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Abstract— To precisely track human motion, today’s state-of-
the-art employs either well-calibrated sensors tightly strapped
to the body or high-speed cameras confined to a finite capture
volume. These restrictions make such systems less mobile. In
this paper, we aim to break this usability barrier around
motion-capture technology through a wearable system that has
sensors integrated directly into garments. We develop a pose-
estimation approach based on classic kinematics and show that
it is insufficient to analyze motion in such a system, leading
to mean Euler angle errors of up to ±60◦ and standard
deviations of 120◦. Thus, we motivate the need for data-driven
algorithms in this domain. Through a quantitative study, we
attribute motion-estimation errors to the high-degree of sensor
displacement (up to 118◦ standard deviation from the nominal
value) with respect to the body segments that are present
when human poses change. Based on controlled experiments,
we develop a new dataset for such systems comprising over 3
hours of biomechanical motion recordings from 215 trials on
12 test subjects.

I. INTRODUCTION

High-accuracy human pose tracking, also known as motion
capture, is traditionally achieved with the use of external
cameras placed in well-calibrated studio environments [1]–
[3]. Emerging wearable sensors promise to take this tech-
nology outside of studio rooms into the real world [4]–[6].
However, such sensors still need to be positioned precisely
and attached to the body with straps or tight-fitting clothes
[1]–[9]. These restrictions hinder the use of wearable motion-
capture technology in applications that rely on long-term
tracking such as biomechanical gait assessment and perfor-
mance measurement in the wild [10]–[12]. In this paper, we
present a new kind of wearable system for articulated human-
motion analysis that overcomes the existing sensor-mounting
and positioning restrictions.

Our system comprises a dense network of sensors (iner-
tial measurement units, infrared proximity and ultrasound)
integrated into garments that can be worn over extended
periods of time. The sensors are synchronized and connected
over a high-bandwidth wireless channel. Within the network,
multiple CPUs sample data from the sensors at rates of
up to 760 Hz and stream to a base station at speeds of
up to 27 Mbps (∼1600 byte UDP broadcast payloads at
90% 802.11 PHY rate). At the base station, this data is
processed to track the orientation of body-joints in free
space. Simultaneously, the system records depth video from
multiple calibrated Kinect sensors and fuses them to pro-
duce the ground-truth tracking information for comparison.
Segmented and synchronized data from wearable and Kinect
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Fig. 1: Our system enables pose tracking over the long term
with wearable sensors integrated into everyday clothing.

sensors, along with the corresponding RGB video are saved
to local storage. We believe that these sensor-rich recordings
are uniquely useful to study emerging challenges in human
biomechanical analysis. Fig. 1 illustrates the application of
our system for long-term, unconstrained motion capture. Our
system thus opens up new applications in health monitoring,
sports training and AR-VR. The following are the specific
contributions we make in this paper:
• We propose a new wearable, garment-integrated system

for pose tracking that is non-intrusive and mobile. It
enables long-term analysis of human biomechanics.

• We develop a kinematics-based pose-tracking algorithm,
apply it to our system, and demonstrate its limitations
in offsetting artifacts from sensor displacement.

• We produce time-synchronized recordings from our
dense network of sensors along with segmented
ground-truth annotations for biomechanical motion
analysis. We intend to make these recordings public.

The rest of the paper is organized as follows. In Sec. II, we
review the state-of-the-art in wearable human pose tracking
along with a background on fusing sensor data to accurately
estimate orientation. In Sec. III, we describe our garment-
integrated system followed by the data-collection process and
a kinematics-based algorithm for pose tracking. In Sec. IV,
we study performance of the algorithm and quantify the
sensor displacement on body segments. Finally, we conclude
in Sec. V.

II. BACKGROUND AND RELATED WORK

In this section, we provide an overview of existing techniques
for motion capture and their differences from ours. We also
present the sensor-fusion algorithm that we use to accurately
estimate 3D orientation.



A. Existing Systems for Motion Capture

There are two main categories of pose-tracking systems in
the literature: optical and non-optical. Optical systems rely
on different kinds of cameras including vision, depth and
infrared. This class can be further sub-divided into systems
with or without markers attached to the body. An overview
of reflective marker-based systems is provided in [13]. The
use of Microsoft Kinect sensor for motion capture is a good
example of markerless systems. It records depth information
in addition to RGB wavelengths [14]. Multiple such sensors
have been used for pose tracking [15]. Other markerless
systems use computer vision techniques [16], [17]. Optical
motion-capture systems tend to have good tracking accuracy.
However, they are confined to a limited capture volume and
are sensitive to occlusion and lighting variations.

