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ABSTRACT

The acoustic-to-word model based on the connectionist temporal
classification (CTC) criterion was shown as a natural end-to-end
(E2E) model directly targeting words as output units. However, the
word-based CTC model suffers from the out-of-vocabulary (OOV)
issue as it can only model limited number of words in the output
layer and maps all the remaining words into an OOV output node.
Hence, such a word-based CTC model can only recognize the fre-
quent words modeled by the network output nodes. Our first attempt
to improve the acoustic-to-word model is a hybrid CTC model which
consults a letter-based CTC when the word-based CTC model emits
OOV tokens during testing time. Then, we propose a much better
solution by training a mixed-unit CTC model which decomposes all
the OOV words into sequences of frequent words and multi-letter
units. Evaluated on a 3400 hours Microsoft Cortana voice assis-
tant task, the final acoustic-to-word solution improves the baseline
word-based CTC by relative 12.09% word error rate (WER) reduc-
tion when combined with our proposed attention CTC. Such an E2E
model without using any language model (LM) or complex decoder
outperforms the traditional context-dependent phoneme CTC which
has strong LM and decoder by relative 6.79%.

Index Terms— CTC, OOV, acoustic-to-Word, end-to-end train-
ing, speech recognition

1. INTRODUCTION
As one of the most popular end-to-end (E2E) methods, the connec-
tionist temporal classification (CTC) approach [1, 2] was introduced
to map the speech input frames into an output label sequence [3–14].
To deal with the issue that the number of output labels is smaller than
that of input speech frames in speech recognition tasks, CTC intro-
duces a special blank label and allows for repetition of labels to force
the output and input sequences to have the same length.

CTC outputs are usually dominated by blank symbols and the
output tokens corresponding to the non-blank symbols usually occur
with spikes in their posteriors. Thus, an easy way to generate ASR
outputs using CTC is to concatenate the non-blank tokens corre-
sponding to the posterior spikes and collapse those tokens into word
outputs if needed. This is a very attractive feature for E2E modeling
as there is neither LM nor complex decoding involved. We refer this
decoding strategy as greedy decoding, and our E2E models studied
in this paper all use greedy decoding.

As the goal of ASR is to generate a word sequence from speech
acoustics, word is the most natural output unit for network model-
ing. A big challenge in the word-based CTC is the out-of-vocabulary
(OOV) issue [15–18]. In [5, 8, 11], only the most frequent words in
the training set were used as targets whereas the remaining words
were just tagged as OOVs. All these OOV words can neither be
further modeled nor be recognized during evaluation. For example
in [5], the CTC with up to 27 thousand (k) word output targets was
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explored but the ASR accuracy is not very good, partially due to the
high OOV rate when using only around 3k hours training data.

To solve this OOV issue in the word-based CTC, we proposed
a hybrid CTC [12] which uses the output from the word-based CTC
as the primary ASR result and consults a letter-based CTC at the
segment level where the word-based CTC emits an OOV token. A
shared-hidden-layer structure is used to align the word segments
between the word-based CTC and the letter-based CTC so that
the OOV token lookup algorithm can work. However, the shared-
hidden-layer structure still cannot guarantee a perfect alignment
between the word and letter based CTCs. It also hurts the modeling
accuracy of the auxiliary CTC model. In [19], a spell and recog-
nize model is used to learn to first spell a word and then recognize
it. Whenever an OOV is detected, the decoder consults the letter
sequence from the speller. In [12, 19], the displayed hypothesis is
more meaningful than OOV to users. However, both methods cannot
improve the overall recognition accuracy too much.

In this study, we propose a solution to the OOV issue in the
acoustic-to-word modeling by decomposing the OOV word into a
mixed-unit sequence of frequent words and letters at the training
stage. We use attention CTC to address the inherent CTC mod-
eling issue. During testing, we do greedy decoding for the whole
E2E system in a single step without the need of using the two-stage
(OOV-detection and then letter-sequence-consulting) process as in
[12,19]. With all these components, the final acoustic-to-word solu-
tion improves the baseline acoustic-to-word CTC by relative 12.09%
word error rate (WER) reduction and also outperforms the traditional
context-dependent-phoneme CTC with strong LM and decoder by
relative 6.79%.

