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Abstract
Natural language inference aims to predict whether
a premise sentence can infer another hypothesis
sentence. Recent progress on this task only relies
on a shallow interaction between sentence pairs,
which is insufficient for modeling complex rela-
tions. In this paper, we present an attention-fused
deep matching network (AF-DMN) for natural lan-
guage inference. Unlike existing models, AF-DMN
takes two sentences as input and iteratively learns
the attention-aware representations for each side by
multi-level interactions. Moreover, we add a self-
attention mechanism to fully exploit local context
information within each sentence. Experiment re-
sults show that AF-DMN achieves state-of-the-art
performance and outperforms strong baselines on
Stanford natural language inference (SNLI), multi-
genre natural language inference (MultiNLI), and
Quora duplicate questions datasets.

1 Introduction
Natural language inference (NLI) is a core challenge in the
natural language processing community, which aims to pre-
dict whether a premise sentence can infer another hypoth-
esis sentence [MacCartney, 2009]. This problem is usually
viewed as a classification problem. Existing approaches for
NLI are categorized into two types: conventional discrete
feature-based approaches [Bowman et al., 2015] and neural
network-based models [Chen et al., 2017a].

Neural network-based models have attracted more atten-
tion for their ability in assisting efforts in feature engineer-
ing [Wang and Jiang, 2015; Chen et al., 2017a; Wang et al.,
2017b]. Despite their success, there are still two problems.

The first problem is long-term context dependency. Con-
text dependency is essential for NLI, but is difficult to model,
especially long-term context dependency. Most previous
models [Bowman et al., 2015; Liu et al., 2016b] who focus
on modeling the contextual information adopt a long short-
term memory network (LSTM) [Hochreiter and Schmidhu-
ber, 1997] or a gated recurrent units network (GRU) [Chung
et al., 2014]. However, there exist in NLI some sentences
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(L ≥ 17) whose long-term dependency cannot be effectively
modeled by LSTM and GRU because of their length.

The second problem is insufficient model complexity. Re-
cent evidence [Simonyan and Zisserman, 2014; Szegedy et
al., 2015] reveals that network depth is of crucial impor-
tance. Previous neural network-based models can be cate-
gorized into two classes: sentence encoding based models
and attention-based models. For the first class, Bowman et
al. [2015], Tan et al. [2015] propose matching models that
use the sentence vectors. This method is simple and effective,
but neglects the interaction between two sentences. For the
second class, Wang et al. [2017b]; Chen et al. [2017a] have
designed new matching models that leverage attentions from
two directions, where bidirectional information is added to
achieve higher accuracy. However, the network structures of
previous models are still so shallow that the model capability
is not sufficient for modeling complex relations.

In order to address these two problems, we propose an
attention-fused deep matching network (AF-DMN) for the
NLI task. AF-DMN is a neural network structure stacked with
multiple computational blocks in its matching layer. Each
computational block consists of four sub-layers: (1) a cross
attention layer; (2) a fusion layer for cross attention; (3) a self-
attention layer; and (4) another fusion layer for self-attention.
In this model, we utilize two heterogeneous attention mech-
anisms in each computational block: cross attention aims to
make information interaction between two sentences, while
self-attention aims to exploit long-term context dependency.
In addition, we employ fusion layers to refine the represen-
tation following the two attention layers respectively. Exper-
iments on the SNLI, the MultiNLI and the Quora duplicate
questions datasets demonstrate that AF-DMN significantly
improves accuracy and achieves state-of-the-art performance.

Our contributions are summarized as follows:

• The AF-DMN model incorporates two attention mecha-
nisms jointly: cross attention aims to make information
interaction between two sentences; while self-attention
aims to exploit long-term context dependency.

• We first conduct multiple stacked computational blocks
in the matching layer for NLI, which allows the model
to learn the interaction of the sentence pair better.

