Achieving Human Parity in Conversational Speech Recognition using CNTK and a GPU Farm

Andreas Stolcke and Frank Seide *Microsoft AI + Research anstolck@microsoft.com, fseide@microsoft.com*

Roadmap

- Task and history
- System overview and results
- Human versus machine
- Cognitive Toolkit (CNTK)
- Summary and outlook

Acknowledgments

Fil Alleva Jasha Droppo Xuedong Huang Mike Seltzer Lingfeng Wu Wayne Xiong Dong Yu Geoff Zweig

Introduction: Task and History

The Human Parity Experiment

- Conversational telephone speech has been a benchmark in the research community for 20 years
 - Focus here: strangers talking to each other via telephone, given a topic
 - Known as the "Switchboard" task in speech community
- Can we achieve human-level performance?
- Top-level tasks:
 - Measure human performance
 - Build the best possible recognition system
 - Compare and analyze

4

30 Years of Speech Recognition Benchmarks For many years, DARPA drove the field by defining public benchmark tasks

Microsoft

Cognitive

Toolkit

History of Human Error Estimates for SWB

- Lippman (1997): 4%
 - based on "personal communication" with NIST, no experimental data cited
- LDC LREC paper (2010): 4.1-4.5%
 - Measured on a different dataset (but similar to our NIST eval set, SWB portion)
- Microsoft (2016): 5.9%
 - Transcribers were blind to experiment
 - 2-pass transcription, isolated utterances (no "transcriber adaptation")
- IBM (2017): 5.1%
 - Using multiple independent transcriptions, picked best transcriber
 - Vendor was involved in experiment and aware of NIST transcription conventions

Note: Human error will vary depending on

- Level of effort (e.g., multiple transcribers)
- Amount of context supplied (listening to short snippets vs. entire conversation)

6

Recent ASR Results on Switchboard

Group	2000 SWB WER	Notes	Reference
Microsoft	16.1%	DNN applied to LVCSR for the first time	Seide et al, 2011
Microsoft	9.9%	LSTM applied for the first time AR. Mohammed e 2015	
IBM	6.6%	Neural Networks and System Combination	Saon et al., Interspeech 2016
Microsoft	5.8%	First claim of "human parity"	Xiong et al., arXiv 2016, IEEE Trans. SALP 2017
IBM	5.5%	Revised view of "human parity"	Saon et al., Interspeech 2017
Capio	5.3%		Han et al., Interspeech 2017
Microsoft	5.1%	Current Microsoft research system	Xiong et al., MSR-TR-2017-39, ICASSP 2018

7

System Overview and Results

System Overview

- Hybrid HMM/deep neural net architecture
- Multiple acoustic model types
 - Different architectures (convolutional and recurrent)
 - Different acoustic model unit clusterings
- Multiple language models
 - All based on LSTM recurrent networks
 - Different input encodings
 - Forward and backward running
- Model combination at multiple levels

For details, see our upcoming paper in ICASSP-2018

- Acoustic training: 2000 hours of conversational telephone data
- Language model training:
 - Conversational telephone transcripts
 - Web data collected to be conversational in style
 - Broadcast news transcripts
- Test on NIST 2000 SWB+CH evaluation set
- Note: data chosen to be compatible with past practice
 - NOT using proprietary sources

Acoustic Modeling Framework: Hybrid HMM/DNN

	CallHome	Switchboard
DNN	21.9%	13.4%

1st pass decoding

Record performance in 2011 [Seide et al.]

