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Abstract. In this paper, we study the problem of image-text matching.
Inferring the latent semantic alignment between objects or other salient
stuffs (e.g. snow, sky, lawn) and the corresponding words in sentences
allows to capture fine-grained interplay between vision and language,
and makes image-text matching more interpretable. Prior works either
simply aggregate the similarity of all possible pairs of regions and words
without attending differentially to more and less important words or
regions, or use a multi-step attentional process to capture limited num-
ber of semantic alignments which is less interpretable. In this paper, we
present Stacked Cross Attention to discover the full latent alignments
using both image regions and words in sentence as context and infer the
image-text similarity. Our approach achieves the state-of-the-art results
on the MS-COCO and Flickr30K datasets. On Flickr30K, our approach
outperforms the current best methods by 22.1% in text retrieval from
image query, and 18.2% in image retrieval with text query (based on
Recall@1). On MS-COCO, our approach improves sentence retrieval by
17.8% and image retrieval by 16.6% (based on Recall@1 using the 5K
test set).

Keywords: Attention, Multimodal matching, Cross-modal retrieval,
Visual-semantic embeddings

1 Introduction

In this paper we study the problem of image-text matching, central to image-
sentence cross-modal retrieval (i.e. image search for given sentences with visual
descriptions and the retrieval of sentences from image queries).

When people describe what they see, it can be observed that the descriptions
make frequent reference to objects and other salient stuff in the images, as well
as their attributes and actions (as shown in Figure 1). In a sense, sentence
descriptions are weak annotations, where words in a sentence correspond to some
particular, but unknown regions in the image. Inferring the latent correspondence
between image regions and words is a key to more interpretable image-text
matching by capturing the fine-grained interplay between vision and language.

Similar observations motivated prior work on image-text matching [1–3].
These models often detect image regions at object/stuff level and simply aggre-
gate similarity of all possible pairs of image regions and words in the sentence
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A few people riding bikes next to a dog on a leash.

Fig. 1. Sentence descriptions make frequent reference to some particular but unknown
salient regions in images, as well as their attributes and actions. Reasoning the under-
lying correspondence is a key to interpretable image-text matching.

to infer the global image-text similarity; e.g. Karpathy and Fei-Fei [1] proposed
taking the maximum of the region-word similarity with respect to each word
and averaging the results corresponding to all words. It shows the effectiveness
of inferring the latent region-word correspondences, but such aggregation does
not consider the fact that the importance of words can depend on the visual
context.

We strive to take a step towards attending differentially to important im-
age regions and words with each other as context for inferring the image-text
similarity. We introduce a novel Stacked Cross Attention that enables attention
with context from both image and sentence in two stages. In the Image to Text
formulation (Image-Text), it first attends to words in the sentence with respect
to each image region, and compares each image region to the attended infor-
mation from the sentence to decide the importance of the image regions (e.g.
mentioned in the sentence or not). Likewise, in the Text to Image formulation
(Text-Image), it can first attend to image regions with respect to each word and
decide to pay more or less attention to each word.

Compared to models that perform fixed-step attentional reasoning that only
focus on limited semantic alignments (one at a time) [4, 5], Stacked Cross At-
tention discovers all possible alignments simultaneously. Since the number of
semantic alignments varies for different images and sentences, the correspon-
dence inferred by our method is more comprehensive and thus making image-text
matching more interpretable.

To identify the salient regions in image, we follow Anderson et al. [6] to
analogize the detection of salient regions at object/stuff level to the spontaneous
bottom-up attention in the human vision system [7–9], and practically imple-
ment bottom-up attention using Faster R-CNN [10], which represents a natural
expression of a bottom-up attention mechanism.

To summarize, our primary contribution is the novel Stacked Cross Atten-
tion mechanism to discover the full latent visual-semantic alignments. To eval-
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uate the performance of our approach in comparison to other architectures and
perform comprehensive ablation studies, we look at the MS-COCO [11] and
Flickr30K [12] datasets. Our model, Stacked Cross Attention Network (SCAN)
that uses the proposed attention mechanism, achieves the state-of-the-art re-
sults. On Flickr30K, our approach outperforms the current best methods by
22.1% in text retrivel from image query, and 18.2% in image retrieval with text
query (based on Recall@1). On MS-COCO, it improves sentence retrieval by
17.8% and image retrieval by 16.6% (based on Recall@1 using the 5K test set).

