
Chameleon: Scalable Adaptation of Video Analytics
Junchen Jiang†◦, Ganesh Ananthanarayanan◦, Peter Bodik◦, Siddhartha Sen◦, Ion Stoica⋆

†University of Chicago ◦Microsoft Research ⋆UC Berkeley, Databricks Inc.

ABSTRACT
Applying deep convolutional neural networks (NN) to video
data at scale poses a substantial systems challenge, as im-
proving inference accuracy often requires a prohibitive cost
in computational resources. While it is promising to balance
resource and accuracy by selecting a suitable NN configura-
tion (e.g., the resolution and frame rate of the input video),
onemust also address the significant dynamics of the NN con-
figuration’s impact on video analytics accuracy. We present
Chameleon, a controller that dynamically picks the best con-
figurations for existing NN-based video analytics pipelines.
The key challenge in Chameleon is that in theory, adapting
configurations frequently can reduce resource consumption
with little degradation in accuracy, but searching a large
space of configurations periodically incurs an overwhelming
resource overhead that negates the gains of adaptation. The
insight behind Chameleon is that the underlying character-
istics (e.g., the velocity and sizes of objects) that affect the
best configuration have enough temporal and spatial correla-
tion to allow the search cost to be amortized over time and
across multiple video feeds. For example, using the video
feeds of five traffic cameras, we demonstrate that compared
to a baseline that picks a single optimal configuration offline,
Chameleon can achieve 20-50% higher accuracy with the
same amount of resources, or achieve the same accuracy
with only 30-50% of the resources (a 2-3× speedup).

CCS CONCEPTS
• Information systems → Data analytics; • Computing
methodologies → Object detection;

KEYWORDS
video analytics, deep neural networks, object detection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00
https://doi.org/10.1145/3230543.3230574

1 INTRODUCTION
Many enterprises and cities (e.g., [2, 6]) are deploying thou-
sands of cameras and are starting to use video analytics for
a variety of 24×7 applications, including traffic control, se-
curity monitoring, and factory floor monitoring. The video
analytics are based on classical computer vision techniques
as well as deep neural networks (NN). This trend is fueled by
the recent advances in computer vision (e.g., [17, 18]) which
have led to a continuous stream of increasingly accurate
models for object detection and classification.

A typical video analytics application consists of a pipeline
of video processing modules. For example, the pipeline of a
traffic application that counts vehicles consists of a decoder,
followed by a component to re-size and sample frames, and
an object detector. The pipeline has several “knobs” such as
frame resolution, frame sampling rate, and detector model
(e.g., Yolo, VGG or AlexNet). We refer to a particular combi-
nations of knob values as a configuration.

The choice of configuration impacts both the resource con-
sumption and accuracy of the video application. For example,
using high frame resolutions (e.g., 1080p) or NN models with
many layers enables accurate detection of objects but also
demands more GPU processing. The “best” configuration
is the one with the lowest resource demand whose accu-
racy is over a desired threshold. Accuracy thresholds are set
by the applications, e.g., traffic light changes can function
with moderate accuracy while amber alert detection requires
very high accuracy. Configurations that meet the accuracy
threshold can often vary by many orders of magnitude in
their resource demands [16, 32], and picking the cheapest
among them can significantly impact computation cost.

The best configuration for a video analytics pipeline also
varies over time, often at a timescale of minutes or even
seconds. For the traffic pipeline described above, we may
use a low frame-rate (e.g., 5 frames/sec instead of 30 fps)
when cars are moving slowly, say at a traffic stop, consuming
6× fewer resources without impacting the accuracy of the
vehicle count. In contrast, using a low frame-rate to count
fast-moving cars will significantly hurt the accuracy.

As such, we need to frequently change the configuration of
the pipeline to minimize the resource usage while achieving
the desired accuracy.While prior video analytics systems [16,
32, 33] profile the processing pipeline to minimize cost, they
only do so once, at the beginning of the video. As a result,
these systems fail to keep up with the intrinsic dynamics
of the resource-accuracy tradeoff, and they end up either

https://doi.org/10.1145/3230543.3230574

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Jiang et al.

wasting resources (by picking an expensive configuration)
or not meeting the accuracy target.

One natural approach to address this challenge is to peri-
odically profile the pipeline configurations to find an optimal
resource-accuracy tradeoff. Unfortunately, this is prohibi-
tively expensive because the number of possible configura-
tions is exponential in the number of knobs and their values.
Even a simple video pipeline with just a few knobs can have
thousands of potential configurations. Further, the cost of
executing some of the configurations can be orders of magni-
tude higher than the most efficient one we end up selecting.
In fact, in our early experiments, the cost of periodic profiling
often exceeded any resource savings gained by adapting the
configurations. The main challenge, thus, is to significantly
reduce the resource cost of periodic configuration profiling.

Unfortunately, using traditional modeling techniques such
as Bayesian optimization [12], multi-armed bandits [19], or
optimal experiment design [31] to update pipeline configu-
rations at the granularity of seconds is very expensive, due
to the number of required experiments. In fact, these tech-
niques typically assume a stationary environment, where it
is sufficient to profile once upfront or infrequently (once a
day). Our setting, however, is non-stationary. For instance,
tracking vehicles when trafficmoves quickly requires a much
higher frame rate than when traffic moves slowly, but when
each condition occurs may vary by hour, minute, or second.

To address this challenge, we take a more direct approach
that leverages domain-specific insights on the temporal and
spatial correlations of these configurations.
Temporal correlation:While the best configuration varies
over time, certain characteristics tend to persist. The top-k
best configurations (cheapest k configurations with accu-
racy above the desired threshold) tend to be relatively stable
over time, for a small value of k . Similarly, configurations
that are very bad—very inaccurate and/or very expensive—
remain so over long time periods. Thus we can significantly
prune the search space during profiling by learning which
configurations are promising and which are unhelpful.
Cross-camera correlation:Video feeds of cameras deployed
in geographical proximity (e.g., in the same city or building)
often share properties (e.g., the velocities and sizes of objects)
that affect the optimal configuration. Instead of searching
for optimal configurations per camera feed, we can amortize
the profiling cost across multiple cameras. Once we identify a
good set of configurations for one video feed, we can reuse it
on similar feeds. As more organizations deploy large fleets of
cameras, leveraging cross-camera correlations will become
an increasingly effective way to reduce the cost of profiling.
Independence of configurations: A central question in
any supervised learning problem is how to obtain high-
quality labels. One possibility is to use humans to label the
video feeds frame by frame, but this approach is slow and un-
scalable. Instead, we use an expensive golden configuration to

provide the “ground truth”, following prior work [22, 24, 32].
An example of such a configuration for a traffic pipeline
is a resolution of 1080p, at 30 fps, using a full Yolo model.
However, to minimize the cost of running the golden config-
uration, which uses the best (and most expensive) values for
all knobs, we rely on an empirical observation that knobs
are typically independent. That is, for a given configuration
knob, the relationship between its resource and accuracy is
largely independent of the values of the other configuration
knobs. Thus, in our profiler, we measure the value of a given
knob (e.g., frame rate) by simply holding the values of the
other knobs fixed (e.g., to a reasonably inexpensive value).
In this paper, we leverage these observations to develop

Chameleon, a video analytics system that optimizes resource
consumption and inference accuracy of video analytics pipelines,
by adapting their configurations in real-time. Using live video
feeds from five real traffic cameras, we show that compared
to a baseline that picks the optimal configuration offline,
Chameleon can achieve 20-50% higher accuracy with the
same amount of resources, or achieve the same accuracy
with only 30-50% of the resources (2-3× speedup).