• We evaluate our model on three challenging datasets and
the results show that our model outperforms state-of-the-
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Figure 1: Architecture of AF-DMN. The dashed lines refer to the copy operation. In the first computational block of the matching layer, the
input is from the encoder layer. After that, the input of computational blocks come from the previous computational blocks.

art baselines.

2 General Neural Model for Natural
Language Inference

NLI is usually regarded as a classification task that predicts
the relation y ∈ Y for a given pair of sentences, where
Y = {entailment, contradiction, neutral}. Recently, neural
networks have been widely applied to this task because of
their ability to assist with feature engineering [Bowman et
al., 2015; Wang and Jiang, 2015; Wang et al., 2017b].

Formally, given two sentences p = (p1, ..., pi, ..., pm)
and q = (q1, ..., qj , ..., qn), the aim is to predict the ground
truth of relation y∗:

y∗ = arg max
y∈Y

Pr(y|p, q) (1)

The Pr(·) is a neural network here. The general architec-
ture of neural networks for NLI consists of three components:
(1) an encoder layer converts the two sentences into seman-
tic representations; (2) a matching layer aligns the informa-
tion between the two sentences at the word level and produces
new representations for the two sentences; and (3) a predic-
tion layer predicts the relation of the given pair of sentences.

2.1 Encoder Layer
Given two sentences p = (p1, ..., pi, ..., pm) and q =
(q1, ..., qj , ..., qn), the encoder layer first converts them into
vectors (ep1 , ..., epi , ..., epm) and (eq1 , ..., eqi , ..., eqn) by
looking up M respectively, where M ∈ Rd×|V | is the em-
bedding table. d is the dimension of embeddings and |V | is

the size of the vocabulary. The encoder layer then produces
the semantic representation for each word in p and q using
the Bi-directional Long Short-Term Memory (BiLSTM) neu-
ral network [Hochreiter and Schmidhuber, 1997]. Thus, each
word in two sentences can be expressed as:

hpi
= Bi-LSTM(epi

,hpi−1
,hpi+1

) (2)
hqj = Bi-LSTM(eqj ,hqj−1

,hqj+1
) (3)

where, hp0
and hq0 are initialized as 0. Thus, the two sen-

tences are converted to Hp = (hp1
, ..., hpi

, ..., hpm
) and

Hq = (hq1 , ..., hqj , ..., hqn).

2.2 Matching Layer
Generally, the matching layer interacts with the information
between two sentences for alignment. It can be formulated as:

Vp = g(Hp,Hq), Vq = g(Hq,Hp) (4)
where g(·) is the matching function. Thus, Vp =
(vp1

, ..., vpi
, ..., vpm

) and Vq = (vq1 , ..., vqj , ..., vqn)
are the new representations for p and q respectively.

2.3 Prediction Layer
In this layer, a pooling layer is used to convert the vectors into
a fixed-length vector and then feed it into a 2-layer multi-layer
perception (MLP) classifier.

In order to capture all of the information and highlight
the significant properties of the two sentences, we perform
a mean pooling and a max pooling on each of them and then
concatenate them together:

Vpmean =
1

m

m∑
i=1

vpi
, Vpmax =

m
max
i=1

vpi
(5)



Vqmean =
1

n

n∑
j=1

vqj , Vqmax =
n

max
j=1

vqj (6)

V = [Vpmean ; Vpmax ; Vqmean ; Vqmax ] (7)

After obtaining the representation V of the two sentences,
the distribution Pr(·) can be formalized as:

Pr(·|p, q) = softmax(W2 tanh(W1V + b1) + b2) (8)

where W1, W2, b1, and b2 are trainable parameters.

3 Attention-Fused Deep Matching Network
for Natural Language Inference

Despite the success of conventional NLI models [Wang and
Jiang, 2015; Chen et al., 2017a; Wang et al., 2017b], they
only generate a shallow interaction between two sentences,
which cannot sufficiently model the complex semantic inter-
actions in the inference problem.