Non-optical approaches do not typically require elaborate
studio setups. Some examples in this category employ me-
chanical, magnetic or inertial sensors. Mechanical devices
such as exoskeletons use built-in potentiometers on the
joints to capture human motion [18]. Magnetic systems use
sensors attached to the body within an artificially-created
magnetic field [19]. Inertial sensing systems constitute the
most common non-optical approach. Inertial measurement
units (IMUs) are widely used to track the orientation of
human body segments and reconstruct full pose. For instance,
the authors in [7] and [20] utilize classical kinematics to
recover articulated human motion from IMUs. There are
also approaches that are based on optimization techniques
[8]. To improve translational-tracking accuracy, rooted kine-
matic models are utilized [9]. Unfortunately, most of these
approaches still rely on precise sensor positioning and studio
calibration.

Some inertial motion-capture systems work outside of
controlled laboratory environments, [4]–[6]. These are the
closest to what we propose in this paper. However, despite
superior mobility and minimality [21], such systems still
require additional sensors to be rigidly attached to body
segments. Although these approaches do not severely limit
the capture volume, their tracking performance is affected by
sensor drift. Moreover, the accuracy of these systems is poor
in the presence of motion artifacts, which can be severe when
the sensor and body segments are not tightly coupled [22].
These limitations thus preclude long-term and non-intrusive
tracking. To overcome some of the accuracy limitations,
hybrid trackers have been developed [1]–[3]. However, due
to the involvement of complementary optical sensors, such
techniques are not mobile.

B. Existing Algorithms for Sensor Fusion

In this paper, we focus on motion capture with inertial
sensors. This approach requires us to estimate orientation
from IMU sensor readings corresponding to the tri-axis
accelerometer, gyroscope and magnetometer. These readings
can be converted to angular orientations (3 degrees of
freedom) through a process called sensor fusion. A good
overview of different sensor-fusion techniques is presented
in [23]. A computationally efficient version of this algorithm

Fig. 2: A dense network of fabric-integrated sensors maintain
an association with body parts even as they move around.

suitable for our purposes is the Madgwick filter [24]. This
algorithm has comparable accuracy with traditional Kalman-
filter based approaches. We thus utilize it extensively in our
tracking system.

III. SYSTEM OVERVIEW

In this section, we describe our wearable motion-capture
system in detail. More information about the system is
included in the video accompanying this paper. The entire
sensor network is shown in Fig. 2. There are 38 IMUs
distributed over the body. At least two IMUs are associated
with each body segment, e.g., IMU numbers 27 and 31 are
associated with the left lower arm. There are also IMUs that
are placed close to joint locations, e.g., IMU number 29 is
along the right elbow joint. These joint-location sensors are
assumed to be associated with either of the abutting body
segments. Infrared (IR) sensors are placed between arms
and torso, and between two legs. Each hand and foot also
has one IR sensor. These sensors complement the IMUs by
detecting the distance between body parts based on time-of-
flight proximity readings.

Note that there are multiple IMUs per body segment to
allow future studies on the benefit of redundant sensing. This
is also the reason for including IR sensors in the system.
The latter would potentially provide a way of measuring
distances between arms, torso and legs. For algorithms in this
paper, we only use a single IMU per body segment. Although
sensors are nominally assumed to be placed at the locations
shown in Fig. 2, their position shifts over time during system
operation. This is because these sensors are embedded into
garments (and mounted loosely) as described next. Thus, the
only usable geometric property maintained by these sensors
is that they remain close to the originally associated body
segments throughout the state of motion.

A. Hardware Design with Fabric-integrated Sensors

The proposed wearable system comprises sensors that are
embedded into multiple garments: a hat, pants, jacket, pair
of shoes and gloves. These are shown in Fig. 3. Each piece
of garment contains at least one CPU; to keep up data rate in
the presence of high sensor density, we employ 3 CPUs in the
jacket. A CPU in our case is defined as an integrated module
comprising a processor and radio. The CPU specifications



TABLE I. Detailed specifications of the proposed system.