Our key contributions are as follows:
• We do a cost-benefit analysis for continuously adapting
NN configurations compared to one-time tuning, and show
that it can save compute resources by up to 10× and raise
accuracy by up to 2×. (§3)
• We identify and quantify the impact of spatial and tempo-
ral correlations on resource-accuracy tradeoffs. (§4)
• We present a suite of techniques to dramatically reduce the
cost of periodic profiling by leveraging the spatial/temporal
correlations. (§5)

2 RESOURCE-ACCURACY PROFILES
We begin with some background on NN-based video analyt-
ics, and use the object detection pipeline to show the impact
of configurations on inference accuracy and cost.
2.1 Object detection pipelines
We use object detection as a running example to illustrate
our ideas. The goal of object detection is to identify objects
of interests, their classes (e.g., car), and sometimes their lo-
cations in each frame of the video. Object detection is a core
vision task on which a wide range of higher-level tasks are
built, so improving it can impact many applications.
The simplest way to detect objects in a live video stream

today is to decode each frame into a bitmap and run each
bitmap through an object-detection NN, such as Yolo [9]
or Faster RCNN [15]. This would detect all objects in all
the frames, but would require a significant amount of GPU
resources for NN inference. Such an expensive approach
may be necessary if we want to detect even small objects
and the objects present change very frequently. However,
in many scenarios, the objects might change very slowly
(e.g., each object stays on screen for at least a second) and

Chameleon: Scalable Adaptation of Video Analytics SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Chameleon:	
Configuration	Controller

Configuration:
• Resolution
• Frame	rate
• Object	detector

DNN	Object	Detection
(e.g.,	YOLO)1280p

Chameleon:	
Configuration	Controller

Configuration:
• Min	bounding	 box	size
• Classifier
• Resolution
• Frame	rate

DNN	Classification
(e.g.,	ResNet)

480p

Selecting	
Regions	of	
interest

Resizing	
& Frame	
Selection

(a) Pipeline A

(b) Pipeline B

Figure 1: Two typical NN-based object detection pipelines and
their configuration knobs. Pipeline A uses a single NN to detect
and classify objects in a given frame, while Pipeline B has two
separate steps to detect regions of interest as bounding boxes
and then classify each bounding box using an NN classifier,
which is often cheaper than using the object detection NN.
Thus, Pipeline A is more generally applicable, but Pipeline B is
preferred if the regions of interest are few and easy to identify
(e.g., moving objects in front of a static background).

we may only want to detect relatively large objects. In this
case, processing only 1 frame per second and resizing it from
960p to 480p, for example, would reduce resource demand by
120×with essentially no impact on accuracy. Frame sampling
and resizing are just two of many possible knobs in a video
processing pipeline that can dramatically reduce resource
demand with only a small impact on accuracy.
Pipelines: We consider two object detection pipelines, as
shown in Figure 1. In pipeline A, the raw video frames are
first pre-processed by sampling frames (to reduce the frame
rate) and resizing them, and are then fed into one of several
pre-trained object-detection models (e.g., Faster RCNN [15],
Yolo [9]). Pipeline B uses a light-weight background sub-
traction logic (a non-NN model for which CPU is sufficient)
to first detect regions with motion, and only sends these
smaller regions to an NN-based classifier (e.g., ResNet [30],
MobileNet [21]) to label them. Both pipelines have been ac-
tively studied in the computer vision literature. Although
pipeline A has attracted more attention recently due to NN
advancements, pipeline B is often a better, cheaper choice if
the camera is static (e.g., mounted on a pole).
Configurations:While logically both pipelines expose simi-
lar interfaces, they have different sets of configuration knobs,
whose values are critical to the performance (accuracy and
resource consumption) of object detection. We focus on a
different subset of knobs from each pipeline to create two
illustrative examples, and use them throughout the paper.

Config c	output
Golden	configoutput	(ground	truth)

Figure 2: An illustrative example of the accuracy metric: Pre-
cision = 3 (# of true positives) / 5 (# of detected objects), Recall
= 3 (# of true positives) / 4 (# of objects), F1 score = 2/(1/Preci-
sion+1/Recall) = 2/3.

• Three knobs from Pipeline A: frame rate ({30, 10, 5, 2,
1}fps), image size ({960, 840, 720, 600, 480}p), and object de-
tection model (FasterRCNN+{InceptionResNet, ResNet101,
ResNet50, InceptionV2}, SSD+{InceptionV2,MobileNetV1}) [7].
The frame rate and image size decide which frames and in
what size they should be fed to the object detection model.
• Two knobs from Pipeline B: minimum size of the region
with detected motion (to ignore spurious detections) as a
fraction of the whole frame ({0.5, 0.1, 0.05, 0.01, 0.005}%),
and the classifier model (ResNet101, ResNet50, InceptionV2,
MobileNetV1) [8]. Only regions larger than the minimum
size are sent to the classifier for inference.

The configuration space comprises all possible combinations
of values of these knobs: in total, Pipeline A has 150 configu-
rations and Pipeline B has 20.
The above two pipelines illustrate a few key properties

common to video analytics. These pipelines include a mix of
NN as well as classic computer vision modules, along with
their relevant knobs (e.g., region size for background sub-
traction). The pipelines also represent a cascade of modules,
where an upstream module (e.g., frame sampler) decides if a
frame will be processed by downstream modules. Thus, us-
ing the above two pipelines in our study will help us develop
techniques that hold across many video analytics pipelines.

2.2 Performance of configurations
The performance of a configuration on a set of frames is
measured by two metrics: accuracy and cost.
Accuracy:When using configuration c , we compute accu-
racy of a single frame by comparing the detected objects with
the objects detected by the most expensive configuration,
which we call the golden configuration, using the F1 score,
which is the harmonic mean of precision and recall. Figure 2
shows an illustrative example. We identify true positives in
the F1 score using two conditions: (1) a bounding box-based
condition, which checks if the detected bounding box has
the same label as some ground truth box; or (2) a label-based
condition, which checks if the bounding box has the same
label and sufficient spatial overlap with some ground truth
box [14]. Bothmetrics are useful in real applications and used
in our evaluation (§6), consistent with prior work [24, 32].

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Jiang et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.93 0.96 0.99

A
v
g

 G
P

U
 t

im
e

p

e
r

fr
a

m
e

 (
s
e

c
)

Accuracy (F1 score)

(a) Frame rate

 0

 0.1

 0.2

 0.3

 0.4

 0.7 0.8 0.9 1

A
v
g

 G
P

U
 t

im
e

p

e
r

fr
a

m
e

 (
s
e

c
)

Accuracy (F1 score)

(b) Image size

 0

 0.1

 0.2

 0.3

 0.4

 0.6 0.7 0.8 0.9 1

A
v
g

 G
P

U
 t

im
e

p

e
r

fr
a

m
e

 (
s
e

c
)

Accuracy (F1 score)

(c) Detection model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1

A
v
g
 G

P
U

 t
im

e

p
e

r
fr

a
m

e
 (

s
e
c
)

Accuracy (F1 score)

(d) Min bounding box size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1

A
v
g
 G

P
U

 t
im

e

p
e

r
fr

a
m

e
 (

s
e
c
)

Accuracy (F1 score)

(e) Classifier

Figure 3: Impact of each configuration knob on resource-
accuracy tradeoffs. The accuracy threshold α = 0.8.
To compute the accuracy of a frame that was not sampled by
c , we use the location of objects from the previous sampled
frame. For a video segment, which consists of many frames,
we compute accuracy as the fraction of frames with F1 score
≥ α .1 The above metric for accuracy nicely lends itself to
composing application-level metrics. For instance, in a traffic
analytics deployment [25], measuring the fraction of frames
with F1 score ≥ 0.7 was a good indicator of the error in the
application-level traffic counts. Note that our techniques can
also directly work with other accuracy metrics.
Cost (resource consumption): We use average GPU pro-
cessing time (with 100% utilization) per frame as the met-
ric of resource consumption, because GPU is the dominant
resource for the majority of video processing workloads.
Further, the performance of NN-based inference is more
dependent on GPU cycles than typical data analytics tasks.
Performance impact: Figure 3 shows how the configura-
tion knobs affect the performance of object detection, mea-
sured by accuracy and resource consumption. We use a
dataset of 120 clips of traffic videos (30fps frame rate and
960p resolution, see §6.1 for details). Different points rep-
resent the resource-accuracy tradeoffs of setting each knob
to different values while fixing other knobs to their most
expensive values. We see that one can reduce resource con-
sumption by tuning the values of these configurations, an
observation that has informed other work [32].
At the same time, however, we notice that reducing re-

source consumption leads to substantial accuracy degrada-
tion. This is because a fixed configuration is used for the
entirety of each video (several minutes), during which the
content changes significantly. In the next section, we show
that the relationship between configuration and accuracy

1Calculating an overall accuracy based on per-frame accuracy of consecutive
frames could be biased due to correlations in the frames’ content, but we
mitigate this by using long videos sampled across different hours (§6.1).