Hybrid HMM/NN approach still standard But DNN model now obsolete (!) Poor spatial/temporal invariance

11

Acoustic Modeling: Convolutional Nets

Adapted from image processing Robust to temporal and frequency shifts

12

[Simonyan & Zisserman, 2014; Frossard 2016, Saon et al., 2016, Krizhevsky et al., 2012]

Microsoft

Acoustic Modeling: ResNet

Add a non-linear offset to linear transformation of features Similar to fMPE in Povey et al., 2005 See also Ghahremani & Droppo, 2016

	CallHome	Switchboard
DNN	21.9%	13.4%
ResNet	17.3%	11.1%

1st pass decoding

Acoustic Modeling: LACE CNN

	CallHome	Switchboard
DNN	21.9%	13.4%
ResNet	17.3%	11.1%
LACE	16.9%	10.4%

1st pass decoding

CNNs with **batch normalization**, **Resnet jumps**, and **attention masks** [Yu et al., 2016]

Acoustic Modeling: Bidirectional LSTMs

	CallHome	Switchboard
DNN	21.9%	13.4%
ResNet	17.3%	11.1%
LACE	16.9%	10.4%
BLSTM	17.3%	10.3%

Stable form of recurrent neural net Robust to temporal shifts

[Hochreiter & Schmidhuber, 1997, Graves & Schmidhuber, 2005; Sak et al., 2014]

15

Acoustic Modeling: CNN-BLSTM

- Combination of convolutional and recurrent net model [Sainath et al., 2015]
- Three convolutional layers
- Six BLSTM recurrent layers

Language Modeling: Multiple LSTM variants

- Decoder uses a word 4-gram model
- N-best hypotheses are rescored with multiple LSTM recurrent network language models
- LSTMs differ by
 - Direction: forward/backward running
 - Encoding: word one-hot, word letter trigram, character one-hot
 - Scope: utterance-level / session-level

Session-level Language Modeling

 Predict next word from full conversation history, not just one utterance:

LSTM language model	Perplexity
Utterance-level LSTM (standard)	44.6
+ session word history	37.0
+ speaker change history	35.5
+ speaker overlap history	35.0

Acoustic model combination

Step 0: create 4 different versions of each acoustic model by clustering phonetic model units (**senones**) differently

- Step 1: combine **different models** for **same senone** set at the **frame level** (posterior probability averaging)
- Step 2: after LM rescoring, combine **different senone** systems at the **word level** (confusion network combination)

Results

Word error rates (WER)

Senone set	Acoustic models	SWB WER	CH WER	
1	BLSTM	6.4	12.1	
2	BLSTM	6.3	12.1	Eramo lovol
3	BLSTM	6.3	12.0	combination
4	BLSTM	6.3	12.8	
1	BLSTM + Resnet + LACE + CNN-BLSTM	5.4	10.2	
2	BLSTM + Resnet + LACE + CNN-BLSTM	5.4	10.2	
3	BLSTM + Resnet + LACE + CNN-BLSTM	5.6	10.2	Word-level
4	BLSTM + Resnet + LACE + CNN-BLSTM	5.5	10.3	combination
1+2+3+4	BLSTM + Resnet + LACE + CNN-BLSTM	5.2	9.8	
	+ Confusion network rescoring	5.1	9.8	

Human vs. Machine

Microsoft Human Error Estimate (2015)

- Skype Translator has a weekly transcription contract
 - For quality control, training, etc.
- Initial transcription followed by a second checking pass
 - Two transcribers on each speech excerpt
- One week, we added NIST 2000 CTS evaluation data to the pipeline
 - Speech was pre-segmented as in NIST evaluation

Human Error Estimate: Results

- Applied NIST scoring protocol (same as ASR)
- Switchboard: 5.9% error rate
- CallHome: 11.3% error rate
- SWB in the 4.1% 9.6% range expected based on NIST study
- CH is difficult for both people and machines
 - Machine error about 2x higher
 - High ASR error not just because of mismatched conditions

New questions:

- Are human and machine errors correlated?
- Do they make the same type of errors?
- Can humans tell the difference?

Correlation between human and machine errors?

*Two CallHome conversations with multiple speakers per conversation side removed, see paper for full results Cognitive

Toolkit

Humans and machines: different error types?