CPU (ARM Cortex M0 + ESP8266) IR Sensor (ADI VCNL)
Frequency 80 MHz Range 1-200 mm
Flash 4 MB Rate 250 Hz
Vdd 3.3 V Vdd 2.5-3.6 V
Protocol WiFI UDP RFC768 Interface I2C
Total Power 478 mW (16 dBm tx.) Total Power 50 mW

IMU (ST Microelectronics LSM9DSO

Components
2.4 - 3.6 V
SPI/I2C

3-axis Accelerometer
Range: ±2g, rate: 1600 Hz
anti-aliasing filter: 773 Hz

3-axis Gyroscope
Range: 245 DPS, rate: 760 Hz
HPF cutoff frequency: 0.09 Hz

3-axis Magnetometer Range: 2 Gauss, rate: 100 Hz
Temperature Range: -40 to 85◦C

Total Power 16 - 25 mW (depending on duty cycle and data rate)

Fig. 3: System hardware: 9 CPUs aggregate data from 46
sensors over a high-bandwidth WiFi network.

are shown in Table I. Thus, a total of 9 CPUs poll data from
sensors through an I2C interface, compose UDP messages,
and send them over a 2.4 GHz WiFi network to the base
station, which is a PC. Each CPU and sensor assembly is
powered by an independent lithium polymer (LiPo) battery.
Furthermore, a total of 38 IMUs and 8 IR sensors are
connected through a hierarchy of digital multiplexers that
are able to disambiguate data from 8 sensors with the same
I2C address. Specifications of the IMU and IR sensors are
also shown in Table I. Note that the current hardware is only
a prototype, and thus bulky. However, it is still useful to
demonstrate the impact of sensor displacement on motion
tracking. The final system could be largely optimized by
further engineering.

For complete mobility, the system utilizes multiple WiFi
radios for communication. We use the UDP stack to achieve
maximum throughput with a given number of radios. The
messages composed by the CPU comprise relative time
stamps at sampling intervals (that vary across different
sensors). These packets are relayed to a base station (PC)
over a high-bandwidth router that maintains an active local
network connection. Packets are transmitted at a power
level of +16 dBm allowing for sizes of approximately 1600
Bytes (400 samples of 4 Byte floats) to be transmitted
at a time up to a distance of approximately one hundred
meters. Thus, our system is able to achieve 80-90% of
the PHY-layer throughput. The assembled UDP packets are
processed at the base station to synchronize for time (up
to the accuracy of the sensor CPU clock frequency) and

Fig. 4: Network-level connectivity of our system. Data is
streamed over UDP to minimize latency.

superfluous packets are eliminated by detecting outliers. It
worths to note that the base station (PC) can be replaced
by any wireless device, which is able to log UDP packets
into a large database. For example, a smart phone which
receives data from WiFi/Bluetooth and streams data though
LTE network to the cloud for storage could totally make data
collection possible in the wild. Finally, the remaining clean
packets are re-sampled to a uniform frequency, interpolated
to account for measurement distortions, and archived on local
storage for further processing necessary to track pose. The
overall network-level connectivity is illustrated in Fig. 4.
There are some analog (ultrasound) sensors along with the
corresponding IO interfaces that are not connected in the
current system but are provisioned to be used by the CPUs in
future iterations. With this system, we collect approximately
half a million synchronized sensor samples. Next we describe
the data-collection process in detail.

B. Data-collection Process

In this section, we describe our experimental framework
including details on the subjects, motion patterns and data
structures.

Experimental studio. We set up a laboratory space where
test subjects performed predefined types of motion while
wearing the sensor-integrated garments described in the pre-
vious section. The studio is shown in Fig. 5. It is a ventilated
facility provisioned for charging the garment batteries, when
not in use. There was also a monitor screen that played
back subject motions as they were being performed and
recorded via a video camera. Besides controlling the types
of motion being performed, the goal of the studio was to
also register ground-truth information for the joint angles as
they changed during the course of movement. We utilized 2
Microsoft Kinect sensors to achieve this goal. These were
calibrated using a white board so that the two streams
of point-cloud data could be registered to the same local
map. They were placed at a distance that was sufficient to
capture the full range of motion. Multiple short video clips
of different motion types were played on the monitor screen
and the subjects followed the actor in the video. While Kinect
recordings were made, data from the wearable sensors were



Fig. 5: Studio where sensor data and ground-truth joint angle
information was obtained by fusing 2 Kinect outputs.

simultaneously streamed over to the base station PC.