 0.01

 0.1

 1

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

s
e

c
)

Frac. of frames with accurate result

One-time update
Periodic update (Inference only)

Periodic update (Profiling+Inference)

(a) Pipeline A

 0.1

 1

 10

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

s
e

c
)

Frac. of frames with accurate result

One-time update
Periodic update (Inference only)

Periodic update (Profiling+Inference)

(b) Pipeline B

Figure 4: Potential benefit of updating the NN configuration
periodically (every T = 4 seconds). Ignoring profiling, both ac-
curacy and cost significantly improve (red), but when profiling
is factored in, the cost is worse (yellow) than one-time profiling.

has great temporal variability, so dynamically adapting the
configuration can lead to better resource-accuracy tradeoffs.

3 POTENTIAL OF ADAPTATION
The basic premise of Chameleon is that videos and the char-
acteristics of video analytics pipelines exhibit substantial dy-
namics over time. As a result, to achieve the “best” resource-
accuracy tradeoff, we need to continuously adapt the config-
urations of the video pipelines.

3.1 Quantifying potential
We first show the value of continuous adaptation by com-
paring two simple policies for selecting NN configurations.
1. One-time update: This is a one-time offline policy that ex-

haustively profiles all configurations on the first x seconds
of the video, picks the cheapest configuration that has at
least α accuracy, and sticks with it for the whole duration
of the video (e.g., [?]). We use x = 10.

2. Periodic update: This policy divides the video intoT -second
intervals, and profiles all configurations in each interval
for the first t seconds of that interval. It then sticks with
the cheapest configuration whose accuracy is greater than
α for the rest of the interval, i.e., forT − t seconds. We use
T = 4 and t = 1 for our experiments. We examine how
sensitive the results are to T in §6.3.
Figure 4 shows the resource-accuracy tradeoffs of running

the two policies on 30 traffic videos (there are 30 dots per
color). We set the target accuracy threshold α to 0.7 and 0.8,
respectively (we observe similar results with other thresh-
olds). The figures show that the periodic policy (red) reduces
per-frame resource consumption by over 10× and improves
the accuracy by up to 2× over the one-time policy (blue).
Intuition: The intuition behind these improvements is that
the accuracy of a given configuration can depend heavily
on the video content. If the video content becomes more
challenging (e.g., traffic moves faster, or there is less light-
ing), using the same configuration will negatively impact the
accuracy. Instead, we need to move to another configuration
that will increase the accuracy, likely at the expense of us-
ing more resources. Similarly, if the video content becomes

Chameleon: Scalable Adaptation of Video Analytics SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
1
 s

c
o
re

Time (sec)

1 fps
30 fps

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

F
1

 s
c
o

re

Time (sec)

1 fps
30 fps

(b)

Figure 5: Time-varying accuracy of two video clips. The grey
lines show the accuracy threshold. Picking configurations using
the first 20 minutes causes resource waste (5a) or low accuracy
(5b) in the rest of the video.

less demanding, we might have the opportunity to move to
another configuration that consumes less resources, while
still maintaining the desired accuracy.

Figure 5 illustrate this intuition, by plotting the accuracy
of the two policies over time for two video clips. In Figure 5a,
initially the cars are moving slowly, so the one-time policy
picks a low frame sampling rate that is sufficient to achieve
the desired accuracy. After a while, however, the cars start
moving much faster, and the low sampling rate is no longer
sufficient to correctly detect them. In contrast, the periodic
policy is able to maintain high accuracy by increasing the
frame sampling rate. Figure 5b shows the converse: cars start
out moving very fast, causing both policies to start with a
high frame sampling rate. When the cars slow down, the
periodic policy reduces the frame sampling rate and saves
GPU resources by over 2× compared to the one-time policy.
Cases like Figure 5, where accuracy varies significantly over
time, are common in real-world camera streams.

3.2 Prohibitive profiling cost
While Figure 4 shows considerable potential of the periodic
policy, a big caveat is that these results do not include the pro-
filing cost; they only include the cost of running the selected
configuration. Not surprisingly, profiling all configurations
every T seconds induces a significant profiling cost. Worse
yet, this profiling cost grows exponentially in the number of
configuration knobs and the number of values per knob.
If done naively, the profiling cost of the periodic policy

can negate any gains made by dynamically adapting the
configuration. As shown in Figure 4, the total cost when
including profiling (yellow) is almost 20× higher than the
actual cost of running the selected configuration (red), and
it is at least as high as (or in Pipeline A, over 3× higher than)
profiling configurations once (blue).
A sizable component of this profiling cost comes from

running the golden configuration. Recall from §2.2 that we
use the golden configuration to obtain the ground truth
for evaluating the accuracy of a given configuration. On
average, running the golden configuration requires an order
of magnitude more GPU resources than other configurations;
e.g., running a pre-trained FasterRCNN+ResNet101 model

on a video encoded in 1280p and 30fps requires 10× more
GPU resources than running a pre-trained SSD-MobileNet
model on the same video encoded in 1280p and 10fps.
3.3 Challenges in reducing profiling cost
At first sight, it might appear that using a state-of-the-art
search algorithm (e.g., [12, 19]) could address the prohib-
itively high profiling cost of the periodic policy. Unfortu-
nately, these algorithms are inadequate for our setting.

First, existing algorithms are designed for offline settings
(e.g., find the optimal cloud configuration for a Hadoop appli-
cation [12]). In contrast, our setting requires periodic profil-
ing, where the cost of a profiling event must be significantly
lower than the actual cost of running the selected configu-
ration between two profiling events. Second, the profiling
cost includes the cost of running the golden configuration,
which itself can be prohibitively expensive.

Note that simply increasing the update interval T does
not help in practice. If the update interval is too large, we
might either miss changes in the video content, which could
negatively impact accuracy, or miss opportunities to reduce
the resource consumption.
In summary, naive continuous profiling is expensive for

three reasons. We have to frequently run the golden config-
uration on each video stream, we have to profile all video
streams, and the configuration space is exponentially large.

4 KEY IDEAS IN CHAMELEON
Chameleon tackles these challenges using three domain-
specific empirical observations about the impact of configu-
rations on the accuracy and cost of video analytics pipelines.
First, if the NN configurations’ resource-accuracy tradeoff is
affected by some persistent characteristics of the video, we
can learn these temporal correlations to reuse configurations
over time (§4.1). Second, if two video feeds share similar
characteristics, it is likely they will also share the same best
configurations. Such cross-camera correlations provide an
opportunity to amortize profiling cost across multiple cam-
era feeds (§4.2). Finally, we have experimentally observed
that many of the configuration knobs independently impact
accuracy, allowing us to avoid an exponential search (§4.3).
Notice that these empirical observations are not specific

to the videos in our dataset, nor to the profiling algorithm
we use. The next sections provide the intuition behind the
observations and discuss their implications on Chameleon.
4.1 Persistent characteristics over time
While the characteristics of videos change over time, the un-
derlying characteristics of the video objects (e.g., size, class,
viewing angle) that affect accuracy tend to remain relatively
stable over time. As a result, configurations that are partic-
ularly bad tend to remain so. For example, if a camera is
covering objects from a side view and an object detector
is not tuned to detect objects at a side-view angle, it will
almost always produce results with low accuracy and hence

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Jiang et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000

C
D

F

Persistence (frames)

30 fps, 800p, ResNet101
30 fps, 1200p, ResNet50

Figure 6: Distribution of persistence of two configurations,
run on 120 150-second video clips.

should not be selected. Such configurations can be learned
and discarded from our profiling for longer periods of time.
Similarly, good configurations also tend to consistently

produce good performance. A common example is surveil-
lance video, which tends to have static content. For such
videos, a low-cost configuration (e.g., low frame rate) would
be sufficient for a long period of time. More generally, even
though the best configuration, i.e., the one with the lowest
cost meeting the accuracy threshold α , might change fre-
quently, the set of top-k best configurations (top-k cheapest
configurations with accuracy ≥ α) tend to remain stable over
time. Thus, we can dramatically reduce the search space by
focusing on these top-k configurations.

To show the distribution of time intervals over which the
video characteristics remain relatively stable, we define the
persistence of a configuration c as the length of contiguous
frames for which c’s accuracy exceeds a threshold α for over
95% of the frames (we do not use 100% to avoid noise). Fig-
ure 6 shows the distribution of the persistence of two typical
configurations. We observe that half of the time, the configu-
rations persistently exceed the accuracy threshold for more
than 200 frames (roughly 6 seconds at 30fps).

Neither of these rules holds all of the time. Thus, we period-
ically explore the full configuration space, to give previously
bad configurations the opportunity to prove their worth, and
allow previously good configurations to fall from grace.
4.2 Cross-camera similarities
Video feeds that exhibit spatial correlations are abundant in
practice. For instance, the traffic cameras facing a highway
section may be correlated, because same vehicles may appear
in the video feeds of multiple cameras.