Top word substitution errors (\approx 21k words in each test set)

C	CH		/B
ASR	Human	ASR	Human
45: (%hesitation) / %bcack	12: a / the	29: (%hesitation)/%bcack	12: (%hesitation) / hmm
12: was / is	10: (%hesitation) / a	9: (%hesitation) / oh	10: (%hesitation) / oh
9: (%hesitation) / a	10: was / is	9: was / is	9: was / is
8: (%hesitation) / oh	7: (%hesitation) / hmm	8: and / in	8: (%hesitation) / a
8: a / the	7: bentsy / bensi	6: (%hesitation) / i	5: in / and
7: and / in	7: is / was	6: in / and	4: (%hesitation) / %bcack
7: it / that	6: could / can	5: (%hesitation) / a	4: and / in
6: in / and	6: well / oh	5: (%hesitation) / yeah	4: is / was

Overall similar patterns: short function words get confused (also: inserted/deleted) One outlier: machine falsely recognizes backchannel "uh-huh" for filled pause "uh"

- These words are acoustically confusable, have opposite pragmatic functions in conversation
- Humans can disambiguate by prosody and context

Can humans tell the difference?

- Attendees at a major speech conference played "Spot the Bot"
- Showed them human and machine output side-by-side in random order, along with reference transcript
- Turing-like experiment: tell which transcript is human/machine
- Result: it was hard to beat a random guess
 - 53% accuracy (188/353 correct)
 - Not statistically different from chance ($p \approx 0.12$, one-tailed)

Intro - Microsoft Cognitive Toolkit (CNTK)

- Microsoft's open-source deep-learning toolkit
 - <u>https://github.com/Microsoft/CNTK</u> ***** star

14,094 😵 Fork

Intro - Microsoft Cognitive Toolkit (CNTK)

• Microsoft's open-source deep-learning toolkit

14,094

% Fork

- <u>https://github.com/Microsoft/CNTK</u> star
- Designed for ease of use
 - think "what", not "how"
- Runs over 80% Microsoft internal DL workloads
- Interoperable:
 - ONNX format
 - WinML
 - Keras backend
 - 1st-class on Linux and Windows, docker support

CNTK – The Fastest Toolkit

Microsoft

Caffe: 1.0rc5(39f28e4) CNTK: 2.0 Beta10(1ae666d) MXNet: 0.93(32dc3a2) TensorFlow: 1.0(4ac9c09) Torch: 7(748f5e3)

http://	/dII	bench	.con	np.h	kbu	.edu.h	ik/
Bench	ma	rking	by H	IKBL	J. V	ersion	8

Single Tesla K80 GPU, CUDA: 8.0 CUDNN: v5.1

	Caffe	CNTK	MxNet	TensorFlow	Torch
FCN5 (1024)	55.329ms	51.038ms	60.448ms	62.044ms	52.154ms
AlexNet (256)	36.815ms	27.215ms	28.994ms	103.960ms	37.462ms
ResNet (32)	143.987ms	81.470ms	84.545ms	181.404ms	90.935ms
LSTM (256) (v7 benchmark)	-	43.581ms (44.917ms)	288.142ms (284.898ms)	- (223.547ms)	1130.606ms (906.958ms)

Superior performance

GTC, May 2017

Nvidianews.nvidia.com/news/nvidia-and-microsoft-accelerate-ai-together

<mark> NVIDIA</mark>.

GPU-Accelerated Microsoft Cognitive Toolkit Now Available in the Cloud on Microsoft Azure and On-Premises with NVIDIA DGX-1

SC16 -- To help companies join the AI revolution, NVIDIA today announced a collaboration with Microsoft to accelerate AI in the enterprise.

Using the first purpose-built enterprise AI framework optimized to run on NVIDIA® Tesla® GPUs in Microsoft Azure or on-premises, enterprises now have an AI platform that spans from their data center to Microsoft's cloud.

"Every industry has awoken to the potential of AI," said Jen-Hsun Huang, founder and chief executive officer, NVIDIA. "We've worked with Microsoft to create a lightning-fast AI platform that is available from on-premises with our DGX-1[™] supercomputer to the Microsoft Azure cloud. With Microsoft's global reach, every company around the world can now tap the power of AI to transform their business."