2 Related Work

A rich line of studies have explored mapping whole images and full sentences
to a common semantic vector space for image-text matching [13–25]. Kiros et
al. [13] made the first attempt to learn cross-view representations with a hinge-
based triplet ranking loss using deep Convolutional Neural Networks (CNN)
to encode images and Recurrent Neural Networks (RNN) to encode sentences.
Faghri et al. [20] leveraged hard negatives in the triplet loss function and yielded
significant improvement. Peng et al. [21] and Gu et al. [22] suggested incorpo-
rating generative objectives into the cross-view feature embedding learning. As
opposed to our proposed method, the above works do not consider the latent
vision-language correspondence at the level of image regions and words. Specif-
ically, we discuss two lines of research addressing this problem using attention
mechanism as follows.
Image-text matching with bottom-up attention. Bottom-up attention is
a terminology that Anderson et al. [6] proposed in their work on image cap-
tioning and Visual Question-Answering (VQA), referring to purely visual feed-
forward attention mechanisms in analogy to the spontaneous bottom-up atten-
tion in human vision system [7–9] (e.g. human attention tends to be attracted
to salient instances like objects instead of background). Similar observation had
motivated this study and several other works [1–3,26]. Karpathy and Fei-Fei [1]
proposed detecting and encoding image regions at object level with R-CNN [27],
and then inferring the image-text similarity by aggregating the similarities be-
tween all possible region-word pairs. Niu et al. [3] presented a model that maps
noun phrases within sentences and objects in images into a shared embedding
space on top of full sentences and whole images embeddings. Huang et al. [26]
combined image-text matching and sentence generation for model learning with
an improved image representation including objects, properties, actions, etc. In
contrast to our model, these studies do not use the conventional attention mech-
anism (e.g. [28]) to learn to focus on image regions for given semantic context.
Conventional attention-based methods. The attention mechanism focuses
on certain aspects of data with respect to a task-specific context (e.g. looking
for something). In computer vision, visual attention aims to focus on specific
images or subregions [6, 28–30]. Similarly, attention methods for natural lan-
guage processing adaptively select and aggregate informative snippets to infer
results [31–35]. Recently, attention-based models have been proposed for the
image-text matching problem. Huang et al. [5] developed a context-modulated
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attention scheme to selectively attend to a pair of instances appearing in both
the image and sentence. Similarly, Nam et al. [4] proposed Dual Attentional
Network to capture fine-grained interplay between vision and language through
multiple steps. However, these models adopt multi-step reasoning with a pre-
defined number of steps to look at one semantic matching (e.g. an object in the
image and a phrase in the sentence) at a time, despite the number of semantic
matchings change for different images and sentence descriptions. In contrast, our
proposed model discovers all latent alignments, thus is more interpretable.

3 Learning Alignments with Stacked Cross Attention

In this section, we describe the Stacked Cross Attention Network (SCAN). Our
objective is to map words of a sentence and image regions into a common embed-
ding space to infer the similarity between a whole image and a full sentence. We
begin by bottom-up attention to detect and encode image regions into features.
Also, we map words in sentence along with the sentence context to features.
We then apply Stacked Cross Attention to infer the image-sentence similarity
by aligning image region and word features. We first introduce Stacked Cross
Attention in Section 3.1 and the objective of learning alignments in Section 3.2.
Then we will detail image and sentence representations in Section 3.3 and Section
3.4, respectively.

3.1 Stacked Cross Attention

Stacked Cross Attention expects two inputs: a set of image features V = {v1, ..., vk
}, vi ∈ RD, such that each image feature encodes a region in an image; a set of
word features E = {e1, ..., en}, ei ∈ RD, in which each word feature encodes a
word in a sentence. The output is a similarity score, which measures the similarity
of an image-sentence pair. In a nutshell, Stacked Cross Attention attends differ-
entially to image regions and words using both as context to each other while
inferring the similarity. We define two complimentary formulations of Stacked
Cross Attention below: Image-Text and Text-Image.
Image-Text Stacked Cross Attention. This formulation is illustrated in
Figure 2, entailing two stages of attention. First, it attends to words in the
sentence with respect to each image region. In the second stage, it compares
each image region to the corresponding attended sentence vector in order to
determine the importance of the image regions with respect to the sentence.
Specifically, given an image I with k detected regions and a sentence T with n
words, we first compute the cosine similarity matrix for all possible pairs, i.e.

sij =
vTi ej
||vi||||ej ||

, i ∈ [1, k], j ∈ [1, n]. (1)

Here, sij represents the similarity between the i-th region and the j-th word. We
empirically find it beneficial to threshold the similarities at zero [2] and normalize

the similarity matrix as s̄ij = [sij ]+/
√∑k

i=1[sij ]2+, where [x]+ ≡ max(x, 0).
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A cat is sitting in the bathroom sink

Sentence !:

A cat is sitting in the bathroom sink.

A cat is sitting in the bathroom sink.

A cat is sitting in the bathroom sink.

A cat is sitting in the bathroom sink.

Stage 1: Attend to words

Attended sentence vector "#$
Similarity
-(/0, "0$)

Pooling

Similarity
3(4, !)

Stage 2:
Attend to the important 
image regions given "0$

/#

Image: 4

/5Bottom-Up 
Attention

Fig. 2. Image-Text Stacked Cross Attention: At stage 1, we first attend to words in the
sentence with respect to each image region feature vi to generate an attended sentence
vector ati for i-th image region. At stage 2, we compare ati and vi to determine the
importance of image regions, and then compute the similarity score.

To attend on words with respect to each image region, we define a weighted
combination of word representations (i.e. the attended sentence vector ati, with
respect to the i-th image region)

ati =

n∑
j=1

αijej , (2)

where

αij =
exp(λ1s̄ij)∑n
j=1 exp(λ1s̄ij)

, (3)

and λ1 controls the smoothness of the softmax function (Eq. (3)).
To determine the importance of image regions given the sentence context, we

define the relevance between the i-th region and the sentence using the cosine
similarity between the attended sentence vector ati and each image region feature
vi, i.e.

