i
and

RG
S ′j

, we are able to compute the joint angle RB′i
B′j

between
body parts i and j.

Data and packet-loss injection. We leveraged the Mi-
crosoft Inertial Motion Capture (MIMC’17) Dataset, which
comprises synchronized recordings from multiple IMUs and
infrared (IR) sensors sampled at 30 Hz available as packets
delivered over a WiFi link that uses UDP [14]. The locations
of the sensors on the body are shown in Fig. 4. In this work,
we ignored the IR readings and considered only 38 IMUs that
covered 24 body segments. We processed the IMU sensor
data to estimate 12 joint angles required for pose tracking.
By fusing information from 2 calibrated Kinect sensors, the
MIMIC’17 dataset also provides us ground-truth joint-angle
information in the BioVision (BVH) format [15]. As shown
in Fig. 5, we utilized this information to compute baseline
values for the errors in the joint-angle estimates produced by
the kinematics algorithm described above.

To obtain wireless inertial motion-tracking data that in-
cluded lost packets at different rates, we invoked the
Bernoulli and Gilbert models described in Sec. II-B. Thus,
we injected packet-loss errors in the clean IMU data provided
by MIMIC’17. For the unconcealed PLR case, we replaced
missing packets with the previously received packets. Pro-
cessing this data with the kinematics algorithm gave us the
degraded performance level for pose tracking.

LSTM sequence prediction. We cleaned up the data to
conceal packet losses with our state-prediction and clustering
algorithms developed in Python. We then processed it with

TABLE I Signal-level MAE vs. PLR rates and models.
aaaaaa
Rate Model Bernoulli Gilbert

Accel. Gyro. Mag. Accel. Gyro. Mag.
5% 0.035 0.040 0.568 0.040 0.048 0.507
10% 0.086 0.099 1.216 0.094 0.101 1.264
20% 0.231 0.269 2.605 0.218 0.252 2.606
30% 0.411 0.480 3.872 0.345 0.392 3.816

TABLE II Mean pose-tracking errors vs. PLR rates and models.
aaaaaa
Model Rate 5% 10% 20% 30% No PLR

Bernoulli 17.7◦ 17.8◦ 20.4◦ 23.3◦
18.1◦

Gilbert 17.4◦ 17.7◦ 21.3◦ 23.9◦

the same kinematics-based algorithm to get an updated
estimate of the the joint-angle information. We developed our
LSTM models in Theano with Keras APIs. We implemented
the proposed models on a PC with 16 GB DDR4 RAM, 3.6
GHz, 16 core 2x Intel Xeon CPUs, and an Nvidia Titan X
(Pascal) GPU with 12 GB DDR5 RAM and 3584 Cuda cores
running at 1.5 GHz.

Network architectures. We evaluated the efficacy of PLC
with our estimation algorithms based on 11 different LSTM
configurations. They are LSTMs predicting the following:
• 2-9 sensor groups using k-means clustering on corre-

lated channels described in Algorithm. 1.
• 14 sensor groups divided by different connected seg-

ments of the human body.
• 28 groups that further divide the above 14 based on lo-

cations on body segments (front, rear, inside or outside).
• 38 sensor groups, each containing only one IMU

B. Concealment Performance
For brevity, we present results that limit the Gilbert burst-
parameter q to 0.8. Thus, the loss-transition probability p
is controlled solely by the loss rate r and is computed as
follows: p = r ·q/(1− r). We also restrict evaluation to PLRs
of 5, 10, 20 and 30%. At inference time, lost packets are
predicted by the trained LSTM models that process different
sets of IMU data channels, depending on the clustering
mechanisms discussed above. We report results in the form
of two metrics: (a) mean-absolute error (MAE) between the
LSTM predicted and ground-truth raw IMU sensor data and
(b) end-to-end tracking error reported as the mean norm
of the estimation error in the 3-D Euclidean angle across
12 body joints when compared to the ground-truth optical
tracking system with 2-fused Kinect sensors.

Table I shows the best MAE values achieved for the two
PLR models at different rates and sensor types. As observed
from the table, our approach enables us to reconstruct IMU
data quite accurately. Table II shows the impact of this
prediction on the mean value of the end-to-end tracking error
with the use of the best LSTM configurations. We observe
that for PLRs under 10%, in the average case, our best
LSTM configurations marginally outperform non-lossy data,
potentially due to smoother prediction of the IMU values.
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(a) Bernoulli PLR Model
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Fig. 6 Our PLC approach reduces tracking errors to the levels of non-lossy data when PLRs are <10%. Mean tracking errors of all joint angles are plotted
as solid lines, while standard deviations are shown as dashed lines. The two horizontal lines indicate tracking performance using non-lossy data.

Fig. 6 shows the mean and variance of tracking er-
rors achieved at different clustering levels. The refer-
ence tracking-error achieved by the loss-free IMU data in
MIMC’17 is also shown as a solid horizontal line. From
the figure, we observe that our clustering approach allows
us to speed up LSTM processing because of vectorized
operations. For sequential processing, the speed ups achieved
due to vectorized processing are linear in the number of
LSTM groups utilized. This is because of inherently parallel
execution that is made possible in Eq. (1) when xt and
other associated parameters can be processed as vectors.
Furthermore, at 10% PLR, the use of 2, 28 or 38 LSTMs
could help recover similar tracking accuracy as the non-
lossy data for both PLR models. In fact, by processing
with just 2 LSTMs, we are able to achieve a reasonable
tracking accuracy, while the error starts to increase from
3 groups onwards and plateaus around 6-8 groups. At the
peak value, tracking errors are amplified by up to 39%
compared to the baseline. This behavior is consistent at PLRs
below 20%. However, at 20% PLR, careful configuration of
the LSTM architecture becomes necessary to lower tracking
errors. However, at more than 30% PLR, we were not able
to improve the tracking accuracy significantly.

V. Conclusions
In emerging applications of wireless inertial pose tracking,
real-time jitter-free performance is crucial for a good user
experience. Loss of packets in a wireless network presents
a hurdle to achieving this objective. In this paper, we
explored the possibility of utilizing the sequence prediction
power of LSTM networks to conceal these packet losses.
We observed that in resource-constrained scenarios, where
these algorithms are expected to run, utilizing an LSTM
for individual IMU data channels is not scalable. Thus, we
proposed an approach to cluster sensor channels, enabling us
to run our packet-loss concealment framework in a vectorized

manner with substantially lower execution times even on
single-threaded, single core processors.
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