"We're working hard to empower every organization with AI, so that they can make smarter products and solve some of the world's most pressing problems," said Harry Shum, executive vice president of the Artificial Intelligence and Research Group at Microsoft. "By working closely with NVIDIA and harnessing the power of GPU-accelerated systems, we've made Cognitive Toolkit and Microsoft Azure the fastest, most versatile AI platform. AI is now within reach of any business."

This jointly optimized platform runs the new Microsoft Cognitive Toolkit (formerly CNTK) on NVIDIA GPUs, including the NVIDIA DGX-1[™] supercomputer, which uses Pascal[™] architecture GPUs with NVLink[™] interconnect technology, and on Azure N-Series virtual machines, currently in preview. This combination delivers unprecedented performance and ease of use when using data for deep learning.

As a result, companies can harness AI to make better decisions, offer new products and services faster and provide better customer experiences. This is causing every industry to implement AI. In just two years, the number of companies NVIDIA collaborates with on deep learning has jumped 194x to over 19,000. Industries such as healthcare, life sciences, energy, financial services, automotive and manufacturing are benefiting from deeper insight on extreme amounts of data.

Deep-learning toolkits must address two questions:

• How to author neural networks?

← user's job

• How to execute them efficiently? (training/test) ← tool's job!!

Deep-learning toolkits must address two questions:

• How to author neural networks?

```
← user's job
```

How to execute them efficiently? (training/test) ← tool's job!!

Deep Learning Process

Script configures and executes through CNTK Python APIs...

trainer

- SGD
 - (momentum, Adam, ...)
- minibatching

aka.ms/CognitiveToolki

model

As easy as 1-2-3

from cntk import *

```
# reader
def create_reader(path, is_training):
    ...
# network
def create_model_function():
    ...
def create_criterion_function(model):
    ...
# trainer (and evaluator)
def train(reader, model):
    ...
def evaluate(reader, model):
    ...
# main function
model = create_model_function()
```

```
reader = create_reader(..., is_training=True)
train(reader, model)
```

```
reader = create_reader(..., is_training=False)
evaluate(reader, model)
```


As easy as 1-2-3

from cntk import *

reader

```
def create_reader(path, is_training):
    ...
```

. . .

```
# network
def create_model_function():
```

```
def create_criterion_function(model):
    ...
```

```
# trainer (and evaluator)
def train(reader, model):
    ...
def evaluate(reader, model):
```

```
# main function
model = create_model_function()
reader = create_reader(..., is_training=True)
train(reader, model)
```

```
reader = create_reader(..., is_training=False)
evaluate(reader, model)
```


python my_cntk_script.py

As easy as 1-2-3

from cntk import *

```
# reader
```

```
def create_reader(path, is_training):
```

•••

. . .

```
# network
dof enote model func
```

```
def create_model_function():
    ...
def create_model_function():
```

```
def create_criterion_function(model):
    ...
```

```
# trainer (and evaluator)
def train(reader, model):
    ...
def evaluate(reader, model):
```

```
# main function
model = create_model_function()
reader = create_reader(..., is_training=True)
train(reader, model)
reader = create_reader(..., is_training=False)
```

evaluate(reader, model)

mpiexec --np 16 --hosts server1,server2,server3,server4 \
python my_cntk_script.py

example: 2-hidden layer feed-forward NN

$$h_1 = \sigma(\mathbf{W}_1 x + b_1)$$

$$h_2 = \sigma(\mathbf{W}_2 h_1 + b_2)$$

$$P = \operatorname{softmax}(\mathbf{W}_{out} h_2 + b_{out})$$

with input $x \in \mathbf{R}^M$

example: 2-hidden layer feed-forward NN

$$h_1 = \sigma(\mathbf{W}_1 x + b_1)$$

$$h_2 = \sigma(\mathbf{W}_2 h_1 + b_2)$$

$$P = \operatorname{softmax}(\mathbf{W}_{\operatorname{out}} h_2 + b_{\operatorname{out}})$$