Even when cameras do not observe the same scene, their
video feeds can still have similar characteristics. Figure 7a
and 7b show two similar traffic cameras deployed in a city.
The vehicles in the city will likely have similar moving
speeds, lighting that is influenced by weather conditions,
and viewing angles due to the cameras being installed at
similar heights (as a result of uniform installation policies).
Even if the cameras are not in geographic proximity, cameras
deployed for the same purpose such as traffic analytics are
likely to exhibit similarities. This can happen, for example,
due to the underlying similarity of street planning across
a country. Such similarity can also occur for surveillance
cameras covering an enterprise building. Figure 7c and 7d

(a) Camera #1 (b) Camera #2

(c) Camera X (d) Camera Y

Figure 7: Screenshots of similar traffic video feeds (a, b) and
two similar indoor video feeds (c, d).

show screenshots of two indoor cameras (see §6.1 for details)
who do not share field of view but have similar classes of
objects (e.g., humans), temporal patterns of movement (e.g.,
more people movement during lunch/dinner time), lighting,
etc., so they tend to share the best configuration.
As more cameras are deployed with increasing spatial

density, we expect more opportunities of amortizing the
profiling cost over many similar video feeds, especially in
real-time applications such as trafficmonitoring and building
surveillance, where many cameras have similar video feeds.

Note that the spatial correlations of best configurations do
not mean that applying the same configuration will produce
the exact same accuracy on different videos. The timescales
at which such correlations emerge can be larger than the
timescale at which the accuracy changes. Thus, we should
not blindly reuse the best configuration on another video,
even when the characteristics of the two videos are deemed
very similar. Instead, we can leverage the fact that simi-
lar videos tend to have similar distributions of best config-
urations. Then, we can use the most promising configura-
tions from one camera—e.g., the top-k best configurations—to
guide the profiling of a spatially-related camera. Finally, we
do not simply apply the same configurations on all cameras.
For instance, in Figure 8, Camera #1 and #2 (from Figure 7)
have similar resource-accuracy profiles that are different
from that of Camera #3 (not shown in Figure 7), so the first
two cameras can share the set of best configurations, but
not with the third camera. We will describe our data-driven
approach for automatically grouping similar cameras in §5.3.

4.3 Independence of configuration knobs
To further reduce the cost of searching the exponential con-
figuration space, we observe that, typically, individual knobs
have independent impact on accuracy. For example, consider
a pipeline with the resolution and frame rate knobs, taking
values (480p,720p,960p) and (1, 10, 30), respectively. Recall
from §3 that we measure the accuracy of configurations rel-
ative to a golden configuration, which in this case is (960p,
30). We observe empirically that in most cases the accuracy

Chameleon: Scalable Adaptation of Video Analytics SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.6 0.7 0.8 0.9 1

A
v
g

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

s
e

c
)

Accruacy (F1 Score)

Camera #1
Camera #2
Camera #3

Figure 8: Spatially similar cameras tend to have similar
resource-accuracy profiles. By varying frame rate, Camera
#1 and Camera #2 share a similar resource-accuracy profile,
which is different to Camera #3.

of configuration (480p, 30) relative to (960p, 30) is similar in
value to the accuracy of (480p, 10) relative to (960p, 10).

This has two important implications. First, it lets us tune
the resolution knob independent of the frame rate; this prunes
a large part of the configuration space. Second, it lets us
estimate a configuration’s accuracy by combining its per-
knob accuracies; in particular, we can do thiswithout running
the expensive golden configuration.
Further, the relative ordering between the configurations

on their resource demand will be unaltered between using
frame rates 30 and 10. That is, if the resource demand of
(480p, 30) is less than that of (720p, 30), then this ordering will
continue to be true with the resource demand of (480p, 10)
being less than (720p, 10). In our setting, the configuration
knobs have monotonic impact on cost, i.e., increasing the
value of a knob while holding the other knobs fixed increases
the resource demand of the configuration.
Since our objective is to pick the cheapest configuration

that meets the desired accuracy threshold, the above obser-
vations allow us to significantly reduce the profiling costs.

5 CHAMELEON TECHNIQUES
We build upon the insights in §4 to present the techniques in
our solution, Chameleon, to reduce the cost of profiling for
online adaptation of configurations. It should be noted that
Chameleon only represents one instance of a concrete design
inspired by the insights in §4, which are of independent value.

5.1 Overview
Chameleon’s solution relies on periodically re-profiling the
video pipeline. Video workloads are typically non-stationary,
in that both the characteristics of the video as well as the
pipeline tend to change over time. This makes traditional ap-
proaches (e.g., Bayesian optimization, multi-armed bandits)
either too expensive for real-time adaptation or unsuited
because they assume a stationary environment (despite their
successful use in recent systems [12, 19, 31]).

Chameleon uses a solution inspired by greedy hill climbing
that exploits the independence of NN configuration knobs
to reduce the search space from exponential to linear (§5.4).
Using this profiling method, it leverages the temporal per-
sistence of configurations to learn their properties over time

leader

follower 1
follower 2

profiling window

top-k configs

segments 1 - 4

……

Figure 9: The horizontal lines represent video feeds generated
by three cameras over time (one leader, two followers). The solid
vertical lines delineate profiling windows and the dashed lines
delineate segments. The blue circles represent profiling (§5.4);
bigger dark circles represent full profiling of the configuration
space, which yields the top-k most promising configurations
from the leader. The red arrows show the propagation of the
top-k configs both temporally (to segments on the same camera,
§5.2), and spatially (to segments on the follower cameras, §5.3).

(§5.2), and amortizes the cost of profiling across multiple
cameras by leveraging cross-video similarities (§5.3).
Figure 9 illustrates how different Chameleon techniques

work together. A “leader” video is profiled at the start of a
“profiling window” and a set of good (top-k) configurations
is found. This set is shared among “follower” videos who
are similar to the leader. Both the leader and followers then
restrict their search to this top-k set when choosing configu-
rations over time, until the start of the next profiling window
(when a new top-k set will be obtained from the leader). All
of these terms are defined in the subsequent sections.
5.2 Temporal incremental updates
Chameleon periodically and profiles the video pipeline using
an interval we refer to as the profiling window. Each profiling
window is split intow smaller segments, each of which is a
contiguous set of frames spanning a T -second interval (by
default, T = 4). We leverage temporal persistence (§4.1) by
not profiling all the segments in a profiling window. Instead,
we re-profile the configuration space on only the first seg-
ment of the profiling window (see §5.4 for details). We use
the results from this first segment to obtain a short ranked
list of the top-k most promising configurations (i.e., the least
expensive k configurations that meet the accuracy thresh-
old), and then profile only the top-k configurations on the
remaining segments to find the best one. When profiling a
configuration on a segment, we do not evaluate every frame
of the segment. Instead, we profile the first t seconds (by de-
fault, t = 1) and use the best configuration for the remaining
T − t seconds.

Algorithm 1 lists the steps taken in each profiling win-
dow given a video stream i . For the ith video, we use Si, j
to denote the jth segment and Wi,l to denote the l th pro-
filing window, which is a list of w consecutive segments
(Si,wl , . . . , Si,w (l+1)−1). Line 3 in the algorithm picks the top-
k configurations from the first segment, and lines 5-7 use
the top-k set to profile the remaining segments. Both these
steps use the Profile method, which we will cover in §5.4.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Jiang et al.

Input:Wi,l : the l th profiling window of the ith video,
which consist ofw segments Si,wl , . . . , Si,wl+l−1;
C: set of all configs under consideration

Output: A map from each segment Si, j in the profiling
window to the chosen config ĉi, j .

1 Function UpdateWindowT(Wi,l ,C):
2 Result ← ∅

3 C
promisinд
l ← Profile(Si,wl ,C,k)

4 Result .add(ĉi,wl ,C
promisinд
l [0])

5 foreach j = wl + 1, . . . ,wl +w − 1 do
6 ĉi, j ←Profile (Si, j ,C

promisinд
l , 1)[0]

7 Result[si, j] ← ĉi, j
8 return Result

Algorithm 1: Temporal updates take promising configu-
rations from the first segment of a profiling window and
apply them to subsequent segments in the window.