Offline processing. At the base station, we synchronized
data streams using time stamps and a pre-determined starting
pose. We also utilized a third-party software to fuse Kinect
sensor information and obtain the ground-truth joint-angle
data [25]. We saved this data in a BioVision (BVH) format
[26]. The BVH file is a widely-used standard for storing
motion-capture data. It contains aspects of hierarchy (skeletal
structure, dimension and connectivity relationship between
joints) and motion (changing values of the joint angles over
time for the skeletal model).

Data structure. The organization of our data is shown in
Fig. 6. It comprises three parts: raw, BVH and motion data.
The raw data corresponds to sensors (IMU+IR) readings
on the garments. Each frame of sensor data is an ordered
list of absolute time stamps and 9 UDP packets. Each
packet includes a relative time stamp and sensor data in
numeric order (as shown in Fig. 2). For each IMU, data
is arranged in the order of accelerometer, magnetometer
and gyroscope readings along the x, y and z axes. For
the two packets that contain IR data (packets 6 and 9),
readings are stored after IMU data. In the dataset structure
of Fig. 6, the BVH data includes joint-angle information
(hierarchy+motion) obtained by fusing the Kinect sensors.
The motion data part is a stripped down version of the BVH
data comprising just the motion information.

Motion patterns. After an internal IRB approval process,

Fig. 6: Organization and structure of the collected data.

TABLE II. Summary of the collected dataset.

Dataset
No. motion types 5

No. repetitions per motion 2 - 6
No. subjects 12 (8 male, 4 female)

Age of subjects 26 - 36 yrs.
Total no. trials 215

Avg. length of one trial 75 seconds
Data sampling frequency 30 Hz

Total no. frames ∼500k

Ground truth collection 2 Kinect sensors
+ iPiSoft Motion Capture Studio

we invited 12 subjects (8 male and 4 female) in the age
group of 26-36 yrs. for data collection. We played actor
recordings of different motion types and asked the subjects
to mimic them over several repetitions. Since our objective
was to only track the rotational degrees of freedom - and
not the translational degrees - we restricted motion types
to stimulate a wide variety of sensor and limb orientations.
Furthermore, we avoided motion along the axis of the bones
since Kinect is not capable of tracking this type of motion.
We also did not track fingers and supinations/pronations
of the feet and wrists. Eventually, we collected 215 clean
data trials (averaging 75 seconds each with 30 Hz sampling
rate), containing 2-6 repetitions of each motion per subject.
The total number of BVH frames was close to 500k. The
summary of the collected dataset is shown in Table II. The
subjects performed the following types of motion:

(1). Upper Arms : move upper arm with elbow straight to
reach multiple extremities

(2). Lower Arms : fix upper arm and move lower arm to
reach multiple extremities

(3). Arm Swing : swing arms forward and backward
(4). Boxing : perform boxing motion
(5). Walking : perform walking motion

C. Algorithm for Motion Capture

In this section, we present our kinematics-based algorithm
for motion capture, which assumes that the sensor locations
do not change with respect to body segments; note that this
assumption is not strictly true in our system. We provide
theory for the algorithm in this section and study its perfor-
mance with our dataset in the next.

For the ith body segment and the associated sensor, we
define two coordinate frames: body (segment) frame Bi and
the corresponding sensor frame Si. We also define a global
frame of reference G (aligned with the Earth’s magnetic
field), which is the same for all body segments and sensors.
Further, we denote a transformation between arbitrary frames
X and Y via the rotation matrix RY

X . Before any motion
begins, subjects hold a calibration pose (T-pose with hands
lifted up on the side and head still) facing the global North
direction pre-marked in the studio. In this pose, all joint
angles are defined to be zero. Thus, frames Bi and G
are aligned at the start, for all body segments. Since the



calibration process aligns coordinates with G, all rotation
matrices below can be easily reproduced by other interested
researchers. Further, the transformation RG

Si
is computed

using the sensor-orientation information obtained from the
Madgwick fusion algorithm described in Sec. II-B. Since
frames Bi and G are aligned, RG

Si
is equal to RBi

Si
in this

initial pose.