Inspired by the recent successful deep neural frameworks
[He et al., 2016; Wu et al., 2016], we propose AF-DMN for
natural language inference. AF-DMN exploits a more sophis-
ticated matching layer, which consists of T computational
blocks and each block has four sub-layers: (1) a cross atten-
tion layer; (2) a fusion layer for cross attention; (3) a self-
attention layer; and (4) another fusion layer for self-attention.
The AF-DMN will repeat the interaction process via stacked
computational blocks T times.

3.1 Cross Attention
Cross attention captures the relevance between two sentences
p and q. Concretely, in the t-th computational block, given
the representations of two sentences computed in the previ-
ous block: Ht−1

p = (ht−1
p1

, ..., ht−1
pi

, ..., ht−1
pm

) and Ht−1
q =

(ht−1
q1 , ..., ht−1

qj , ..., ht−1
qn ), we first compute a co-attention

matrix At ∈ Rm×n. Each element At
i,j ∈ R indicates the

relevance between the i-th word of sentence p and the j-th
word of sentence q. Formally, the co-attention matrix could
be computed as:

At
i,j = ht−1

pi

T
Wtht−1

qj + 〈Ut
l ,h

t−1
pi
〉+ 〈Ut

r,h
t−1
qj 〉 (9)

where Wt ∈ R2h×2h, Ut
l ,U

t
r ∈ R2h are for the t-th com-

putational block and 〈·, ·〉 denotes the inter production oper-
ation. Then the attentive representation for each word pi and
qj could be formalized as h̃t

pi
∈ R2h and h̃t

qj ∈ R2h:

atpi
= softmax(At

i:), a
t
qj = softmax(At

:j ) (10)

h̃t
pi

= Ht−1
q · atpi

, h̃t
qj = Ht−1

p · atqj (11)

3.2 Fusion for Cross Attention
In order to enhance the interaction further, we perform a fu-
sion layer after the cross attention layer:

f̄ tpi
= [ht

pi
; h̃t

pi
;ht

pi
− h̃t

pi
;ht

pi
� h̃t

pi
] (12)

f̃ tpi
= Relu(Wt

f f̄
t
pi

+ bt
f ) (13)

f tpi
= Bi-LSTM(f̃ tpi

, f tpi−1
, f tpi+1

) (14)

where [·; ·; ·; ·] refers to the concatenation operation. Simi-
larly, we derive the fusion result for sentence q as f tqj .

3.3 Self-Attention
In order to tackle the long-term dependency in a long sen-
tence, we additionally introduce the self-attention mechanism
after the cross attention layer.

Formally, for sentence p, we first compute a self-attention
matrix St ∈ Rm×m:

St
i,j = 〈f tpi

, f tpj
〉 (15)

where St
i,j indicates the relevance between the i-th word and

j-th word in sentence p.
Then the self attentive vector for each word can be com-

puted as follow:

stpi
= softmax(St

i), h̄
t
pi

= Ft
p · stpi

(16)

where Ft
p = (f tp1

, ..., f tpi
, ..., f tpm

), and f tpi
is computed as in

Eq. (14).
We can similarly derive the self attentive vector for sen-

tence q as h̄t
qj .

3.4 Fusion for Self-Attention
A fusion layer is introduced after the self-attention to enhance
interaction. The fusion representation ht

pi
of sentence p will

be sent to the next block of the matching layer. Formally, ht
pi

is computed as:

h̄t
pi

= [f tpi
; h̄t

pi
; f tpi
− h̄t

pi
; f tpi
� h̄t

pi
] (17)

h̃t
pi

= Relu(Wt
hh̄

t
pi

+ bt
h) (18)

ht
pi

= Bi-LSTM(h̃t
pi
,ht

pi−1
,ht

pi+1
) (19)

Similarly, we obtain the representation ht
qj for sentence

q. Thus, in the t-th computational block, two sentences are
converted to Ht

p = (ht
p1
, ..., ht

pi
, ..., ht

pm
) and Ht

q =

(ht
q1 , ..., h

t
qj , ..., h

t
qn). Finally, Ht

p and Ht
q are sent to the

prediction layer as input Vp and Vq after conducting the
matching process T times.