We have also observed in practice that it is beneficial to
include not only the current set of top-k configurations but
also those from the past few profiling windows. So we can
sample from ∪l ∈W C

promisinд
l to obtain the k configurations,

where W is the set of profiling windows in the past. This
extension is currently not used in our experiments.

5.3 Cross-video inference
The ability to take good configurations profiled on one video
stream and apply them to other video streams offers more
potential savings (§4.2).
Cross-video profiling: In each profilingwindow, Chameleon
leverages spatial similarities in NN performance to amor-
tize the cost of profiling across multiple video feeds. Let
P be the cost of profiling a video segment on the full con-
figuration space (C), p ≪ P the cost of profiling only the
top-k most promising configurations from a reference video
(Cpromisinд), and suppose there are V videos in total. If the
videos need to be profiled separately, the cost of profiling is
P · V in every profiling window. On the other hand, if the
videos show spatial similarity, the cost reduces to P+p(V −1),
a savings that grows with the number of videos V .
Algorithm 2 takes a group of related video streams G as

input, and only profiles the first video (referred to as the
“leader”) on the full configuration space (lines 3-5). We dis-
cuss how we group the set of related videos shortly. The call
to UpdateWindowT assigns a configuration to each segment
of the window using the temporal update technique from
§5.2. For all remaining videos (the “followers”), the call to
UpdateWindowT only receives the most promising configura-
tions from the first video as input (line 7), thus significantly
reducing the search space.
Grouping related videos:We group video feeds by exploit-
ing the correlation between configurations on the accuracy
of their output on different feeds; these accuracy values are

Input: G: a list of related video feeds, C: set of configs
under consideration

Output: Configuration ĉi, j for each segment Si, j .
1 Function UpdateWindowS(l ,G,C):
2 Result ← ∅

3 leader ← G[0]
4 Result .add(UpdateWindowT(Wi,l ,C))

5 C
promisinд
l ← (returned by Profile in line 4)

6 foreach i ∈ G \ {leader } do
7 Result .add(UpdateWindowT(Wi,l ,C

promisinд
l))

8 return Result

Algorithm 2: Spatial updates take promising configura-
tions profiled from one video and apply them to all other
videos in the same related group.

comparable across feeds since they are running the same
pipeline. The grouping of video feeds is offline and done
relatively infrequently (e.g., once every few hours).
We use the following simple grouping algorithm. The al-

gorithm starts with a randomly chosen configuration and
profiles all videos on it, then uses the accuracy results to
create an initial grouping using a simplified version of k-
means—essentially, sort the accuracy values and bound the
deviation from the minimum of a group. We repeat this pro-
cess by using another randomly chosen configuration to
subdivide the groups created by the previous round, and so
on. This greedy refinement stops when enough configura-
tions have been tested or the groups become too small.
While the above grouping algorithm works well in our

evaluations, we realize that it represents a very simple, first
stab at the problem, and there could be value in adding more
sophistication. For example, the algorithm could be aug-
mentedwith information on camera specifications and object
density. We defer these and other improvements to future
work, while currently choosing to focus on the feasibility
and potential savings of grouping videos.

5.4 Profiling a video segment
Algorithm 1 reduces the profiling cost from once per video
segment per video feed to once per profiling window per
video feed. Algorithm 2 further reduces the profiling cost
from once per profiling window per video feed to once per
profiling window per video group. Although these savings
are substantial, even profiling once can be very costly. This
is because the configuration space is multi-dimensional, con-
sisting of several knobs each taking one of several values,
yielding exponentially many possible configurations. Assum-
ingm knobs and (for simplicity) n values for each knob, an
exhaustive search would involve O(nm) configurations. In-
stead, Chameleon leverages the empirically-driven assump-
tion from §4.3 that the knobs of our NN configurations can
be treated independently. This allow us to use a variant of

Chameleon: Scalable Adaptation of Video Analytics SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Input: S : a segment; C: set of configs under
consideration, k : # of top configs to output.

Output: A list of the top-k best configurations in
descending order.

1 Function Profile(S,C,k):
2 KnobValueToScore ← ∅

/* Profile one knob at a time */

3 foreach Knob r do
4 foreach vr ∈ Vr do

/* Set knob r to vr while setting others

to the golden value v∗r */

5 c(vr) ← (v
∗
1 , . . . ,vr , . . . ,v

∗
n)

/* c∗ is Golden config */

6 c∗ ← (v∗1 , . . . ,v
∗
r , . . . ,v

∗
n)

/* Calculate F1 metric of c(vr) by

comparing c(vr) against c∗ */

7 f ← Eval_F1(S, c(vr), c∗))
8 KnobValueToScore[vr] ← f

9 AccurateConf iдs ← {c ∈
C |

∏
r KnobValueToScore[vr] ≥ α ′}

10 Sort AccurateConf iдs by c’s resource consumption
11 AccurateConf iдs ← top k elements in

AccurateConf iдs
12 return AccurateConf iдs

Algorithm 3: Finds the top-k best configurations for a
segment efficiently by profiling each knob independently
(a form of greedy hill climbing).

greedy hill climbing, where each knob is tuned while all other
knobs are held fixed, reducing the search space to O(mn).

Algorithm 3 shows how Chameleon profiles each knob in-
dependently. For each valuevr of knob r , we construct a con-
figuration c(vr) with knob r set to vr while all other knobs
are set to their golden configuration (maximum) values. We
compare c(vr) to the golden configuration c∗, which sets r to
its most expensive value (lines 5-7). Eval_F1 computes the
average F1 score of a configuration c with respect to another
configuration c ′ over the frames in S , i.e., 1

|S |
∑

s ∈S F1(s, c, c ′).
The final accuracy of a configuration c = (v1, . . . ,vn) is the
product of its F1 scores across all knobs, i.e.,

∏
r KnobValue

ToScore(vr), again following our independence assumption.
Based on this, Algorithm 3 returns the cheapest k config-
urations whose accuracy is higher than a given threshold
α ′2. Note that the cost of a configuration c (line 10) may
not be available from the preceding code since each knob is
tuned independently, but it can be obtained from a one-time
offline profiling because c’s resource consumption is stable
regardless of the video frame it is run on, as others have also
observed [24, §6.2]).
2Since the accuracy estimates inevitably have some errors, we use a higher
value of α ′ (by default, α ′ = 0.5+ 0.5 ·α where α is the real threshold used
in testing) to ensure the picked configuration yields an accuracy over α .

Comparing c(vr) against the golden configuration is costly,
but it ensures that a good set of promising configurations is
found. This is critical when profiling the full configuration
space on a group leader at the start of a profiling window
(line 5, Algorithm 2). Since this is done only once per profiling
window per video group, the higher cost can be amortized.
For all remaining video segments (line 7, Algorithm 2), the
cost is too high as it applies per segment, so Chameleon
sets all knobs other than r to lower default values in lines 5
and 6. The reason this works in practice is that the search
space has already been reduced to the top-k most promising
configurations, so finding a good relative ordering among
them is sufficient, and is doable with lower default values. As
long as the default values are not too low, the independence
assumption approximately holds (extreme settings may vio-
late the assumption, e.g., a very small image size makes even
relative comparisons difficult because no configuration de-
tects any objects). Note that Algorithm 3 must still compute
and threshold the final accuracy of each configuration.

Although line 4 loops over all values of a given knob, for
some knobs (e.g., frame rate, minimal area size), a lower
value has no profiling cost because it can be extrapolated
from higher values (e.g., simply ignore frames to evaluate a
lower frame rate). Also, since our knobs exhibit monoton-
ically increasing/decreasing performance, we can stop the
loop when performance is good enough (or bad enough, de-
pending on the search direction). We used the former but
not the latter optimization in our evaluation.

5.5 Practical considerations
We now cover two aspects that are critical in practice.

First, switching configurations in currently executing video
pipelines is non-trivial, because the modules have to be de-
signed to accept changes (e.g., resolution). We build on prior
work [32] where video modules constantly “listen” and pre-
pare for any configuration updates. For example, when the
configuration switches NN models, loading the new model
into memory takes time (e.g., up to 1 second). We must either
factor this switching duration in our formulation or rely on
pre-warming the memory with NN models.
Second, we believe it is best to use separate compute re-

sources for profiling (separate from the compute used by
the pipeline) to avoid disruptions to the live analytics. The
recent trend in “serverless computing” [3, 4] makes it simple
to run profiling tasks without explicitly provisioning VMs.