Kinematics with rotational transformations. Suppose
B′i and S′i denote the body and sensor frames, respectively,
after motion occurs. The transformation matrices between
all two connected body-segment frames i and j are the joint
angles that we seek to track. We track a total of 12 joint
segments shown in Fig. 2. For instance, RB′

i

B′
j

is the joint angle
of the left elbow after movement when i and j correspond
to the left lower and upper arms, respectively. Given this
framework, we can express any imaginary point P in space
via the following transformation of coordinate systems:
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By simplifying this expression with matrix inversion, we get:
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are the sensor orientations obtained through
sensor fusion. Because of our initial assumption of invariant
sensor displacement, RB′

i

S′
i
≈ RBi

Si
and R

B′
j

S′
j
≈ R

Bj

Sj
. Further-

more, RBi

Si
and R

Bj

Sj
are obtained from calibration, allowing

us to determine the required joint angles R
B′

i

B′
j
.

IV. PERFORMANCE OF INERTIAL MOTION CAPTURE

In this section, we apply the previously-presented algorithm
to the sensor data obtained from our wearable system. This
algorithm provides a baseline performance level of an inertial
motion-capture system. We analyze the different sources of
error leading to inaccuracies of the kinematics algorithm. We
also quantify the level of sensor displacement for different
body segments and study its impact on the algorithm.

A. Baseline Accuracy

We employ Eq. (2) to obtain all joint angles of interest, uti-
lizing only one IMU sensor per segment (redundant sensors
including IMUs and IR proximity sensors could potentially
improve tracking accuracy in future research, but are ignored
in the baseline tracker). The kinematic chain starts from the
hip and reaches the extremities (hand, left and right feet,
left and right forearms) during the estimation process that
expresses joint angle transformations via Euler angles.

Estimation error. The average absolute joint-angle error
and the associated standard deviation is shown in Fig. 7.
From the figure, we observe that the algorithm has substantial
error on upper body limbs: left and right shoulders and
forearms (up to ±60◦), which also exhibit large standard
deviations (up to 120◦). We hypothesize that this error is

Fig. 7: Average absolute joint angle estimation error of the
kinematics-based algorithm.

because the invariant sensor-displacement assumption made
in the previous section is too strong for the upper limbs where
the garments can shift dramatically leading to high error in
joint-angle estimations. For other body parts, the error is
within ±10−20◦, which is reasonable for an inertial motion
capture system. Details of the estimation error for different
types of motion are shown in Table III.

Time-domain analysis. The performance (mean norm of
all joint angles) of one sample trial over the entire course of
movement is shown in Fig. 8. In this trial, the same motion is
repeated three times after initial calibration. The ground-truth
information from the Kinect sensors is also shown alongside
the inertial estimation. We recognize multiple error sources
in this profile. During calibration, inertial motion capture
assumes that the subject is performing a perfect T-pose and
thus all angles are 0. However, errors occur when the T-pose
is not performed correctly. This shows up as a gap between
the ground truth and estimated angles during the initial 700
frames. When the subject starts to move, the ground truth
visual tracker registers the movement immediately. However,
thanks to system inertia, the sensors in the garment may not
move right away until the fabric is stretched, which puts the
sensors into motion. Another source is the delay of UDP
packets in the network. UDP packets sent out by the CPUs
may be received later by the listener. Sensor fusion algorithm
may also lack responsiveness and introduce further delay.
We denote the combination of all these errors as the sensor
movement latency. This latency is not apparent when the
body segment stops moving since when the body segment
reaches the desired location and stops, the garments and
thus the sensors usually stop immediately as well. The final
source of error that we can identify from Fig. 8 is the sensor-
displacement error. This error is exaggerated in two cases:

(1). At the extreme positions of movement, the estimation
is far from the true value because of error accumulated
over the course of movement. This explains the error at
the three profile peaks in Fig. 8.

(2). Even when the body segments go back to a previous
position during repetition, the tracker may yield a differ-



TABLE III. Mean estimation error for different motion types. Expressed as the norm of Euler angle in degrees.

Middle spine Head Left shoulder Left forearm Right shoulder Right forearm Left thigh Left shin Left foot Right thigh Right shin Right foot
Upper Arms 8.7655 11.544 45.611 47.165 55.509 37.146 8.7738 4.792 5.6409 8.5375 12.792 11.433
Lower Arms 5.9076 9.3416 24.241 53.602 21.485 45.103 6.7996 4.2821 3.8721 8.0608 14.192 11.61
Arm Swing 7.1241 13.171 35.044 45.901 32.43 31.499 7.3654 5.4035 5.8525 8.4775 15.635 13.137

Boxing 9.9247 15.929 33.679 50.91 43.939 42.817 11.162 6.1338 5.5107 11.533 12.635 11.122
Walking 8.5368 13.814 27.774 38.49 32.475 31.875 16.76 18.161 14.535 13.827 22.365 18.115

ent estimate. This behavior is observed at the beginning
and between extremities of motion where the inertial
estimations are different even though they are supposed
to be the same since the body segment returns to the
very same position.