4 Training
The object is to minimize the objective function J(Θ), which
can be formulated as:

J(Θ) = − 1

N

N∑
i=1

logPr(y(i)|p(i), q(i); Θ) +
1

2
λ||Θ||22 (20)

where N is the number of instances in the training set and
(p(i), q(i)) and y(i) are the sentence pair and the correspond-
ing annotated label for the i-th instance respectively. Θ de-
notes all the trainable parameters of our model. We employ
Adam [Kingma and Ba, 2014] as the optimizer.

5 Experiments
5.1 Dataset
We evaluate our model on three datasets: the Stanford Natu-
ral Language Inference (SNLI), the MultiGenre NLI Corpus
(MultiNLI) and Quora duplicate questions1 (Quora). The de-
tailed statistical information of datasets is shown in Table 1.

1https://data.quora.com/First-Quora-Dataset-Release-Question-
Pairs



Train Dev Test Avg.L Vocab

SNLI 549K 9.8K 9.8K 14 8 36K
MultiNLI1 392K 9.8K 9.8K 22 11 85K
MultiNLI2 9.8K 9.8K 22 11 85K

Quora 384K 10K 10K 12 12 107K

Table 1: Statistics of datasets: SNLI, MultiNLI, Quora. Avg.L refers
to average length of two sentences. MultiNLI1 and MultiNLI2 indi-
cate the in-domain and cross-domain versions respectively.

SNLI The SNLI corpus [Bowman et al., 2015] contains
570,152 sentence pairs. Each pair is labeled with one of the
following relationships: entailment, contradiction, or neutral.
The data partition follows that of [Bowman et al., 2015].

MultiNLI The MultiNLI corpus [Williams et al., 2017] is
a new dataset for NLI, which contains 433k sentences pairs.
Similar to SNLI, each pair is labeled with one of the following
relationships: entailment, contradiction, or neutral. Since the
MultiNLI corpus is collected from multiple domains, there
are in-domain and cross-domain development/test sets.

Quora The Quora corpus contains over 400,000 question
pairs. Each question pair is labeled with a binary value in-
dicating whether the two questions are paraphrases of each
other. In our experiment, we have the same partition as in
[Wang et al., 2017b].

5.2 Experiment Configuration
In our model, word embeddings and all hidden states of
LSTMs and MLPs are 300 dimensions. For the SNLI dataset,
there are 3 computational blocks in the deep matching layer,
while there are 2 for MultiNLI and Quora datasets. We em-
ploy the Adam [Kingma and Ba, 2014] for training, whose de-
fault hyper-parameters β1 and β2 are set to 0.9 and 0.999 for
optimization respectively. The initial learning rate of Adam
is set to 0.0002. The learning rate is halved when the accu-
racy on the development set drops. We also employ a dropout
strategy [Srivastava et al., 2014] on word embeddings and all
MLPs to avoid over-fitting. The dropout rate is set to 0.2. The
batch size is set to 64. We set the maximum length of sen-
tences to 200. For preprocessing, we just tokenize the sen-
tences and lowercase the tokens.

For initialization, word embeddings are initialized with
300-dimensional GloVe vectors and updated during training.
Other parameters include neural network parameters and Out
Of Vocabulary (OOV) word embeddings are initialized ran-
domly within [-0.01,0.01].

5.3 Ensemble
The ensemble strategy is an effective method to improve
model accuracy. Following [Wang et al., 2017b], our ensem-
ble model averages the probability distributions from three
individual single AF-DMNs, who have exactly identical ar-
chitectures but distinguished initializations on parameters.

5.4 Overall Results
We use the accuracy to evaluate the performance of AF-DMN
and other models on datasets SNLI, MultiNLI, and Quora.