6 EVALUATION
We evaluate Chameleon on a dataset of video streams cap-
tured by multiple real-world traffic cameras over a duration
of 24 hours. Our key findings are the following.
• Chameleon achieves significantly better inference accu-
racy and lower resource consumption than a baseline of
profiling once upfront (§6.2).

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Jiang et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

A
v
g

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

s
e

c
)

Frac. of frames with accurate result

One-time profiling
Chameleon

(a) Bounding box-based F1-score (α = 0.8)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

A
v
g

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

s
e

c
)

Frac. of frames with accurate result

One-time profiling
Chameleon

(b) Bounding box-based F1-score (α = 0.9)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

A
v
g

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

s
e

c
)

Avg F1 score

One-time profiling
Chameleon

(c) Average bounding box-based F1 score

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

A
v
g

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

s
e

c
)

Frac. of frames with accurate result

One-time profiling
Chameleon

(d) Label-based F1-score (α = 0.8)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

A
v
g

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

s
e

c
)

Frac. of frames with accurate result

One-time profiling
Chameleon

(e) Label-based F1-score (α = 0.9)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

A
v
g

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

s
e

c
)

Avg F1 score

One-time profiling
Chameleon

(f) Average label-based F1 score

Figure 10: Chameleon (red) consistently outperforms the baseline of one-time update (blue) across different metrics in Pipeline A.
Each dot represents the results of running each solution on one hour of video from five concurrent video feeds. The graphs also
include 1-σ ellipses [20] to mark the performance variance of each solution.

• By leveraging the temporal persistence of configurations’
accuracy, Chameleon reduces profiling cost by focusing on
the top-k best configurations for most of the time (§6.3).
• By leveraging the spatial similarities across video cameras,
Chameleon amortizes the cost of profiling across similar
cameras with minimal reduction in accuracy (§6.4).
• Chameleon further cuts profiling cost by profiling inde-
pendent configuration knobs separately (§6.5).

6.1 Dataset and setup
We use a dataset of video streams from five traffic video cam-
eras deployed in different intersections in a metropolitan
area (Bellevue, WA). The exact content of the video feeds
varies significantly over time and across space. For instance,
day time has more objects and intermittent traffic congestion,
while at night object appearances are more spread out over
time. Spatially, as well, two cameras in downtown areas show
more cars at slower speeds than the other cameras deployed
in suburbs (Figure 7 shows two screenshots). In addition, all
cameras exhibit transient car motion patterns when traffic
lights change. Despite their heterogeneity in content, we
show that Chameleon can opportunistically leverage tempo-
ral persistence and spatial similarities between the cameras
to achieve efficient online configuration adaptation. To ob-
tain a representative dataset, we sampled 120 video clips
across 24 hours from each camera, and used their original

encodedMP4 format (1280×960p resolution, 30fps frame rate,
and 150 seconds length) as the input to Chameleon.

We also used a different set of videos to generalize these re-
sults. The videos were taken from 10 cameras deployed in an
indoor cafeteria area (with prominently posted notices) over
a period of 3 days. The original MP4 videos are 1920×1080
in resolution and 25 fps in frame rate. Their content includes
different patterns of human movement, e.g., more people
moving before/after meal times than the rest of the day. To
obtain a representative dataset, we sampled 90 video clips, 9
clips from each camera, across the 3-day period.
The video frames are streamed in chronological order to

the video analytics pipelines, whose configurations are con-
trolled by Chameleon. We used the following control knobs
(§2.1): for Pipeline A: we used 5 levels of frame rate, 5 levels
of image size, and 6 pre-trained object detection models [7];
for Pipeline B: we used 5 levels of minimum region size with
detected motion, and 4 pre-trained classifier models [8]. The
inference models are implemented in Tensorflow and are pre-
trained on standard image datasets [23], and the switching
of video frame rate and resolution is done by FFmpeg [10].

6.2 End-to-end improvement
We start with the end-to-end improvement of Chameleon
over the baseline of a one-time update (profiling configu-
rations once at the beginning of a video stream). Figure 10

Chameleon: Scalable Adaptation of Video Analytics SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g
 G

P
U

 t
im

e
 p

e
r

fr
a
m

e
 (

s
e
c
)

Frac. of frames with accurate result

One-time profiling
Chameleon

(a) Bounding box-based F1-score

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
v
g
 G

P
U

 t
im

e
 p

e
r

fr
a
m

e
 (

s
e
c
)

Frac. of frames with accurate result

One-time profiling
Chameleon

(b) Label-based F1-score

Figure 11: Chameleon (red) outperforms the baseline of one-
time update (blue) on Pipeline B (α=0.8).

Resource (avg. GPU time
in seconds per frame)

Accuracy (frac. frames w/
bounding box F1 score > 0.8)

Chameleon Baseline Improv. Chameleon Baseline Improv.
A 0.24 0.60 60.2% 0.65 0.65 1%
B 0.21 0.28 24.6% 0.62 0.28 119%
C 0.33 0.52 37.4% 0.72 0.70 3%
D 0.41 0.67 38.6% 0.71 0.69 2%

Table 1: Chameleon improves accuracy and resource consump-
tion on another dataset of indoor video cameras.

shows that for Pipeline A, Chameleon consistently outper-
forms the baseline along resource consumption and sev-
eral accuracy metrics for different values of the accuracy
threshold α . Specifically, we use bounding box-based accu-
racy, where we compute accuracy based on specific locations
of objects on the image, and also label-based accuracy, where
we only compare the set of objects on a frame (and ignore
locations). Note that the resource (i.e., GPU) consumption
includes both profiling of different configurations and run-
ning the best configuration to get inference results. The data
points are visually summarizedwith 1-σ ellipses, which show
their maximum-likelihood 2-D Gaussian distribution [20].
For most of the frames, Chameleon partitions the five cam-
eras into two groups, one with three cameras in the suburb
area, and one with two cameras in the downtown area.

We observe improvement on three fronts. (1) Chameleon
achieves 20-50% higher accuracy with the same resource con-
sumption, which suggests it could benefit resource-constrained
settings (e.g., edge ormobile devices). (2) Chameleon achieves
30-50% reduction in resource consumption (a 2-3x speed up)
while achieving almost the same accuracy as the baseline,
which could save capital costs when resources are elastic but
expensive (e.g., cloud VMs). (3) Finally, Chameleon not only
improves performance on average, but also reduces perfor-
mance variance: Chameleon’s 1-σ ellipses3 are remarkably
smaller than those of the baseline. This is because Chameleon
continuously adjusts its configuration over time, whereas
the baseline is sensitive to the starting points of the video.

3In many cases, the baseline selected the expensive golden configuration
(top right corner of the graphs), causing the ellipses to shift.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.65 0.7 0.75 0.8 0.85

A
vg

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

se
c)

Frac. of frames with accurate result

Inference + Profiling Cost
Inference Cost

T=1	segments

T=8	segments

(a) Impact of profile window length

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.76 0.78 0.8 0.82 0.84 0.86

A
vg

 G
P

U
 t

im
e

 p
e

r
fr

a
m

e
 (

se
c)

Frac. of frames with accurate result

Inference + Profiling Cost
Inference Cost

k=1 k=15

(b) Impact of top k

Figure 12: Impact of key parameters in temporal incremental
update. The accuracy metric is the label-based F1 score with
accuracy threshold α = 0.8.
Notice that Chameleon still has non-trivial room for improve-
ment compared to the optimal (idealized) performance, i.e.,
periodic updating with zero profiling cost (Figure 4).

We observed similar results in Pipeline B. Figure 11 com-
pares Chameleon and the baseline on two accuracy metrics
in Pipeline B. Chameleon gives accurate results (F1 score
over 0.8) on over 90% of the frames, while the baseline suf-
fers from higher resource consumption or low accuracy, and
substantial performance variance.
To generalize our end-to-end evaluation, Table 1 shows

the improvement of Chameleon on another dataset of 10
camera feeds (see §6.1). Based on the cameras’ geographi-
cal proximity, the cameras are partitioned into four groups
(rows). The table compares Chameleon with a baseline that
uses one-time profiling on each camera feed. We see that,
for three groups (A, B, D), Chameleon reduces the GPU con-
sumption by 37.4% to 60.2% without sacrificing accuracy,
and in the other group (C), Chameleon increases accuracy
by 119% while still managing to reduce GPU usage by 24.6%.
6.3 Impact of temporal incremental updates
Next, we microbenchmark the impact of individual compo-
nents in Chameleon. We start with temporal incremental
updates (§4.1), and investigate two of its key parameters:
the profile window size and the size of the top-k set. First,
we fix the parameters of Chameleon and only change the
profile window size to see the impact of updating the top-k
configurations less often. Figure 12a confirms our intuition
(§4.1): when we start increasing the profiling window size
from one segment (the top right corner), we see a fast drop in
profiling cost (the gap between the two curves) relative to the
degradation in accuracy, until some “knee point” (around 3-5
segments) after which further increases bring diminishing
savings in cost while reducing accuracy.