with input $x \in \mathbb{R}^M$ and one-hot label $y \in \mathbb{R}^J$ and cross-entropy training criterion

$$ce = \log P_{\text{label}}$$

 $\sum_{\text{corpus}} ce = \max$

example: 2-hidden layer feed-forward NN

$$h_{1} = \sigma(\mathbf{W}_{1} x + b_{1})$$

$$h_{2} = \sigma(\mathbf{W}_{2} h_{1} + b_{2})$$

$$P = \operatorname{softmax}(\mathbf{W}_{out} h_{2} + b_{out})$$

h1 = sigmoid (x @ W1 + b1) h2 = sigmoid (h1 @ W2 + b2) P = softmax (h2 @ Wout + bout)

with input $x \in \mathbb{R}^M$ and one-hot label $y \in \mathbb{R}^J$ and cross-entropy training criterion

$$ce = \log P_{\text{label}}$$

 $\sum_{\text{corpus}} ce = \max$
 $ce = \text{cross_entropy (P, y)}$

h1 = sigmoid (x @ W1 + b1) h2 = sigmoid (h1 @ W2 + b2) P = softmax (h2 @ Wout + bout) ce = cross_entropy (P, y)

h1 = sigmoid (x @ W1 + b1) h2 = sigmoid (h1 @ W2 + b2) P = softmax (h2 @ Wout + bout) ce = cross_entropy (P, y)

why graphs?

- automatic differentiation !!
 - chain rule: $\partial \mathcal{F} / \partial in = \partial \mathcal{F} / \partial out \cdot \partial out / \partial in$
 - run graph backwards
 - → "back propagation"

graphs are the "assembly language" of DNN tools

• CNTK model: neural networks are functions

- pure functions
- with "special powers":
 - can compute a gradient w.r.t. any of its nodes
 - external deity can update model parameters
- user specifies network as function objects:
 - formula as a Python function (low level, e.g. LSTM)
 - function composition of smaller sub-networks (layering)
 - higher-order functions (equiv. of scan, fold, unfold)
 - model parameters held by function objects
- "compiled" into the static execution graph under the hood
- inspired by Functional Programming
- becoming standard: Chainer, Keras, PyTorch, Sonnet, Gluon

--- graph building ---M = 40 ; H = 512 ; J = 9000 # feat/hid/out dim # define learnable parameters W1 = Parameter((M,H)); b1 = Parameter(H) W2 = Parameter((H,H)); b2 = Parameter(H) Wout = Parameter((H,J)); bout = Parameter(J) # build the graph x = Input(M) ; y = Input(J) # feat/labels h1 = sigmoid(x @ W1 + b1)h2 = sigmoid(h1 @ W2 + b2)P = softmax(h2 @ Wout + bout)ce = cross_entropy(P, y)

--- graph building with function objects --M = 40 ; H = 512 ; J = 9000 # feat/hid/out dim

- # function objects own the learnable parameters
- # here used as blocks in graph building
- x = Input(M) ; y = Input(J) # feat/labels
- h1 = Dense(H, activation=sigmoid)(x)
- h2 = Dense(H, activation=sigmoid)(h1)
- P = Dense(J, activation=softmax)(h2)

ce = cross_entropy(P, y)

M = 40 ; H = 512 ; J = 9000 # feat/hid/out dim # compose model from function objects model = Sequential([Dense(H, activation=sigmoid), Dense(H, activation=sigmoid), Dense(J, activation=softmax)]) # criterion function (invokes model function) @Function def criterion(x: Tensor[M], y: Tensor[J]): P = model(x)return cross_entropy(P, y) # function is passed to trainer tr = Trainer(criterion, Learner(model.parameters), ...)