R(vi, a
t
i) =

vTi a
t
i

||vi||||ati||
. (4)

Inspired by the minimum classification error formulation in speech recogni-
tion [36, 37], the similarity between image I and sentence T is calculated by
LogSumExp pooling (LSE), i.e.

SLSE(I, T ) = log(

k∑
i=1

exp(λ2R(vi, a
t
i)))

(1/λ2), (5)

where λ2 determines the importance of the more relevant pairs of image region
feature vi and attended sentence vector ati. As λ2 →∞, S(I, T ) approximates to
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cat

A

sink

Sentence !: A cat is sitting in the bathroom sink. 

Similarity
R’(-., 0.1)

Pooling

Similarity
3(4, !)

Stage 2: Attend to words given 0.1
Stage 1: Attend to image regions 5678 56 (attended image vector) 

-8

-9

-:

0:1

Fig. 3. Text-Image Stacked Cross Attention: At stage 1, we first attend to image regions
with respect to each word feature ei to generate an attended image vector avj for j-th
word in the sentence (The images above the symbol avn represent the attended image
vectors). At stage 2, we compare avj and ej to determine the importance of image
regions, and then compute the similarity score.

maxki=1R(vi, a
t
i). Alternatively, we can summarize R(vi, a

t
i) with average pooling

(AVG), i.e.

SAVG(I, T ) =

∑k
i=1R(vi, a

t
i)

k
. (6)

Essentially, if a region i is not mentioned in the sentence, its feature vi would
not be similar to the corresponding attended sentence vector ati since it would
not be able to collect good information while computing ati. Thus, comparing ati
and vi determine how important region i is with respect to the sentence.
Text-Image Stacked Cross Attention. Likewise, we can first attend to im-
age regions with respect to each word, and compare each word to the corre-
sponding attended image vector to determine the importance of the words. We
call this formulation Text-Image, which is depicted in Figure 3. Specifically, we
normalize cosine similarity si,j between the i-th region and the j-th word as

s̄′i,j = [si,j ]+/
√∑n

j=1[si,j ]2+.

To attend on image regions with respect to each word, we define a weighted
combination of image region features (i.e. the attended image vector avj with
respect to j-th word)

avj =

k∑
i=1

αijvi, (7)

where

αvj =
exp(λ1s̄

′
i,j)∑k

i=1 exp(λ1s̄
′
i,j)

. (8)

Using the cosine similarity between the attended image vector avj and the word
feature ej , we measure the relevance between the j-th word and the image as
R′(ej , a

v
j ) = (eTj aj)/(||ej ||||aj ||). The final similarity score between image I and
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sentence T is summarized by LogSumExp pooling (LSE), i.e.

S′
LSE(I, T ) = log(

n∑
j=1

exp(λ2R
′(ej , a

v
j )))

(1/λ2), (9)

or alternatively by average pooling (AVG)

S′
AVG(I, T ) =

∑n
j=1R

′(ej , a
v
j )

n
. (10)

In prior work, Karpathy and Fei-Fei [1] defined the region-word similarity as a
dot product between vi and ej , i.e. sij = vTi ej and the image-text similarity by
aggregating all possible pairs without attention as

S′
SM (I, T ) =

n∑
j=1

max
i

(sij). (11)

We revisit this formulation in our ablation studies in Section 4.5, dubbed Sum-
Max Text-Image, and also the symmetric form, dubbed Sum-Max Image-Text

SSM (I, T ) =

k∑
i=1

max
j

(sij). (12)

3.2 Alignment Objective

The triplet loss is a common ranking objective for image-text matching. Previ-
ous approaches [1, 13, 38] have employed a hinge-based triplet ranking loss with
margin α, i.e.

l(I, T ) =
∑
T̂

[α− S(I, T ) + S(I, T̂ )]+ +
∑
Î

[α− S(I, T ) + S(Î , T )]+, (13)

where [x]+ ≡ max(x, 0) and S is a similarity score function (e.g. SLSE). The
first sum is taken over all negative sentences T̂ given an image I; the second
sum considers all negative images Î given a sentence T . If I and T are closer to
one another in the joint embedding space than to any negatives pairs, by the
margin α, the hinge loss is zero. In practice, for computational efficiency, rather
than summing over all the negative samples, it usually considers only the hard
negatives in a mini-batch of stochastic gradient descent.

In this study, we focuses on the hardest negatives in a mini-batch following
Fagphri et al. [20]. For a positive pair (I, T ), the hardest negatives are given by
Îh = argmaxm 6=IS(m,T ) and T̂h = argmaxd6=TS(I, d). We therefore define our
triplet loss as

lhard(I, T ) = [α− S(I, T ) + S(I, T̂h)]+ + [α− S(I, T ) + S(Îh, T )]+. (14)
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3.3 Representing images with Bottom-Up Attention

Given an image I, we aim to represent it with a set of image features V =
{v1, ..., vk}, vi ∈ RD, such that each image feature encodes a region in an image.
The definition of an image region is generic. However, in this study, we focus on
regions at the level of object and other entities. Following Anderson et al. [6].
we refer the detection of salient regions as bottom-up attention and practically
implement it with a Faster R-CNN [10].