SNLI Table 2 shows the results of different models on the
training and test sets of SNLI. The baseline models in Table
2 can be categorized into two groups:

(1) The first group of models are based on sentence encod-
ing. The TBCNN-pair neural model [Mou et al., 2015] incor-
porates structural information into sentence representation.
SPINN-PI [Bowman et al., 2016] integrates tree-structured
sentence interpretation into the linear sequential structure of
a shift-reduce parser. Liu et al. [2016b] introduce the inner-
attention that using a preliminary sentence representation to
attend to words within the sentence. In [Munkhdalai and Yu,
2016], a memory augmented neural network is presented.

(2) The second group are based on attention-based models.
Rocktäschel et al. [2015] extend the general sentence encod-
ing model with attention while Wang and Jiang [2015] exploit
long short-term memory (LSTM) for NLI. Liu et al. [2016a]
pay more attention to the interaction of the text pair. Parikh
et al. [2016] use attention to decompose the problem into
subproblems that can be solved separately. Similar to [Wang
and Jiang, 2015], Sha et al. [2016] design a new LSTM unit
that takes the attention vector of one sentence as an inner
state while reading the other sentence. Recently, Chen et al.
[2017a] incorporate the chain LSTM and tree LSTM. Wang
et al. [2017b] propose a bilateral multi-perspective matching.

In Table 2, the first three blocks are single models and
the last two blocks are ensemble models. The proposed mod-
els, the single AF-DMN and the ensemble AF-DMN, achieve
88.6% and 89.0% on accuracy in SNLI test set respectively.
Compared to previous work, AF-DMN outperforms previous
models on both single and ensemble scenarios for natural lan-
guage inference.

MultiNLI Table 3 shows the performance of different mod-
els on MultiNLI. Since this dataset aims to evaluate the qual-
ity of sentences representations, typical attention and memory
models are not eligible for inclusion in this competition. As
a result, most existing work on MultiNLI does not use the at-
tention mechanism except for ESIM Chen et al. [2017b]. So
far, ESIM is the strongest baseline which achieves a state-of-
art performance on SNLI task. As [Chen et al., 2017b] report,
ESIM achieves 76.8% and 75.8% on the in-domain and cross-
domain test sets of MultiNLI on accuracy respectively. The
proposed model, AF-DMN, achieves 76.9% and 76.3% on
the in-domain and cross-domain test sets on accuracy respec-
tively. The results show that our model outperforms ESIM on
both in-domain and cross-domain test sets.

Quora Table 4 shows the performance of different models
on the Quora test set. The baselines on Table 4 are all im-
plemented in [Wang et al., 2017b]. The Siamese-CNN model
and Siamese-LSTM model encode sentences with CNN and
LSTM respectively, and then predict the relationship between
them based on the cosine similarity. Multi-Perspective-CNN
and Multi-Perspective-LSTM are transformed from Siamese-
CNN and Siamese-LSTM respectively by replacing the co-
sine similarity calculation layer with their multi-perspective
cosine matching function. The L.D.C is a general “compare-
aggregate” framework that performs word-level matching fol-



Models Train Test

300D Tree-based CNN encoders [Mou et al., 2015] 83.3 82.1
300D SPINN-PI encoders [Bowman et al., 2016]M 89.2 83.2
600D (300+300) BiLSTM encoders with intra-attention [Liu et al., 2016b] 84.5 84.2
300D NSE encoders [Munkhdalai and Yu, 2016] 86.2 84.6
100D LSTMs with attention [Rocktäschel et al., 2015] 85.3 83.5
100D Deep fusion LSTM [Liu et al., 2016a] 85.2 84.6
300D matching-LSTM [Wang and Jiang, 2015] 92.0 86.1
200D decomposable attention model with intra-sentence attention [Parikh et al., 2016] 90.5 86.8
300D re-read LSTM [Sha et al., 2016] 90.7 87.5
600D ESIM [Chen et al., 2017a] (Single) 92.6 88.0
BiMPM [Wang et al., 2017b] (Single) 90.9 87.5
AF-DMN (Single) 94.5 88.6

HIM (600D ESIM + 300D Syntactic tree-LSTM) [Chen et al., 2017a] (Ensemble) 93.5 88.6
BiMPM [Wang et al., 2017b] (Ensemble) 93.2 88.8
AF-DMN (Ensemble) 94.9 89.0

Table 2: Comparison with previous models on the SNLI dataset.