relationship to Functional Programming

- fully connected (FCN) map
 - describes objects through probabilities of "class membership."
- convolutional (CNN)
 windowed >> map
 FIR filter
 - repeatedly applies a little FCN over images or other **repetitive structures**
- recurrent (RNN)

scan1, fold1, unfold IIR filter

• repeatedly applies a FCN over a **sequence**, using its **own previous output**

composition

• stacking layers:

• recurrence:

• unfold:

Layers API

• basic blocks:

- LSTM(), GRU(), RNNUnit()
- Stabilizer(), identity

• layers:

- Dense(), Embedding()
- Convolution(), Deconvolution()
- MaxPooling(), AveragePooling(), MaxUnpooling(), GlobalMaxPooling(), GlobalAveragePooling()
- BatchNormalization(), LayerNormalization()
- Dropout(), Activation()
- Label()
- composition:
 - Sequential(), For(), operator >>, (function tuples)
 - ResNetBlock(), SequentialClique()
- sequences:
 - Delay(), PastValueWindow()
 - Recurrence(), RecurrenceFrom(), Fold(), UnfoldFrom()
- models:
 - AttentionModel()

C Secure https://cntk.ai/pythondocs/layerref.html#general-pat	erns	0
2.0.beta15.0	Docs » Layers Library Reference	View page sourc
Search docs		
	Layers Library Reference	
etup		
etting Started	Note: This documentation has not yet been completely updated with respect to the latest update	
/orking with Sequences	of the Layers library. It should be correct but misses several	new options and layer types.
Itorials		
xamples	CNTK predefines a number of common "layers," which makes it very easy to write simple network	
avers Library Reference	that consist of standard layers layered on top of each other.	Layers are function objects that can i
General patterns	pass construction parameters or attributes.	
Specifying the same options to multiple layers	For example, this is the network description for a simple 1-h	idden layer model using the Dense
Weight sharing	layer:	
Example models		
Dense()	<pre>h = Dense(1024, activation=relu)(features)</pre>	
Convolution()	<pre>p = Dense(9000, activation=softmax)(h)</pre>	
MaxPooling() AveragePooling()		

Extensibility

- Core interfaces can be implemented in user code
 - UserFunction
 - UserLearner
 - UserMinibatchSource

Search docs
Setup
Getting Started
Working with Sequences
Tutorials
Examples
Manuals
Layers Library Reference
Python API Reference
Readers, Multi-GPU, Profiling

Pvthon API for CNTK

- □ Extending CNTK
- User defined functions
 - User defined learners
 - User defined minibatch sources

Docs » Extending CNTK

Extending CNTK

CNTK provides extension possibilities through

- custom operators in pure Python as so-called 'user functions'
- custom learning algorithms (like SGD or Adam) as 'user learners'
- custom minibatch sources as 'user minibatch sources'

User defined functions

Implementing a custom operator in pure Python is simple matter of

- inheriting from UserFunction
- implementing forward() and backward(), whose signatures depering inputs and outputs
- specifying the outputs' shape, data type and dynamic axes in in
- providing a static deserialize() method to inflate previously say

In the simplest case, just only one input and output, forward() takes are tuple of a state and the result. The state can be used to pass data from backward pass, but can be set to None if not needed.

Let's consider the example of a sigmoid. This is just for demonstration properties ().

As the derivative of sigmoid(x) is sigmoid(x) * (1 - sigmoid(x)) value as the state variable, which is then later fed into backward(). Note Python value (including tuple, strings, etc.):

deep-learning toolkits must address two questions:

• how to author neural networks?