Faster R-CNN is a two-stage object detection framework. In the first stage
of Region Proposal Network (RPN), a grid of anchors tiled in space, scale and
aspect ratio are used to generate bounding boxes, or Region Of Interests (ROIs),
with high objectness scores, then in the second stage the representations of the
ROIs will be pooled from the intermediate convolution feature map for region-
wise classification and bounding box regression. A multi-task loss considering
both classification and localization are minimized in both the RPN and final
stages.

We adopt the Faster R-CNN model in conjunction with ResNet-101 [39] pre-
trained by Anderson et al. [6] on Visual Genomes [40]. In order to learn feature
representations with rich semantic meaning, instead of predicting the object
classes, the model predicts attribute classes and instance classes, in which in-
stance classes contain objects and other salient stuffs that are difficult to localize
(e.g. stuffs like ‘sky’, ‘grass’, ‘building’ and attributes like ‘furry’).

For each selected region i, fi is defined as the mean-pooled convolutional
feature from this region, such that the dimension of the image feature vector is
2048. We add a fully-connect layer to transform fi to a h-dimensional vector

vi = Wvfi + bv. (15)

Therefore, the complete representation of an image is a set of embedding vectors
v = {v1, ..., vk}, vi ∈ RD, where each vi encodes an salient region and k is the
number of regions.

3.4 Representing Sentences

To connect the domains of vision and language, we would like to map language to
the same h-dimensional semantic vector space as image regions. Given a sentence
T , the simplest approach is mapping every word in it individually. However, this
approach does not consider any semantic context in the sentence. Therefore, we
employ an RNN to embed the words along with their context.

For the i-th word in the sentence, we represent it with an one-hot vector
showing the index of the word in the vocabulary, and embed the word into a
300-dimensional vector through an embedding matrix We. xi = Wewi, i ∈ [1, n].
We then use a bi-directional GRU [33, 41] to map the vector to the final word
feature along with the sentence context by summarizing information from both
directions in the sentence. The bi-directional GRU contains a forward GRU
which reads the sentence T from w1 to wn

−→
hi =

−−−→
GRU(xi), i ∈ [1, n] (16)
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and a backward GRU which reads from wn to w1

←−
hi =

←−−−
GRU(xi), i ∈ [1, n]. (17)

The final word feature ei is defined by averaging the forward hidden state
−→
hi

and backward hidden state
←−
hi , which summarizes information of the sentence

centered around wi

ei =
(
−→
hi +

←−
hi)

2
, i ∈ [1, n]. (18)

4 Experiments

We carry out extensive experiments to evaluate the Stacked Cross Attention
Network (SCAN), and compare various formulations of SCAN to other state-
of-the-art approaches. We also conduct ablation studies to incrementally verify
our approach and thoroughly investigate the behavior of SCAN. As is common
in information retreival, we measure performance of sentence retrieval (image
query) and image retrieval (sentence query) by recall at K (R@K) defined as
the fraction of queries for which the correct item is retrieved in the closest K
points to the query. The hyperparameters of SCAN, such as λ1 and λ2, are
selected on the validation set.

4.1 Datasets

We evaluate our approach on the MS-COCO and Flickr30K datasets. Flickr30K
contains 31,000 images collected from Flickr website with five captions each.
Following the split in [1,20], we use 1,000 images for validation and 1,000 images
for testing and the rest for training. MS-COCO contains 123,287 images, and
each image is annotated with five text descriptions. In [1], the dataset is split
into 82,783 training images, 5,000 validation images and 5,000 test images. We
follow [20] to add 30,504 images that were originally in the validation set of
MS-COCO but have been left out in this split into the training set. Each image
comes with 5 captions. The results are reported by either averaging over 5 folds
of 1K test images or testing on the full 5K test images. Note that some early
works such as [1] only use a training set containing 82,783 images.

4.2 Details of Training

For visual bottom-up attention, we use Faster R-CNN model in conjunction
with ResNet-101 pre-trained by [6] to extract the ROIs for each image. The
Faster R-CNN implementation uses an intersection over union (IoU) threshold
of 0.7 for region proposal suppression, and 0.3 for object class suppression. To
select salient image regions, a class detection confidence threshold of 0.2 is used.
The top 36 ROIs with highest confidence scores are selected, following [6]. We
extracted features after average pooling, resulting in the final representation of
2048 dimensions.
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Table 1. Comparison of the cross-modal retrieval restuls in terms of Recall@K(R@K)
on Flickr30K. t-i denotes Text-Image. i-t denotes Image-Text. AVG and LSE denotes
average and LogSumExp pooling respectively.

Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10

DVSA (R-CNN, AlexNet) [1] 22.2 48.2 61.4 15.2 37.7 50.5
HM-LSTM (R-CNN, AlexNet) [3] 38.1 - 76.5 27.7 - 68.8
DSPE (VGG) [16] 40.3 68.9 79.9 29.7 60.1 72.1
SM-LSTM (VGG) [5] 42.5 71.9 81.5 30.2 60.4 72.3
2WayNet (VGG) [23] 49.8 67.5 - 36.0 55.6 -
DAN (ResNet) [4] 55.0 81.8 89.0 39.4 69.2 79.1
VSE++ (ResNet) [20] 52.9 - 87.2 39.6 - 79.5
DPC (ResNet) [19] 55.6 81.9 89.5 39.1 69.2 80.9
SCO (ResNet) [26] 55.5 82.0 89.3 41.1 70.5 80.1

Ours (Faster R-CNN, ResNet):
SCAN t-i LSE (λ1 = 9, λ2 = 6) 61.1 85.4 91.5 43.3 71.9 80.9
SCAN t-i AVG (λ1 = 9) 61.8 87.5 93.7 45.8 74.4 83.0
SCAN i-t LSE (λ1 = 10, λ2 = 5) 67.7 88.9 94.0 44.0 74.2 82.6
SCAN i-t AVG (λ1 = 10) 67.9 89.0 94.4 43.9 74.2 82.8
SCAN t-i AVG + i-t LSE 67.4 90.3 95.8 48.6 77.7 85.2

4.3 Results on Flickr30K

Table 1 presents the quantitative results on Flickr30K where all formulations of
our proposed method outperform recent approaches in all measures. We denote
the Text-Image formulation by t-i, Image-Text formulation by i-t, LogSumExp
pooling by LSE, and average pooling by AVG. The best R@1 of sentence re-
trieval given an image query is 67.9, achieved by SCAN i-t AVG, where we see
a 22.1% improvement comparing to DPC [19]. Furthermore, we combine t-i and
i-t models by averaging their predicted similarity scores. There are six possible
combinations of any two single models. The best result of model ensembles is
achieved by combining t-i AVG and i-t LSE, selected on the validation set. The
combined model gives 48.6 at R@1 for image retrieval, which is a 18.2% im-
provement from the current state-of-the-art, SCO [26]. Our assumption is that
different formulations of Stacked Cross Attention (t-i and i-t; AVG/LSE pool-
ing) approach different aspects of data, such that the model ensemble further
improves the results.

4.4 Results on MS-COCO

Table 2 lists the experimental results on MS-COCO and a comparison with prior
work. On the 1K test set, the single SCAN t-i AVG achieves comparable results
to the current state-of-the-art, SCO. Our best result on 1K test set is achieved
by combining t-i LSE and i-t AVG which improves 4.0% on image query and
8.0% comparing to SCO. On the 5K test set, we choose to list the best single
model and ensemble selected on the validation set due to space limitation. Both
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Table 2. Comparison of the cross-modal retrieval restuls in terms of Recall@K(R@K)
on MS-COCO. t-i denotes Text-Image. i-t denotes Image-Text. AVG and LSE denotes
average and LogSumExp pooling respectively.

Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10

1K Test Images

DVSA (R-CNN, AlexNet) [1] 38.4 69.9 80.5 27.4 60.2 74.8
HM-LSTM (R-CNN, AlexNet) [3] 43.9 - 87.8 36.1 - 86.7
Order-embeddings (VGG) [14] 46.7 - 88.9 37.9 - 85.9
DSPE (VGG) [16] 50.1 79.7 89.2 39.6 75.2 86.9
SM-LSTM (VGG) [5] 53.2 83.1 91.5 40.7 75.8 87.4
2WayNet (VGG) [23] 55.8 75.2 - 39.7 63.3 -
VSE++ (ResNet) [20] 64.6 - 95.7 52.0 - 92.0
DPC (ResNet) [19] 65.6 89.8 95.5 47.1 79.9 90.0
GXN (ResNet) [22] 68.5 - 97.9 56.6 - 94.5
SCO (ResNet) [26] 69.9 92.9 97.5 56.7 87.5 94.8

Ours (Faster R-CNN, ResNet):
SCAN t-i LSE (λ1 = 9, λ2 = 6) 67.5 92.9 97.6 53.0 85.4 92.9
SCAN t-i AVG (λ1 = 9) 70.9 94.5 97.8 56.4 87.0 93.9
SCAN i-t LSE (λ1 = 15, λ2 = 20) 68.4 93.9 98.0 54.8 86.1 93.3
SCAN i-t AVG (λ1 = 15) 69.2 93.2 97.5 54.4 86.0 93.6
SCAN t-i LSE + i-t AVG 72.7 94.8 98.4 58.8 88.4 94.8

5K Test Images

Order-embeddings (VGG) [14] 23.3 - 84.7 31.7 - 74.6
VSE++ (ResNet) [20] 41.3 - 81.2 30.3 - 72.4
DPC (ResNet) [19] 41.2 70.5 81.1 25.3 53.4 66.4
GXN (ResNet) [22] 42.0 - 84.7 31.7 - 74.6
SCO (ResNet) [26] 42.8 72.3 83.0 33.1 62.9 75.5

Ours (Faster R-CNN, ResNet):
SCAN i-t LSE 46.4 77.4 87.2 34.4 63.7 75.7
SCAN t-i AVG + i-t LSE 50.4 82.2 90.0 38.6 69.3 80.4

models outperform SCO on all metrics, and SCAN t-i AVG + i-t LSE improves
17.8% on sentence retrieval (R@1) and 16.6% on image retrieval (R@1).