2. ADVANCE ACOUSTIC-TO-WORD CTC

2.1. Word-based Connectionist Temporal Classification (CTC)
A CTC network uses a recurrent neural network (RNN) and the CTC
error criterion [1,2] which directly optimizes the prediction of a tran-
scription sequence. As the length of output labels is shorter than the
length of input speech frames, a CTC path is introduced to have the
same length as the input speech frames by adding the blank symbol
as an additional label and allowing repetition of labels.

Denote x as the speech input sequence, π as the CTC path, l as
the original label sequence (transcription), and B−1(l) as the preim-
age mapping all possible CTC paths π resulting from l. Then, the
CTC loss function is defined as the sum of negative log probabilities
of correct labels as,

LCTC = − ln P(l|x) = − ln
∑

π∈B−1(l)

P(π|x). (1)

With the conditional independence assumption, P(π|x) can be de-
composed into a product of posteriors from each frame as,

P(π|x) =

T∏
t=1

P(πt |x). (2)



As the goal of ASR is to generate a word sequence from the
speech waveform, the word unit is the most natural output unit for
network modeling. The recently proposed acoustic-to-word models
[8, 11], a.k.a. word-based CTC models, build multiple-layer long
short-term memory (LSTM) [20–22] networks and use words as the
network output units, optimized with the CTC training criterion. It
is very simple to generate the word sequence with this word-based
CTC model using greedy decoding: pick the words corresponding to
posterior spikes to form the output word sequence. There is neither
language model nor complex decoding process involved.

However, when training a word-based CTC model, only the
most frequent words in the training set were used as targets whereas
the remaining words were just tagged as OOVs. All these OOV
words cannot be modeled by the network and cannot be recognized
during evaluation. For example, if the transcription of an utterance
is “have you been to newyorkabc” in which newyorkabc is an infre-
quent word, the training token or recognition output sequence for
this utterance will be “have you been to OOV”.

2.2. Hybrid CTC
To solve the OOV issue in the acoustic-to-word model, the hybrid
CTC model uses a word-based CTC as the primary model and a
letter-based CTC as the auxiliary model. The word-based CTC
model emits a word sequence, and the output of the letter-based
CTC is only consulted at the segment where the word-based CTC
emits an OOV token. The detailed steps for building the hybrid CTC
model are described as follows:

• Build a multi-layer LSTM-CTC model with words as its out-
put units. Map all the words occurring less than N times
in the training data as the OOV token. The output units in
this LSTM-CTC model are all the words occurring at least
N times in the training data, together with OOV, blank, and
silence tokens.

• Freeze the bottom L − 1 hidden layers of the word-CTC, add
one LSTM hidden layer and one softmax layer to build a new
LSTM-CTC model with letters as its output units.

• During testing, generate the word output sequence using
greedy decoding. If the output word sequence contains an
OOV token, replace the OOV token with the word generated
from the letter-based CTC that has the largest time overlap



proposed CTC Attention are: (a) the generation of context vectors
as time convolution (TC) features, and (b) the computation of the
weights of the hidden features using an attention mechanism. In this
section, we use indices t and u to denote the time step for input and
output sequences respectively. However, it is understood that in CTC
every input frame xt generates output yt = yu.

The context vector cu can be computed as a TC feature by con-
volving the hidden feature ht with learnable weight matrices W′

across time as,

cu = W′ ∗ h =

u+τ∑
t=u−τ

W′
u−tht

∆
=

u+τ∑
t=u−τ

gt = γ

u+τ∑
t=u−τ

αu,tgt. (3)

The duration [u − τ, u + τ] represents a context window of length
C = 2τ + 1 and gt represents the f iltered signal at time t. The last
step in Eq. (3) holds when αu,t = 1

C and γ = C. The term αu,t is the
attention weight determining the relevance of ht in generating cu.
The context vector cu is related to the output yu using the softmax
operation as,

zu = Wsoftcu + bsoft,

yu = Softmax(zu). (4)

To include non-uniform attention weights αu,t instead of uniform
weights (αu,t = 1

C in Eq. (3)), we use the Attend(.) function,

αu = Attend(zu−1,αu−1, g). (5)

Thus, Eq. (5) represents hybrid attention (HA) as it encodes both
content (zu−1) and location (αu−1) information. In the absence of
αu−1, Eq. (5) would represent content attention (CA).