← user's job

• how to execute them efficiently? (training/test) ← tool's job!!

high performance with GPUs

- GPUs are massively parallel super-computers
 - NVidia Titan X: 3583 parallel Pascal processor cores
 - GPUs made NN research and experimentation productive
- CNTK must turn DNNs into **parallel programs**
- two main priorities in GPU computing:
 - 1. make sure all CUDA cores are always busy
 - 2. read from GPU RAM as little as possible

[Jacob Devlin, NLPCC 2016 Tutorial]

minibatching

• **minibatching :=** batch N samples, e.g. N=256; execute in lockstep

minibatching

- **minibatching :=** batch N samples, e.g. N=256; execute in lockstep
 - turns N matrix-vector products into one matrix-matrix product → peak GPU performance
 - element-wise ops and reductions benefit, too
 - has limits (convergence, dependencies, memory)
- critical for GPU performance
 - difficult to get right

→ CNTK makes batching fully transparent

Figure 1: Relative runtime for different minibatch sizes and GPU/server model types, and corresponding frame accuracy measured after seeing 12 hours of data.⁷

extend our example to a recurrent network (RNN)

 $h_{1} = \sigma(\mathbf{W}_{1} x + b_{1})$ $h_{2} = \sigma(\mathbf{W}_{2} h_{1} + b_{2})$ $P = \operatorname{softmax}(\mathbf{W}_{out} h_{2} + b_{out})$ $ce = L^{T} \log P$ $\sum_{corpus} ce = \max$

extend our example to a recurrent network (RNN)

 $h_1(t) = \sigma(\mathbf{W}_1 x(t) + b_1)$ $h_2(t) = \sigma(\mathbf{W}_2 h_1(t) + b_2)$ $P(t) = \text{softmax}(\mathbf{W}_{\text{out}} h_2(t) + b_{\text{out}})$ $ce(t) = L^{\mathrm{T}}(t) \log P(t)$ $\sum_{\text{corpus}} ce(t) = \max$

extend our example to a recurrent network (RNN)

 $h_1(t) = \sigma(\mathbf{W}_1 x(t) + \mathbf{R}_1 h_1(t-1) + b_1)$ $h_2(t) = \sigma(\mathbf{W}_2 h_1(t) + \mathbf{R}_2 h_2(t-1) + b_2)$ $P(t) = \operatorname{softmax}(\mathbf{W}_{out} h_2(t) + b_{out})$ $ce(t) = L^{\mathrm{T}}(t) \log P(t)$ $\sum_{\mathrm{corpus}} ce(t) = \max$

extend our example to a recurrent network (RNN)

$$h_{1}(t) = \sigma(\mathbf{W}_{1} x(t) + \mathbf{R}_{1} h_{1}(t-1) + b_{1})$$

$$h_{2}(t) = \sigma(\mathbf{W}_{2} h_{1}(t) + \mathbf{R}_{2} h_{2}(t-1) + b_{2})$$

$$P(t) = \text{softmax}(\mathbf{W}_{\text{out}} h_{2}(t) + b_{\text{out}})$$

 $ce(t) = L^{T}(t) \log P(t)$ $\sum_{corpus} ce(t) = \max$

- $h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1)$
- h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)
- P = softmax(h2 @ Wout + bout)
- ce = cross_entropy(P, L)

 $h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1)$

 $h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)$

$$P = softmax(h2 @ Wout + bout)$$

ce = cross_entropy(P, L)

 $h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1)$ $h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)$

ce = cross_entropy(P, L)

sym^{boli}c loops over sequential data

- h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1)
- $h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)$

ce = cross_entropy(P, L)

sym^{boli}c loops over sequential data

- h1 = sigmoid(x @ W1 + past_value(h1) @ R1 + b1) h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2) P = softmax(h2 @ Wout + bout) ce = cross_entropy(P, L)
- CNTK automatically unrolls cycles at execution time
- non-cycles (black) are still executed in parallel
 - cf. TensorFlow: has to be manually coded

batching variable-length sequences

 minibatches containing sequences of different lengths are automatically packed and padded

time steps computed in parallel

batching variable-length sequences

 minibatches containing sequences of different lengths are automatically packed and padded

- fully transparent batching
 - recurrent \rightarrow CNTK unrolls, handles sequence boundaries
 - non-recurrent operations \rightarrow parallel
 - sequence reductions \rightarrow mask

data-parallel training

how to reduce communication cost:

communicate less each time

• 1-bit SGD:

[F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: "1-Bit Stochastic Gradient Descent... Distributed Training of Speech DNNs", Interspeech 2014]

- quantize gradients to 1 bit per value
- trick: carry over quantization error to next minibatch

minibatch

GPU 1

1-bit quantized with residual

1-bit quantized with residual

GPU 3

GPU 2

data-parallel training

how to reduce communication cost:

communicate less each time

- 1-bit SGD: [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: "1-Bit Stochastic Gradient Descent...Distributed Training of Speech DNNs", Interspeech 2014]
 - quantize gradients to 1 bit per value
 - trick: carry over quantization error to next minibatch

communicate less often

- automatic MB sizing [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: "ON Parallelizability of Stochastic Gradient Descent...", ICASSP 2014]
- block momentum [K. Chen, Q. Huo: "Scalable training of deep learning machines by incremental block training...," ICASSP 2016]
 - very effective parallelization method
 - combines model averaging with error-residual idea

data-parallel training

LSTM SGD baseline	11.08								
Parallel Algorithms	4-GPU	8-GPU	16-GPU	32-GPU	64-GPU				
1bit	10.79	10.59	11.02						
BMUF	10.82	10.82	10.85	10.92	11.08				

Table 2: WERs (%) of parallel training for LSTMs

[Yongqiang Wang, IPG; internal communication]

runtimes in Human Parity project

- data parallel training with 1-bit SGD:
 - up to 32 Maxwell GPUs per job (total farm had several hundred)
 - key enabler for this project
 - reduced training times from months to weeks
 - BLSTM: 8 GPUs (one box); rough CE AMs: ~1 day; fully converged after ~5 days; discriminative training: another ~5 days
 - CNNs and LACE: 16 GPUs (4 boxes); single GPU would take 50 days per data pass!
- model size on the order of 50M parameters

• perf (one GPU):	Processing step	Hardware	DNN	ResNet-CNN	BLSTM	LACE
	AM training	GPU	0.012	0.60	0.022	0.23
	AM evaluation	GPU	0.0064	0.15	0.0081	0.081
	AM evaluation	CPU	0.052	11.7	n/a	8.47
	Decoding	GPU	1.04	1.19	1.40	1.38

CNTK's approach to the two key questions:

efficient network authoring

- networks as function objects, well-matching the nature of DNNs
- focus on what, not how
- familiar syntax and flexibility in Python

efficient execution

- graph \rightarrow parallel program through **automatic minibatching**
- symbolic loops with dynamic scheduling
- unique **parallel training algorithms** (1-bit SGD, Block Momentum)

Cognitive Toolkit: deep learning like Microsoft product groups

• ease of use

- what, not how
- powerful library
- minibatching is automatic

• fast

- optimized for NVidia GPUs & libraries
- easy yet best-in-class multi-GPU/multi-server support

• flexible

- Python and C++ API, powerful & composable
- integrates with ONNX, WinML, Keras, R, C#, Java
- 1st-class on Linux and Windows

train like MS product groups: internal=external version

Microsoft

Cognitive

Toolkit

aka.ms/CognitiveToolkit

Microsoft

Summary and Outlook

- Reached a significant milestone in automatic speech recognition
- Human and ASR are similar in
 - overall accuracy
 - types of errors
 - dependence on inherent speaker difficulty
- Achieved via
 - Deep convolutional and recurrent networks
 - Trained efficiently, in parallel on large matched speech corpus
 - Combining complementary models using different architectures
- CNTK's efficiency & data-parallel operation was critical enabler

- Speech recognition is not solved!
- Need to work on
 - Robustness to acoustic environment (e.g., far-field mics, overlap)
 - Speaker mismatch (e.g., accented speech)
 - Style mismatch (e.g., planned vs. spontaneous, single vs. multiple spkrs)
- Computational challenges
 - Inference too expensive for mobile devices
 - Static graph limits what can be expressed \rightarrow Dynamic networks

Thank You!

Questions?

anstolck@microsoft.com fseide@microsoft.com