Another key factor in temporal incremental updates is the
size of the top-k configuration set. Intuitively, using a larger
set introduces more overhead to check the set’s accuracy in
each segment, but tolerates more temporal variance because
the best configuration is more likely to be found within
the set. Figure 12b quantifies this tradeoff as we gradually
increase k from 1 (bottom left) to 15 (top right). We observe a

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Jiang et al.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78

A
vg

 G
P

U
 t
im

e
 p

e
r

fr
a
m

e
 (

se
c)

Frac. of frames with accurate result

Inference + Profiling Cost
Inference Cost

#	of	cameras	=	1

#	of	cameras	=	10

(a) More similar cameras

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.62 0.64 0.66 0.68 0.7
A

vg
 G

P
U

 t
im

e
 p

e
r

fr
a
m

e
 (

se
c)

Frac. of frames with accurate result

Inference + Profiling Cost
Inference Cost

#	of	cameras	=	1

#	of	cameras	=	10

(b) More cameras, not all similar

Figure 13: The benefit of having more cameras.

good balance at around k = 5, below which top-k seems not
able to tolerate transient temporal variance (i.e., accuracy
degrades), and above which the increased cost of checking
the top-k set’s accuracy does not yield much benefit.
6.4 Impact of cross-video inference
The second insight behind Chameleon is the existence of
multiple similar cameras over which we can amortize the
profiling cost. Figure 13 shows the benefits of having more
cameras in two cases: when the cameras are similar, and
when the cameras are not all similar. Naturally, in the former
case we expect the cameras to share the same set of good
configurations, so the cost of profiling should drop almost
linearly with the number of cameras. Indeed, Figure 13a cor-
roborates this intuition. We take ten video feeds4 covering
the same day-time hour, and incrementally add one camera
to the test at a time. Chameleon automatically groups these
cameras into one group (using the logic described in §5.3),
and achieves a linear reduction in cost with only small re-
duction in accuracy. In contrast, during the hours when the
cameras are less similar, we expect to see less reduction of
profiling cost, since only a subset of cameras can share the
profiling cost. This is exactly what happened in Figure 13b:
Chameleon groups the cameras into two (sometimes three)
groups, so even though there are 10 video feeds, the saving
in profiling cost is lower than that in Figure 13a.

As we group more cameras, notice that the accuracy drops
(albeit by less than 10%). This is because cameras in the same
group might have different characteristics, so sharing the
same configuration among them leads to lower accuracy than
customizing the configuration for each one. The drop in ac-
curacy is also partly due to our very simple camera-grouping
algorithm (§5.3), which bounds the maximum discrepancy
between the accuracy of a randomly chosen configuration
on different video feeds in the same group. It is quite possible
that a more sophisticated algorithm for grouping cameras
would maintain higher inference accuracy.
6.5 Impact of reduced configuration space
The last key technique in Chameleon is to reduce the cost of
a single profiling of the configuration space, by profiling each

4We created 10 video feeds from 5 cameras by horizontally splitting the
view of each camera into two non-overlapping video feeds.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Exhaustiv
e

Chameleon

A
c
c
u

ra
c
y

(a) Accuracy

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

Exhaustiv
e

Chameleon

R
e

s
o

u
rc

e
 c

o
n

s
u

m
p

ti
o

n

(b) Inference cost

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

Exhaustiv
e

Chameleon

P
ro

fi
lin

g
 c

o
s
t

(c) Profiling cost

Figure 14: Comparing Chameleon’s profiling algorithm (Al-
gorithm 3) with the result of an exhaustive search.

knob separately. The reduction in profiling cost is obvious,
but the impact on accuracy and inference cost of the selected
configuration is less evident. In Figure 14, we compare the
configurations found by Algorithm 3 (based on the assump-
tion that knobs are independent) to an exhaustive search,
along three metrics: accuracy (Figure 14a), inference cost of
the configurations picked by each algorithm (Figure 14b), and
the profiling cost of executing the algorithms (Figure 14c).
We can see that the configurations picked by Algorithm 3
are almost as good (in accuracy and inference cost) as the
result of running an exhaustive search, while achieving an
enormous reduction in profiling cost. Note that the “exhaus-
tive” method is not optimal, because it only profiles the first
second of each segment (not every second).

6.6 Contribution of each component
Finally, we investigate the contribution of individual tech-
niques in Chameleon, by incrementally adding one technique
at a time (temporal incremental update, spatial cross-camera
inference, and leveraging knob independence). Figure 15
shows the performance of the full Chameleon solution as
well as some intermediate design points for the two pipelines
we studied. In both pipelines, we see that each step brings
significant reduction in cost at a relatively small drop in
accuracy. Temporal incremental updates reduces profiling
cost by about ∼50%, cross-camera inference by an additional
∼30-60%, and knob independence by another 40-60%.

7 RELATEDWORK
Video processing optimization: Several previous papers
have considered optimizing video processing pipelines by
either adjusting the configuration knobs or training special-
ized NN models. VideoStorm [32] first profiles each video
query running in a cluster and then adjusts its configuration
to achieve the right balance between accuracy, processing
delay, and resource demand. NoScope [24], MCDNN [16],
and Focus [22] all process streaming or offline video using
various NNs to detect objects, and recognize people and text.
One of the core techniques in all three papers is training
specialized NNs based on objects that typically appear in
a specific video stream. For example, instead of a NN that
can classify across 1000 objects, they train a much smaller
(and more efficient) one for the top 20 objects. While each of

Chameleon: Scalable Adaptation of Video Analytics SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.5 0.6 0.7 0.8 0.9 1

A
v
g
 G

P
U

 t
im

e
 p

e
r

fr
a
m

e
 (

s
e
c
)

Frac. of frames with accurate result

Periodic Exhaustive Search
Chameleon (Temperal Only)
Chameleon (Spatial+Temporal)
Chameleon (Full)

(a) Pipeline A

 0

 1

 2

 3

 4

 5

 6

 7

 0.5 0.6 0.7 0.8 0.9 1

A
v
g
 G

P
U

 t
im

e
 p

e
r

fr
a
m

e
 (

s
e
c
)

Frac. of frames with accurate result

Periodic Exhaustive Search
Chamelon (Temperal Only)
Chamelon (Spatial+Temporal)
Chamelon (Full)

(b) Pipeline B

Figure 15: Contribution of individual components

these papers reports significant improvements in accuracy
and/or resource consumption, they all profile and optimize
the video queries only once at the beginning of the video
stream. They do not report how the optimal profiles change
over time and do not handle changes in video stream con-
tent. An exception is [29] which retrains the NN model to
detect the set of popular objects as it changes over time. Two
core contributions of Chameleon are demonstrating that op-
timal configurations do change over time, and providing an
efficient technique for continuously adapting the profiles.
Finding optimal configurations: Chameleon periodically
searches an exponentially large configuration space to find
the optimal NN configuration for a video query. This is done,
at a minimum, for the leader of each spatially-related group
of videos. Several recent systems have also faced an expo-
nentially large configuration search space in their problem
domains [12, 19, 31, 34]. Ernest [31] uses optimal experimen-
tal design [28] to optimize the VM configuration of a job,
while Cherrypick [12] uses Bayesian optimization [27] to
find an optimal cloud configuration for general applications.
Hill et. al [19] use Thompson sampling [11] to optimize the
layout of a multi-component web page; they use greedy hill
climbing to select the next layout, similar to Chameleon,
but Chameleon exploits more independence structure and
monotonicity. All of these works bound the cost of their
configuration search (e.g., by adding it as a constraint in the
optimization problem), but these are still one-time or daily
costs paid for the modeling task at hand. Some bandit algo-
rithms address non-stationary settings (e.g., [26]), but these
are too inefficient at present.

Chameleon differs from these systems in two major ways.
First, the optimal configuration for a video is non-stationary,
requiring frequent (every few seconds) re-profiling that must
keep up with a real-time video feed. This puts tremendous
pressure on keeping the profiling cost low. Second, Chameleon
reuses optimal configurations across related video feeds.
These differences lead to our greedy hill climbing approach,
which avoids any computationally-expensive modeling.