The performance of the attention model can be improved further
by providing more reliable content information. This is possible by
introducing another recurrent network that can utilize content from
several time steps in the past. This network, in essence, would learn
an implicit language model (LM) and can be represented as,

zLM
u−1 = H(xu−1, zLM

u−2), xu−1 =

[
zu−1

cu−1

]
, (6)

αu = Attend(zLM
u−1,αu−1, g), (7)

whereH(.) is a LSTM unit.
In the final step to improve attention, each of the n components

of gt ∈ R
n in Eq. (3) could be weighted distinctively. This is possible

by replacing the scalar attention weight αu,t ∈ [0, 1] with a vector
attention weight αu,t ∈ [0, 1]n for each t ∈ [u − τ, u + τ]. Under this
formulation, the context vector cu can be computed using,

cu = γ

u+τ∑
t=u−τ

αu,t � gt, (8)

where � is the Hadamard product.

2.6. Comparison with Other End-to-end Methods
In addition to CTC, there are also popular E2E methods in ASR,
such as RNN encoder-decoder (RNN-ED) [25, 26] and RNN trans-
ducer (RNN-T) [27]. Initially working on letter units, these methods
recently got significant improvement when working on word-piece
units [28], either pre-trained [27, 29] or automatically derived [30]
during training. In all these works, all the words are decomposed
into word-piece units which range from single letter all the way up
to entire words. In contrast, our acoustic-to-word model directly

uses frequent words as basic units, and only decomposes infrequent
words into a sequence of frequent words and multi-letters. The ma-
jority units are still words. Therefore, our units are more stable and
natural for the E2E system outputting word hypotheses. In [26],
words were also used as the basic units with the RNN-ED structure.
However, the reported WER was much higher than the one obtained
with traditional systems.

As extensions of CTC, both RNN-T and RNN aligner [31] ei-
ther change the objective function or the training process to relax
the frame independence assumption of CTC. The proposed attention
CTC in Section 2.5 is another solution by working on hidden layer
representation with more context information without changing the
CTC objective function and training process.

3. EXPERIMENTS

The proposed methods were evaluated using the Microsoft’s Cortana
voice assistant task. The training dataset contains approximately 3.3
million short utterances (∼ 3400 hours) in US-English. The test set
contains about 5600 utterances (∼ 6 hours). The base feature vec-
tor for every 10 ms is a 80-dimensional vector containing log filter-
bank energies. The base feature vectors in three continuous frames
are stacked together as the 240-dimension input feature to the CTC
models [5]. All CTC models are bi-directional LSTM models.

We first built a phoneme-based bi-directional 6-layer LSTM
model trained with the CTC criterion, modeling around 9000 tied
context-dependent (CD) phonemes. Every layer of the bi-directional
LSTM has 512 memory units in each direction. Unless otherwise
stated, all CTC models except attention CTC models in this study
use the same structure as this model. This CD-phone CTC model
has 9.28% WER when decoding with a 5-gram LM with totally
around 100 million (M) n-grams. In this study, except this CD-
phone CTC model, all the other CTC models are E2E models using
greedy decoding which generate the final output sequence without
using any LM or complicated decoding process.

Next, we built an acoustic-to-word CTC model with the same
model structure as the CD-phone CTC by modeling around 27k most
frequent words in the training data. These frequent words occurred at
least 10 times in the training data. All other infrequent words were
mapped to an OOV output token. We have also tried other word-
based CTCs with varying number of output units. However, the
model using 27k word outputs performs the best. This word-based
LSTM-CTC model yields 9.84% WER, among which the OOV to-
kens contribute 1.87% WER. It significantly improves the WER of
uni-directional word-based CTC reported in [12] which indicates the
bi-directional modeling is critical to the E2E system.