Dynamic response. Fig. 9 shows the mean and standard
deviation of the estimation error at different movement
speeds. The algorithm shows a relatively good performance
when the motion is slow e.g., at 0-72 degree per second (dps)
the error is within ±20◦. The error and standard deviation
increase with higher movement speeds. This is expected
because intense motion introduces drastic garment offsets,
and therefore sensor displacement on the body segment.
These set of experiments further validate the hypotheses
about the different error sources that we presented above.

Error correlations. Fig. 10 shows how errors of different
joint angles are correlated. We observe that most significant
errors (highlighted in the figure) occur within one piece
of clothing (jacket or pants) or between the bridges that
connect two garment pieces i.e., hat to jacket, jacket to pants
and pants to shoes. Within each piece of fabric, the closer
the sensors are, the more correlated the errors are between
them. This is because all sensors are not separately mounted
on to body segments, as in conventional strap-based iner-
tial motion-capture approaches, but rather are inter-related
through a common piece of fabric. The displacement of one
sensor, which leads to tracking errors for the associated body
segment, may easily propagate to the neighboring sensors
by stretching of fabric. This effect diminishes when the
sensors are far apart, even through they are still on the same
piece of fabric. For instance, errors on the right shoulder
and left forearm have low correlation values. The two pairs
of limb extremities, left/right forearms and shins are also
highly correlated. This is because the motion within these

Fig. 8: Errors in inertial pose tracking due to various sources.

Fig. 9: Tracker performance in frequency domain

Fig. 10: Correlation of estimation error for the joint angles.

pairs are usually similar. To not confuse with correlations of
joint angle estimates with skeletal structure of human body,
the values presented in Fig. 10 are correlations of errors,
which are caused by sensor motion artifacts. These artifacts
are interrelated due to a continuum of fabric.

B. Quantification of Sensor Displacement

By re-arranging terms in Eq. (2), we obtain the following
relationship:
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and RG
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are results of the sensor-fusion algorithm.
Suppose, we plug in the ground-truth joint-angle value (from
the optical tracker) for RB′

i

B′
j

and assume that the hat is tightly
fixed to the head. We obtain the following approximation:

R
S′
hat

B′
hat

≈ RShat

Bhat
. (4)

This is not an unreasonable assumption since the hat does not
move a lot on the subjects’ head and the orientations of the
IMUs on the hat are fixed relative to the head. Thus, utilizing



Fig. 11: Sensor displacement for different body segments.

the hat as an anchor point, if we plug R
B′

hat

S′
hat

in place of RB′
i

S′
i

in Eq. (3), we solve for R
B′

j

S′
j

, which is the body segment
connected to the head i.e., middle spine. We continue to
utilize this concept along the kinematic chain on the body
up to the 4 limb extremities. In this way, we quantify the
sensor displacements with respect to the body segments R

B′
j

S′
j

.
The results after transforming the rotation matrices to Euler
angles are presented in Fig. 11. We observe from the figure
that the sensors on the upper limbs are displaced to the largest
degree, while those on the torso are relatively stable.

V. CONCLUSIONS

By integrating sensors into everyday garments, we pro-
posed a system that overcomes the barriers of low mobility
and intrusiveness posed by current inertial motion-capture
technologies. No special setup of any kind is necessary
to use our pose-tracking system, thus enabling long-term
biomechanical motion analysis in the wild. Furthermore, we
also showed that traditional approaches based on kinematics-
based modeling are insufficient for tracking motion when
sensors are integrated into garments. This is because of
the high degree of sensor displacement present due to
unconstrained mounting. Thus, we motivated the need for
better data-driven algorithms for motion capture. Through
a carefully designed experimental framework, we produced
a synchronized dataset containing measurements from IMUs
and IR sensors along with annotated ground truth information
about joint angles from Kinect sensors. We will make this
dataset public to encourage future research on inertial motion
capture that is insensitive to sensor placement. In the future,
we intend to augment this dataset with more sensors and
more accurate visual baselines like the Vicon and OptiTrack.
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