4.5 Ablation Studies

To begin with, we would like to incrementally validate our approach by revisit-
ing a basic formulation of inferring the latent alignments between image regions
and words without attention; i.e. the Sum-Max Text-Image (t-i) proposed in [1]
and its compliment, Sum-Max Image-Text (i-t) (See Eqs. (11) (12)). Our Sum-
Max models adopt the same learning objectives with hard negatives sampling,
bottom-up attention-based image representation, and sentence representation
as SCAN. The only difference is that it simply aggregates the similarity scores
of all possible pairs of image regions and words. The results and a comparison
are presented in Table 3. VSE++ [20] matches whole images and full sentences
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Table 3. Effect of inferring the latent vision-language alignment at the level of regions
and words. Results are reported in terms of Recall@K(R@K). Refer to Eqs. (11) (12)
for the definition of Sum-Max. t-i denotes Text-Image. i-t denotes Image-Text.

Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10

VSE++ (fixed ResNet, 1 crop) [20] 31.9 - 68.0 23.1 - 60.7
Sum-Max t-i 59.6 85.2 92.9 44.1 70.0 79.0
Sum-Max i-t 56.7 83.5 89.7 36.8 65.6 74.9
SCO [26] (current state-of-the-art) 55.5 82.0 89.3 41.1 70.5 80.1

SCAN t-i AVG (λ1 = 9) 61.8 87.5 93.7 45.8 74.4 83.0
SCAN i-t AVG (λ1 = 10) 67.9 89.0 94.4 43.9 74.2 82.8

Table 4. Effect of different SCAN configurations on Flickr30K. Results are reported in
terms of Recall@K(R@K). i-t denotes Image-Text. SUM and MAX denote summation
and max pooling instead of AVG/LSE at the pooling step, respectively.

Sentence Retrieval Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10

Baseline: SCAN i2t AVG 67.9 89.0 94.4 43.9 74.2 82.8

No hard negatives 45.8 77.8 86.2 33.9 63.7 73.4
Not normalize image embedding 67.8 89.3 94.6 43.3 73.7 82.7
SCAN i2t SUM 63.9 89.0 93.9 45.0 73.1 82.0
SCAN i2t MAX 59.7 83.9 90.8 43.3 72.0 80.9
One-directional GRU 63.6 87.7 93.7 43.2 73.1 82.3

on a single embedding vector. It used pre-defined ResNet-152 trained on Ima-
geNet [42] to extract one feature per image for training (single crop) and also
leveraged hard negatives sampling, same as SCAN. Essentially, it represents the
case without considering the latent correspondence but keeping other configura-
tions similar to our Sum-Max models. Comparing Sum-Max and VSE++, we can
see the effectiveness of inferring the latent alignments. With a better bottom-up
attention model (compared to R-CNN in [1]), Sum-Max t-i even outperforms the
current state-of-the-art on Flickr30K. By comparing SCAN and Sum-Max mod-
els, we show that Stacked Cross Attention can further improve the performance
significantly.

We further investigate in several different configurations with SCAN i2t AVG
as our baseline model, and present the results in Table 4. Each experiment is
performed with one alternation. It is observed that the gain we obtain from
hard negatives in the triplet loss is very significant for our model, improving the
model by 48.2% in terms of sentence retrieval R@1. Not normalizing the image
embedding (See Eq. (1)) changes the importance of image sample [20], but SCAN
is not significantly affected by this factor. Summing (SUM) or taking maximum
(MAX) instead of average or LogSumExp pooling, the similarity scores between
attended sentence vector and image region features yields weaker results. Finally,
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Fig. 4. Visualization of the attended image regions with respect to each word in the sen-
tence description, outlining the region with the maximum attention weight in red. The
regional brightness represents the attention strength, which considers the importance
of both region and word estimated by our model. Our model generates interpretable fo-
cus shift and stresses on words like “boy” and “tennis racket”, as well as the attributes
(young) and actions (holding). (Best viewed in color)

we find that using bi-directional GRU improves sentence retrieval R@1 by 4.3
and image retrieval R@1 by 0.7.

5 Visualization and Analysis

5.1 Visualizing Attention

By visualizing the attention component learned by the model, we are able to
showcase the interpretablity of our model. In Figure 4, we qualitatively present
the attention changes predicted by our Text-Image model. For the selected im-
age, we visualize the attention weights with respect to each word in the sentence
description “A young boy is holding a tennis racket.” in different sub-figures.
The regional brightness represents the attention weights which considers both
importance of the region and the word corresponding to the sub-figure. We can
observe that “boy”, “holding”, “tennis” and “racket” receive strong and focused
attention on the relatively precise locations, while attention weights correspond-
ing to “a” and “is” are weaker and less focused. This shows that our attention
component learns interpretable alignments between image regions and words,
and is able to generate reasonable focus shift and attention strength to weight
regions and words by their importance while inferring image-text similarity.

5.2 Image and Sentence Retrieval

Figure 5 shows the qualitative results of sentence retrieval given image queries on
Flickr30K. For each image query, we show the top-5 retrieved sentences ranked
by the similarity scores predicted by our model.