3.1. Letter CTC with Attention
As the word output in the letter-based CTC is used to replace the
OOV token from the word-based CTC model during testing, the
letter-based CTC should be as accurate as possible. In this set of
experiments, we first evaluate the impact of using different size of
letter units for the vanilla CTC [1]. All the letter-based CTC mod-
els are 6-layer bi-directional LSTM models. The single-letter set
has 30 symbols, including 26 English characters [a-z], ’, *, $, and
blank. The double-letter and triple-letter sets have 763 and 8939
symbols respectively, covering all the double-letter and triple-letter
occurrence in the training set. As shown in the second column of Ta-
ble 2, the WER reduces significantly when the output units become
larger, i.e., more stable. The letter-based CTC using triple-letter as
output units achieves 13.28% WER, reducing 24.29% relative WER
from the letter-based CTC using single-letter as output units.



Table 2: WERs of letter-based CTC models with single, double,
and triple-letter output units. Three structures are evaluated: vanilla
CTC [1], attention CTC, and attention CTC sharing 5 hidden layers
with the word CTC.

E2E Model WER (%)
Vanilla Attention Attention

5 layers sharing
single-letter 17.54 14.30 16.74
double-letter 15.37 12.16 14.00
triple-letter 13.28 11.36 12.81

Table 3: WERs of vanilla word-based CTC and hybrid CTC models.
All Hybrid CTC models have a word-based CTC and a letter-based
attention CTC, sharing 5 hidden layers.

E2E Model WER (%)
Word-based CTC 9.84
Word-based CTC + double-letter Attention CTC 9.66
Word-based CTC + triple-letter Attention CTC 9.66

The attention CTC presented in Section 2.5 is then trained with
τ empirically set as 4 (context window size C = 9). As shown in the
third column of Table 2, attention CTC improves the vanilla CTC
hugely, obtaining 18.47%, 20.88%, and 14.46% relative WER re-
duction for single-letter, double-letter, and triple-letter CTC mod-
els, respectively. The best letter-based E2E CTC model is the one
with triple-letter outputs and attention modeling, which can obtain
11.36% WER.

The hybrid CTC model described in Section 2.2 has both word-
based CTC and letter-based CTC, which share 5 hidden LSTM lay-
ers. On top of the shared hidden layers, we add a new LSTM hidden
layer and a softmax layer to model letter (single, double, or triple-
letters) outputs. Attention modeling is applied to boost the perfor-
mance. As shown in the fourth column of Table 2, the WER of
letter-based CTC with such shared-hidden-layer constraint performs
worse than its counterpart. This indicates one shortcoming of the
hybrid CTC – it sacrifices the accuracy of the letter-based CTC be-
cause of the shared-hidden-layer constraint used to synchronize the
word outputs between the word-based and letter-based CTC.

3.2. Hybrid CTC
As the CTC models with double-letter and triple-letter output units
worked very well in Table 2, we use them to build the hybrid CTC
models with the OOV lookup process described in Section 2.2. Both
hybrid models achieved 9.66% WER as shown in Table 3. Several
factors contribute to such small improvement (from 9.84% WER of
the word-based CTC) of the hybrid CTC. First, the shared-hidden-
layer constraint degrades the performance of the letter-based CTC,
potentially affecting the final hybrid system performance. Second,
although the shared-hidden-layer constraint helps to synchronize the
word outputs from the word and letter based CTC, we still observed
that the time synchronization can fail sometimes. In such cases,
the OOV token is replaced with its neighboring frequently occurring
word because of word segments misalignment. Because of these fac-
tors, although the triple-letter CTC is better than double-letter CTC
in Table 2, there is no difference when they are combined with the
baseline word CTC in the hybrid CTC setup in which they only han-
dle the small portion of OOV words.

3.3. CTC with Mixed Units
We evaluate the CTC with mixed units in Table 4. In the first experi-
ment, the mixed units contain single-letters and 27k frequent words.

Table 4: WERs of the vanilla word-based CTC and the CTC with
mixed units.