Models In Cross

ESIM [Chen et al., 2017b] 76.8 75.8
AF-DMN 76.9 76.3

Table 3: Comparison with previous models on the MultiNLI dataset.

Models Test

Siamese-CNN 79.60
Multi-Perspective-CNN 81.38
Siamese-LSTM 82.58
Multi-Perspective-LSTM 83.21
L.D.C. 85.55
BiMPM 88.17
AF-DMN 88.72

Table 4: Comparison with previous models on the Quora dataset.

lowed by an aggregation of convolution neural networks. As
we can see, AF-DMN outperforms the baselines and achieves
88.72% in the test sets of the Quora corpus.

5.5 Effect of Components
To better understand the performance of AF-DMN, we ana-
lyze the effect of each key component of the proposed model.
As illustrated in table 5, the first row is the AF-DMN with-
out fusion layers and self-attention mechanism (only keeping
cross attention layer) that we consider as the basic model.
Compared to the full AF-DMN, the accuracy drops by 3.9%
on test set of the SNLI dataset. By adding the fusion layer fol-
lowing the cross attention layer, the performance increases to
88.2%. That is a significant improvement and it is because
the information from two sentences are gathered through
the fusion layer. By additionally employing the self-attention
mechanism, we achieve further improvement in accuracy. Fi-
nally, applying the fusion after the self-attention layer obtains

Models Dev Test

Only cross attention 85.2 84.7
+ Fusion for cross attention 88.2 88.2
+ Self-attention 88.8 88.5
+ Fusion for self-attention (AF-DMN) 89.1 88.6

Table 5: Effect of components on the SNLI.

Num Dev Test

1 88.6 88.1
2 88.9 88.3
3 89.1 88.6

Table 6: Effect of number of blocks on the SNLI.

the final accuracy. According to the results, all of the compo-
nents positively contribute to the final performance.

Table 6 shows the performance with a different number of
blocks. As we can see, with the number of blocks increases
from 1 to 3, the performance increases both on the develop-
ment set and the test set. Because of computational cost, we
just set the number of blocks as 3 on SNLI.

5.6 Case Study
As depicted in Figure 2, this is an instance from the test set
of the SNLI dataset: {p: a person in a blue plaid shirt is writ-
ing on a chalk board. q: the person is writing on the chalk
board. The label y: entailment.}. The results are produced by
AF-DMN with 3 computational blocks in the deep match-
ing layer, demonstrating the changes of cross attention from
low block to high block in the matching layer. The three sub-
figures from left to right show the alignment results in the
1st, 2nd, 3rd computational block of the matching layer re-
spectively. With the increment of interaction, the alignment
of the sentence pair becomes more clear and accurate. The



Figure 2: The three sub-figures from left to right are visualizations of the cross attention matrix in the 1st, 2nd and 3rd block respectively.

Figure 3: Visualization of the self-attention matrices of two sen-
tences in the 3rd block.

highlighted cells imply that cross attention aims to figure out
the alignments between the two sentences.

Figure 3 is the visualization of the self-attention layer in
the last block for the same test instance. The left sub-figure
refers to sentence p and the right sub figure refers to sentence
q. In the left sub figure, the phrase “in a blue plaid shirt” is
highlighted, which is the inconsistent part between the two
sentences and also the critical factor that determines if p can
entail q. It shows that the proposed AF-DMN is capable of
capturing key information between a pair of sentences for nat-
ural language inference.

5.7 Effect of Sentence Length
Since ESIM is currently the state-of-the-art model for the
SNLI dataset and the code is available2, we would like to
compare our model with ESIM on the SLNI dataset in this
sub sections.