Figure 6 illustrates the qualitative results of image retrieval given sentence
queries on Flickr30K. Each sentence corresponds to a ground-truth image. For
each sentence query we show the top-3 retrieved images, ranking from left to
right. We outline the true matches in green and false matches in red.
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1:Older women and younger girl are opening presents up . 
2:Two ladies and a little girl in her pajamas opening gifts 
3:A family opening up their Christmas presents . 
4:A mother and two children opening gifts on a Christmas morning . 
5:A little girl opening a Christmas present . 

(a) (b) (c)

1:A female runner dressed in blue athletic wear is running in a 
competition , while spectators line the street . 
2:A lady dressed in blue running a marathon . 
3:A young woman is running a marathon in a light blue tank top and 
spandex shorts . 
4:A lady standing at a crosswalk . 
5:A woman who is running , with blue shorts . 

1:Two men dressed in green are preparing food in a restaurant . 
2:A man , wearing a green shirt , is cooking food in a restaurant . 
3:A check with a green shirt uses a blowtorch on some food . 
4:An Asian man in a green uniform shirt with a white speckled 
headband is using a torch to cook food in a restaurant . 
5:An Asian man wearing gloves is working at a food stall . 

Fig. 5. Qualitative results of sentence retrieval given image queries on Flickr30K
dataset. For each image query we show the top-5 ranked sentences. We observe that
our Stacked Cross Attention model retrieves the correct results in the top ranked sen-
tences even for image queries of complex and cluttered scenes. The model outputs some
reasonable mismatches, e.g. (b.5). On the other hand, there are incorrect results such
as (c.4), which is possibly due to a poor detection of action in static images. (Best
viewed in color when zoomed in.)

Query: A man riding a motorcycle is performing a trick at a track . Query: A baseball catcher trying to tag a base runner in a baseball game .

Query: Two dogs play by a tree . Query: A construction worker is driving heavy equipment at a work site .

Fig. 6. Qualitative results of image retrieval given sentence queries on Flickr30K. For
each sentence query, we show the top-3 ranked images, ranking from left to right. We
outline the true matches in green boxes and false matches in red boxes. In the examples
we show, our model retrieves the ground truth image in the top-3 list. Note that other
results are also reasonable outputs. (Best viewed in color.)

6 Conclusions

We propose a novel Stacked Cross Attention mechanism that gives the state-of-
the-art performance on the Flickr30K and MS-COCO datasets in all measures.
We carry out comprehensive ablation studies to verify that Stacked Cross At-
tention is essential to the performance of image-text matching, and revisit prior
work to confirm the importance of inferring the latent correspondence between
image regions and words in sentences. Furthermore, we show how the learned
Stacked Cross Attention can be leveraged to give more interpretablity to such
vision-language models.

Acknowledgement. The authors would like to thank Po-Sen Huang and Yokesh
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Appendix: Additional Examples

In this section, we present additional examples for qualitative analysis. We
demonstrate additional examples of image-text matching (using a Text-Image
Stacked Cross Attention Network) showing attended image regions in Figure 7,
Figure 8 and Figure 9. Additional examples of sentence retrieval for given image
queries on Flickr30K and MS-COCO can be found in Figure 10 and Figure 11,
respectively. Furthermore, we show additional examples of image retrieval for
given sentence queries on Flickr30K and MS-COCO in Figure 12 and Figure 13,
respectively.

A bike and a dog on the sidewalk outside a red building

Fig. 7. An example of image-text matching showing attended image regions with re-
spect to each word in the sentence. The brightness represents the attention strength,
which considers the importance of both regions and words estimated by our model.
This example shows that our model can infer the alignments between words and the
corresponding objects/stuffs/attributes in the image (“bike” and “dog” are objects;
“sidewalk” and “building” are stuffs; “red” is an attribute.)
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A person rides a bike down a pier at sunset

A large figure and a surf board in the sand

Fig. 8. Examples of image-text matching showing attended image regions with respect
to each word. The brightness represents the attention strength, which considers the
importance of both regions and words estimated by our model. The two examples
show that our model infers the alignments between words and the corresponding ob-
jects/actions/stuffs in the images (e.g. for the bottom example, “person” and “bike”
are objects; “rides” is an action; “pier” and “sunset” are stuffs.)
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A family is having a pizza dinner at a restaurant

a polar bear standing next to an orange disc

Fig. 9. Examples of image-text matching showing attended image regions with respect
to each word. The brightness represents the attention strength, which considers the
importance of both regions and words estimated by our model. In the first image, we
observe that focused attention is given to multiple objects when matching to words
like “family” and “pizza”. The bottom image suggests that attention is given to fine
details such as the leg of the polar bear when matching to the word “standing”.
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1:Three men are working on a roof . 
2:People are fixing the roof of a house . 
3:Three men , one on a ladder , work on a roof . 
4:Two men sitting on the roof of a house while another one stands on 
a ladder . 
5:Two men on a rooftop while another man stands atop a ladder 
watching them 

(a) (b) (c)

1:A softball player dressed in a maroon and gold uniform , at home plate 
with a catcher and umpire , prepares to run after hitting the ball . 
2:Two girls playing in a game of softball . 
3:Two girls participate in a softball game . 
4:A Pride softball team member hits the ball and runs towards first base 
while the umpire and catcher watch the ball . 
5:A woman runs after making a hit in women 's softball , the catcher rises 
to her feet . 