E2E Model WER (%)
word-based CTC 9.84
mixed (OOV: single-letter) CTC 20.10
mixed(OOV: word + single-letter) CTC 10.17
mixed (OOV: word + double-letter) CTC 9.58
mixed (OOV: word + triple-letter) CTC 9.32
mixed (OOV: word + triple-letter) attention CTC 8.65

During training, OOV words are decomposed into single-letter se-
quence. As analyzed in Section 2.4, artificially decomposing OOV
words into letter sequence while keeping the frequent words con-
fuses CTC training for these types of words. Therefore, the trained
CTC model achieved 20.10% WER. When looking at the posterior
spikes of this model, we observed that the word spikes and letter
spikes are scattered into each other which proves our hypothesis.

Next, we decompose OOV words into frequent word and single-
letter sequences, and train the CTC network with the mixed units
(around 27k). Immediately, the WER improved to 10.17%, but still
a little worse than the baseline word-based CTC. This is because the
single-letter sequence brings instability to the modeling. When we
decompose the OOV words into frequent words and double-letters
(totally 27k units), the situation becomes better, and the resulting
WER is 9.58%. When the triple-letters and frequent words are used
(totally 33k units), the WER reaches 9.32%, beating the baseline
word-based CTC by 5.28% relative WER reduction.

Finally, we improve the final E2E CTC model by applying at-
tention CTC. To save computational cost with large number of out-
put units, we didn’t integrate the implicit LM in Eq.(6). The WER
becomes 8.65%, which is about relative 12.09% WER reduction
from the 9.84% WER of vanilla word-based CTC. Such a model
without using LM and complex decoder also outperforms the tra-
ditional context-dependent-phoneme CTC with strong LM and de-
coder which obtained 9.28% WER. Note that the proposed method
not only reduces the WER of the word-based CTC, but also improves
the user experience. The proposed method provides more meaning-
ful output without outputting any OOV token to distract users. Most
of the time, even if the proposed method cannot get the OOV word
right, it comes out with a very close output. For example, the pro-
posed method recognizes “text fabine” as “text fabian” and “call zu-
biate” as “call zubiat”, while the vanilla word-based CTC can only
output “text OOV” and “call OOV”.

4. CONCLUSIONS
We advance acoustic-to-word CTC model with a mixed-unit CTC
whose output units are frequent words combined with sequences of
multi-letters. For the frequent word, we just model it with a unique
output node. For the OOV word, we decompose it into a sequence
of frequent words and multi-letters. We present the attention CTC
which significantly improves the modeling power of CTC. The pro-
posed method is simpler and more effective than the hybrid CTC
which has to rely on shared-hidden-layer to maintain the time syn-
chronization of word outputs between the word-based and letter-
based CTCs. We evaluate all these methods on a 3400 hours Mi-
crosoft Cortana voice assistant task. The proposed acoustic-to-word
CTC with mixed-units reduces relative 5.28% WER from the vanilla
word-based CTC, and reduces relative 12.09% WER if combined
with the proposed attention CTC. Such an acoustic-to-word CTC
is a pure end-to-end model without any LM and complex decoder.
It also outperforms the traditional context-dependent-phoneme CTC
with strong LM and decoder by relative 6.79% WER reduction.
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[27] Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar, “Exploring
architectures, data and units for streaming end-to-end speech
recognition with RNN-transducer,” in Proc. ASRU, 2017.

[28] Mike Schuster and Kaisuke Nakajima, “Japanese and korean
voice search,” in Proc. ICASSP, 2012, pp. 5149–5152.

[29] Chung-Cheng Chiu, Tara N Sainath, et al., “State-of-the-art
speech recognition with sequence-to-sequence models,” in
submitted to ICASSP, 2018.

[30] William Chan, Yu Zhang, Quoc Le, and Navdeep Jaitly,
“Latent sequence decompositions,” arXiv preprint
arXiv:1610.03035, 2016.

[31] Hasim Sak, Matt Shannon, Kanishka Rao, and Françoise Bea-
ufays, “Recurrent neural aligner: An encoder-decoder neural
network model for sequence to sequence mapping,” in Proc.
Interspeech, 2017.