8 DISCUSSION AND FUTUREWORK
Network bandwidth: Besides computational cost, which is
the focus of this paper, network bandwidth is also an impor-
tant resource in video analytics. With the increasing trend
of running analytics across smart cameras [1, 5, 13] and the
cloud, the network will start becoming a scarce resource in
video analytics systems. The choice of configuration of a
video analytics pipeline has implications on the network us-
age too; e.g., one can save bandwidth by streaming the video
at a low frame rate or resolution if it still maintains high
inference accuracy. While Chameleon optimizes the com-
putational cost of video analytics, its techniques addressing
dynamic variations in the profile using spatial and temporal
cross-camera correlations will likely carry over when con-
sidering the network. The problem, however, will be one
of multiple resources and hence will require techniques for
joint consideration of these resources.
Profiling on the edge: Chameleon’s design relied on a sep-
arate cluster for its periodic profiling so as to avoid any
disruptions to the live video analytics pipeline. As we move
to the scenario of edge camera analytics [13], such a sep-
aration would be hard to achieve. The camera’s compute
resource, already limited, would be insufficient if it also has
to accommodate the demand for periodic and quick profiling.
At the same time, periodically recording and shipping video
clips to the cloud for profiling may also overload the network.
Arriving at the right design choice for edge camera analytics
will be an important problem going forward.
Triggering the profiling: An unstudied aspect of resource-
accuracy profiles in our paper is the periodicity with which
their values change. While our solution relied on setting
a pre-fixed time interval for profiling (and then saving its
cost), we can save on profiling costs even further if we can
predict the need to re-profile. Conceivably, we could use
vision techniques like scene understanding to trigger fresh
profiling. We believe this requires work at the intersection
of systems, machine learning, and computer vision.
9 CONCLUSION
In this paper, we argue that video processing pipelines have
to be adapted over time, otherwise they might achieve very
low levels of accuracy. However, a naive re-profiling is pro-
hibitively expensive. Instead, we present Chameleon, a sys-
tem that uses several techniques to dramatically reduce pro-
filing cost and also improves accuracy.

ACKNOWLEDGEMENTS
We appreciate the feedback by the anonymous SIGCOMM
reviewers and our wonderful shepherd, Romit Roy Choud-
hury. Ion Stoica is supported by the NSF CISE Expeditions
Award CCF-1730628, and in part by DHS Award HSHQDC-
16-3-00083, and gifts from Alibaba, Amazon Web Services,
Ant Financial, Arm, CapitalOne, Ericsson, Facebook, Google,
Huawei, Intel, Microsoft, Scotiabank, Splunk and VMware.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Jiang et al.

REFERENCES
[1] Amazon aws deeplens. https://aws.amazon.com/deeplens/.
[2] Artificial Intelligence Surveillance Cameras Secu-

rity. https://www.theverge.com/2018/1/23/16907238/
artificial-intelligence-surveillance-cameras-security.

[3] AWS Lambda. https://aws.amazon.com/lambda/.
[4] Azure Functions. https://azure.microsoft.com/en-us/services/

functions/.
[5] Google clips. https://store.google.com/us/product/google_clips?hl=

en-US.
[6] New Search Engine Revolutionizes Video Surveillance. https://i-hls.

com/archives/80734.
[7] Tensorflow detection model zoo. https://github.com/tensorflow/

models/blob/master/research/object_detection/g3doc/detection_
model_zoo.md.

[8] Tensorflow-slim image classification model library. https://github.
com/tensorflow/models/tree/master/research/slim.

[9] Yolo. https://pjreddie.com/darknet/yolo/.
[10] FFmpeg. http://ffmpeg.org/, 2000–2018.
[11] S. Agrawal and N. Goyal. Analysis of thompson sampling for the

multi-armed bandit problem. In 25th Conference on Learning Theory
(COLT ’12), pages 39.1–39.26, 2012.

[12] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang. Cherrypick: Adaptively unearthing the best cloud configu-
rations for big data analytics. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’17), pages 469–482, 2017.

[13] G. Ananthanarayanan, V. Bahl, P. Bodik, K. Chintalapudi, M. Philipose,
and L. Ravindranath. Real-time video analytics - the killer app for
edge computing. In IEEE Computer, 2017.

[14] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes (voc) challenge. International journal
of computer vision, 88(2):303–338, 2010.

[15] R. Girshick. Fast r-cnn. arXiv preprint arXiv:1504.08083, 2015.
[16] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-

namurthy. Mcdnn: An approximation-based execution framework
for deep stream processing under resource constraints. In Proceed-
ings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, pages 123–136. ACM, 2016.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In IEEE
International Conference on Computer Vision (ICCV), 2017, pages 2980–
2988. IEEE, 2017.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[19] D. N. Hill, H. Nassif, Y. Liu, A. Iyer, and S. Vishwanathan. An efficient
bandit algorithm for realtime multivariate optimization. In 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’17), pages 1813–1821, 2017.

[20] W. E. Hoover and M. Rockville. Algorithms for confidence circles and
ellipses. Citeseer, 1984.

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[22] K. Hsieh, G. Ananthanarayanan, P. Bodik, P. Bahl, M. Philipose, P. B.
Gibbons, and O. Mutlu. Focus: Querying large video datasets with low
latency and low cost. arXiv preprint arXiv:1801.03493, 2018.

[23] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy.
Speed/accuracy trade-offs for modern convolutional object detectors.
CoRR, abs/1611.10012, 2016.

[24] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. Noscope:
Optimizing neural network queries over video at scale. Proc. VLDB

Endow., 10(11):1586–1597, Aug. 2017.
[25] F. Loewenherz, V. Bahl, and Y. Wang. Video analytics towards vision

zero. In ITE Journal, 2017.
[26] H. Luo, A. Agarwal, and J. Langford. Efficient contextual bandits in

non-stationary worlds. CoRR, abs/1708.01799, 2017.
[27] J. Mockus. Bayesian approach to global optimization. Kluwer, Dordrecht,

1989.
[28] F. Pukelsheim. Optimal Design of Experiments. John Wiley & Sons Inc.,

New York, 1993.
[29] H. Shen, S. Han, M. Philipose, and A. Krishnamurthy. Fast video

classification via adaptive cascading of deep models. In Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017.

[30] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning.
In AAAI, volume 4, page 12, 2017.

[31] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. Ernest:
Efficient performance prediction for large-scale advanced analytics.
In 13th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI ’16), pages 363–378, 2016.

[32] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman. Live video analytics at scale with approximation and
delay-tolerance. In NSDI, volume 9, page 1, 2017.

[33] T. Zhang, A. Chowdhery, P. V. Bahl, K. Jamieson, and S. Banerjee. The
design and implementation of a wireless video surveillance system.
In Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, pages 426–438. ACM, 2015.

[34] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang.
Bestconfig: tapping the performance potential of systems via automatic
configuration tuning. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 338–350. ACM, 2017.

https://aws.amazon.com/deeplens/
https://www.theverge.com/2018/1/23/16907238/artificial-intelligence-surveillance-cameras-security
https://www.theverge.com/2018/1/23/16907238/artificial-intelligence-surveillance-cameras-security
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://store.google.com/us/product/google_clips?hl=en-US
https://store.google.com/us/product/google_clips?hl=en-US
https://i-hls.com/archives/80734
https://i-hls.com/archives/80734
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://pjreddie.com/darknet/yolo/
http://ffmpeg.org/

	Abstract
	1 Introduction
	2 Resource-accuracy profiles
	2.1 Object detection pipelines
	2.2 Performance of configurations

	3 Potential of adaptation
	3.1 Quantifying potential
	3.2 Prohibitive profiling cost
	3.3 Challenges in reducing profiling cost

	4 Key ideas in Chameleon
	4.1 Persistent characteristics over time
	4.2 Cross-camera similarities
	4.3 Independence of configuration knobs

	5 Chameleon Techniques
	5.1 Overview
	5.2 Temporal incremental updates
	5.3 Cross-video inference
	5.4 Profiling a video segment
	5.5 Practical considerations

	6 Evaluation
	6.1 Dataset and setup
	6.2 End-to-end improvement
	6.3 Impact of temporal incremental updates
	6.4 Impact of cross-video inference
	6.5 Impact of reduced configuration space
	6.6 Contribution of each component

	7 Related work
	8 Discussion and Future Work
	9 Conclusion
	References