1:A woman playing volleyball at the beach . 
2:A woman is playing volleyball . 
3:A woman plays volleyball . 
4:A female beach volleyball player serving the ball . 
5:A female volleyball player wearing a bikini jumps and spikes the ball .


(d) (e) (f)

1:A man riding a horse as it jumps into the air while an audience watches 
2:A man is astride a rearing horse in an arena full of spectators . 
3:A man in full cowboy attire rides a bucking horse for an audience . 
4:A man with a striped shirt , blue jeans and a red kerchief in his pocket is 
being thrown off a brown irate horse while a brown and tan horse is 
buckling while the crowd is watching 
5:A large man in a white shirt rides a brown horse that is bucking and has 
its two front feet off the ground . 

1:A young boy , dressed in a gray and blue baseball uniform , preparing to hit 
the ball off of the t-ball stand while onlookers watch from behind a chain link 
fence . 
2:A young boy about to hit a baseball off of the tee . 
3:A boy wearing a cubs uniform winds up to hit a ball on a tee . 
4:The little boy lifts his leg and swings the bat in an attempt to hit the ball . 
5:A young boy is quite excited in the throes of a ballgame . 

1:Man with white hair playing an accordion in the middle of some 
buildings . 
2:A man playing an accordion among in a public area . 
3:A older man playing the accordion outside in the street . 
4:A man playing the accordion on a brick road . 
5:An silver-haired man stands on the cobblestones of an open-air 
square playing the accordion . 

Fig. 10. Additional qualitative examples of text retrieval for given image queries on
Flickr30K. Incorrect results are highlighted in red and marked with red x. Reasonable
mismatches are in black but still marked with red x.

1:A park bench at night with a residential street in the background . 
2:A bench near a grassy area near a parked car . 
3:A park at night is shown , with an empty bench centered 
4:The bench is empty at night in the park 
5:It is night time and the town is quiet . 

(a) (b) (c)

1:To skiers competing on a ski trail in a competition . 
2:Spectators watch cross country ski competitors fly by 
3:Two guys cross country ski in a race 
4:Group of skiers in colorful outfits on top of a mountain . 
5:Skiers on their skis ride on the slope while others watch . 

1:children in a park two are sitting on a play giraffe 
2:A pair of children sit on a giraffe while other children stand nearby . 
3:Children sitting on the back of a giraffe statue with other kids nearby 
4:Two children are playing on the back of the giraffe statue . 
5:Children playing on and around a giraffe sculpture . 

(d) (e) (f)

1:a cart filled with suitcases and bags 
2:A luggage cart topped with lots of luggage . 
3:a number of luggage bags on a cart in a lobby 
4:Wheeled cart with luggage at lobby of commercial business . 
5:A couple of pieces of very nice looking luggage 

1:A small boy standing next to a bike and a parking meter . 
2:A young boy standing by a bicycle leaning on a parking meter 
3:A boy stands beside a bicycle parked by a parking meter . 
4:A young boy standing next to a yellow bike . 
5:A young boy eats something in front of a bike 

1:A man taking a picture of his meal at a diner table . 
2:A man takes a picture of his food in a restaurant . 
3:A man taking a photo of food on a table . 
4:Photographer taking a picture of a meal in a small restaurant . 
5:A man sits at the table with a large pizza on it . 

Fig. 11. Additional qualitative examples of text retrieval for given image queries on
MS-COCO. Incorrect results are highlighted in red and marked with red x. Reasonable
mismatches are in black but still marked with red x.
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Query 1: A man preparing food in his kitchen .

Query 2: A young girl swimming in a pool .

Query 3: Man works on top of scaffolding .

Query 4: Guitar player performs at a nightclub red guitar .

Fig. 12. Additional qualitative results of image retrieval for given sentence queries on
Flickr30K. Each sentence description corresponds to one ground-truth image. For each
sentence query, we show the top-5 ranked images, ranking from left to right. We outline
the true matches in green and false matches in red. For query 1, our model ranks two
reasonable mismatches before the ground-truth. The first output of query 4 is a failure
case, where we observe that our attention component looks at the dark red light and
the illuminated shirt for the word “red”. Note that query 4 is grammatically incorrect.
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Query 1: a pole with a stop lights attached to it

Query 2: Giraffes are feeding on the trees and grass .

Query 3: Youngster on a skateboard , trying simple tip up stunt .

Query 4: A glass bakery case with pastries and several kinds of doughnuts .

Fig. 13. Additional qualitative results of image retrieval for given sentence queries
on MS-COCO. Each sentence description corresponds to one ground-truth image. For
each sentence query, we show the top-5 ranked images, ranking from left to right. We
outline the true matches in green and false matches in red. The first output of query 4
is a mismatch possibly caused by visual confusion. The bakery cases in the image are
not glass but plastic.
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