Sentence length is one of the most important factors that
can affect the performance of neural models. To further an-

2https://github.com/lukecq1231/nli
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Figure 4: Performance on sentence pairs with different sentence
lengths on the test set of SNLI. The histogram is evaluated by the
left y-axis and the line is evaluated by the right y-axis.

alyze the performance of the proposed model, we evaluate
the performance of AF-DMN and ESIM on sentence pairs of
different text lengths on the SNLI test set. Specifically, we
use the floor average length of a pair of sentences (p and
q) as the length of the sentence pair. As illustrated in Fig-
ure 4, for sentence pairs with a length less than or equal to
8, both of the models achieve the best performance that is
better than 90%. However, with the incremental increases in
length of the sentence pairs, the performance of both models
decreases. Throughout the results, except for sentence pairs
with a length range from 9 to 10, AF-DMN is defeated with
a small gap, the proposed model outperforms ESIM on rest
length. When the length of sentence pair is greater than or
equal to 17, our model outperforms ESIM by a large mar-
gin on this length. It indicates that the proposed model bene-
fits from the self-attention mechanism that has an advantage
in incorporating local context information within a sentence.
Meanwhile, the deep matching process is able to extract key
information from sentences multiple times, thereby benefit-
ing cases on long sentences.



6 Related Works
Natural language inference (NLI) has been widely investi-
gated for many years. Previous work on NLI relies on hand-
crafted features such as n-gram overlapping, syntactic infor-
mation and so on. Heilman and Smith [2010] propose an ef-
fective tree edit approach to model relations between sen-
tence pairs. Bowman et al. [2015] adopt a lexicalized classi-
fier which implements features (BLEU score, n-gram overlap,
etc.) for SNLI. All above mentioned methods perform reason-
ably well for a specific task but are difficult to generalize for
others.

Benefiting from the development of deep learning and
the availability of large-scale annotated datasets [Bowman
et al., 2015; Williams et al., 2017], data-driven models at-
tract more attentions. Liu et al. [2016b] introduce inner-
attention using a preliminary sentence representation to at-
tend words within the sentence. In [Munkhdalai and Yu,
2016], a memory augmented neural network for NLI is pre-
sented. All of these models are based on sentence encoding.
However, they neglect the interaction between sentences. To
address the problem, Wang and Jiang [2015] design a spe-
cial LSTM called matching-LSTM which performs word-
by-word matching of the hypothesis with the premise. Fur-
thermore, Cui et al. [2016]; Wang et al. [2017b]; Chen et
al. [2017a] propose a new framework to model the rela-
tionship between two sentences, which performs the match-
ing on pairs of sentences in two directions. Besides cross
attention, because of the limitations of the RNN model on
the long-term dependency problem, the self-attention mech-
anism is proposed, which aims to align the sequence with it-
self and has been used in variety of tasks [Lin et al., 2017;
Wang et al., 2017a]. The self-attention mechanism can cap-
ture contextual information from the whole sentence.

For the proposed AF-DMN, it performs cross attention
and self-attention on a sentence pair for multiple iterations
through the stacked computational blocks. Based on this
mechanism, we obtain representations of two sentences with
multiple levels of abstraction and achieve better performance
on several challenging datasets.

7 Conclusions and Future Work
In this paper, we propose an attention-fused deep matching
network (AF-DMN) for natural language inference. It lever-
ages cross attention and self-attention jointly. We evaluate
our model on three datasets: SNLI, MultiNLI, and Quora
duplicate questions. Experiment results show that AF-DMN
achieves state-of-the-art performance. In the future, we will
further investigate whether unlabeled data can help to learn
more accurate sentence representations and relationships be-
tween inputs, to ameliorate data sparseness.
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panjan Das, and Jakob Uszkoreit. A decomposable atten-
tion model for natural language inference. arXiv preprint
arXiv:1606.01933, 2016.

[Rocktäschel et al., 2015] Tim Rocktäschel, Edward Grefen-
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