
What You Mark is What Apps See

Nisarg Raval, Animesh Srivastava, Ali Razeen, Kiron Lebeck†,
Ashwin Machanavajjhala, Landon P. Cox

Duke University
† University of Washington

ABSTRACT
Users are increasingly vulnerable to inadvertently leaking
sensitive information through cameras. In this paper, we
investigate an approach to mitigating the risk of such inad-
vertent leaks called privacy markers. Privacy markers give
users fine-grained control of what visual information an app
can access through a device’s camera. We present two ex-
amples of this approach: PrivateEye, which allows a user
to mark regions of a two-dimensional surface as safe to re-
lease to an app, and WaveOff, which does the same for three-
dimensional objects. We have integrated both systems with
Android’s camera subsystem. Experiments with our proto-
type show that a Nexus 5 smartphone can deliver near real-
time frame rates while protecting secret information, and a
26-person user study elicited positive feedback on our pro-
totype’s speed and ease-of-use.

1. INTRODUCTION
Cameras are pervasive and multiplying. All modern PCs

and smartphones have cameras, as do most gaming consoles
and televisions. Furthermore, emerging wearable comput-
ers, household robots, and Internet-of-things devices provide
a glimpse of the not-too-distant future: continuous recording
by crowds of nearby devices. This proliferation of cameras
has created a growing sense that the most confidential details
of a person’s life are perpetually at risk of leaking.

Our goal is to develop tools that give users fine-grained
control over the information that apps can access through
a camera. Preventing all leaks, particularly those by de-
termined attackers, is likely impossible, but preventing in-
advertent leaks by trusted cameras is much more feasible.
Such inadvertent leaks will be problematic for all users, but
enterprises are particularly vulnerable since workers are sur-
rounded by secrets and opportunities to accidently leak in-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

MobiSys’16, June 25-30, 2016, Singapore, Singapore
c© 2016 ACM. ISBN 978-1-4503-4269-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2906388.2906405

formation abound. For example, video chatting with an ex-
ternal collaborator could accidentally reveal sensitive infor-
mation drawn on a background whiteboard, and a photo of a
receipt on a desk could also capture portions of other nearby
documents.

Prior work on protecting visual secrets has relied on com-
puter vision to identify classes of objects within images. Vi-
sion algorithms can be used to transform images so that (1)
they contain only objects that an app is allowed to view [9,
10, 20] (e.g., providing a gesture-recognition application with
only an outline of a user’s hands), or (2) they do not contain
any sensitive objects [4, 6, 16] (e.g., blurring background
faces).

Unfortunately, both approaches suffer from the same lim-
itations. First, system designers are unlikely to anticipate
all objects that users will want to hide or reveal. Absent
classifiers will either lead to more leaks or hinder legitimate
apps’ functionality. However, even for object classes that a
designer correctly anticipates, developing recognition algo-
rithms that are accurate, precise, and efficient enough to han-
dle realtime analysis is challenging. For example, it is un-
clear how one would develop practical recognizers for items
as nuanced as sales figures, meeting notes, and receipts.

Due to these limitations, we have been investigating an
alternative approach based on privacy markers [14]. Com-
pared to prior work, privacy markers provide a natural way
for users to express fine-grained access-control policies over
visual information while also simplifying the system soft-
ware responsible for enforcing restrictions. In this paper,
we describe the design and implementation of two privacy-
marker systems: PrivateEye and WaveOff.

PrivateEye allows users to mark a two-dimensional re-
gion by enclosing it with a special shape. The shape can
be drawn by hand (e.g., on a whiteboard with standard mark-
ers) or embedded in a digital document (e.g., on a slide using
presentation software). A PrivateEye-enabled device recog-
nizes the shape in its camera stream at runtime and marks
those portions of the data. WaveOff allows users to mark
three-dimensional objects through a special user interface
(UI). The WaveOff UI shows a live camera feed, on top of
which users can specify a bounded region containing the ob-
ject they wish to mark. WaveOff extracts visual features for
the object from the region and stores them in a database so
that objects can be identified in future images.

http://dx.doi.org/10.1145/2906388.2906405

Alice is attending a client presentation in Shanghai. Since some of the text is in Mandarin, Alice would like
to verify that she translated the text correctly using a third-party translation app on her mobile device. The app
captures slides from the presentation, runs optical character recognition on each frame, and displays the translated
text on her mobile device. However, the slides also contain sensitive corporate secrets (e.g., a table of earnings
predictions) that the client does not want to leak. Both Alice and the client are uncomfortable that her translation
app may forward the secret information to untrusted servers for processing.

(a) Scenario one: Presentation

Bob is video chatting on his laptop with collaborators. He would like to use his whiteboard to work out a problem,
and hence would like his collaborators to see it. However, he has a confidential product roadmap on his whiteboard
that his collaborators should not see. He also has a prototype model of a newly designed drone and a bottle of
medication on his desk. Bob would like to show the prototype to his collaborators, but would be upset if his
collaborators saw his medication.

(b) Scenario two: Video chat

Cathy relies on an augmented-reality app on her mobile device to superimpose indicators over her keyboard to
help her input a complex password. While she is comfortable allowing the password app to view her keyboard,
she does not want the app to capture her computer screen or anything else on her desk.

(c) Scenario three: Password entry

Figure 1: Hypothetical scenarios.

To prevent apps from accessing secret information, users
put their device into a restricted privacy-mode. In privacy-
mode, PrivateEye and WaveOff convert raw camera data into
a stream of public regions defined by the privacy markers
they detect. That is, when a user puts her device into privacy-
mode, PrivateEye and WaveOff block all unmarked regions
of the camera stream so that apps can only access regions
that have been explicitly marked public. Using markers to
define public regions was a key design decision. In our expe-
rience, computer-vision algorithms are not robust enough to
handle practical considerations such as motion-induced blur
and changing light conditions at usable framerates. Block-
ing unmarked regions provides strong assurances that apps
cannot access sensitive information without unduly limiting
app functionality.

We have integrated PrivateEye and WaveOff with a Nexus
5 smartphone running Android. In a 26-person user study
with our prototype, participants successfully used Private-
Eye and WaveOff to mark public regions containing QR codes,
and reported that marking and scanning the QR code was
easy and fast. Furthermore, using a benchmark of represen-
tative videos, our prototype blocked at least 99% of non-
public regions while supporting at least 20 frames per sec-
ond.

The rest of this paper is organized as follows. Section 2
motivates the problem of protecting visual secrets and our
approach of using privacy markers. Section 3 provides a de-
sign overview. Section 4 describes our prototype implemen-
tations of PrivateEye and WaveOff. Section 5 describes the
results of our user study as well as a comprehensive evalua-
tion of our prototype’s privacy-utility tradeoffs, and its per-
formance. Related work is discussed in Section 6. Section 7
provides our conclusions.

2. USE CASES AND MOTIVATION
Figure 1 describes three scenarios that capture how camera-

driven apps can put secret information at risk: a presentation
containing sensitive material, a video chat with sensitive in-
formation visible in the background, and a password-entry
app that should only view a small number of objects.

The simplest solution for protecting visual secrets is coarse-
grained blocking. That is, users can turn off their cameras
when sensitive information is in view. However, in all three
of our scenarios, secret information and application-essential
information are co-mingled. Alternatively, a system can take
a more fine-grained approach to protect visual secrets. One
fine-grained approach is to apply the principle of least priv-
ilege to visual content and give applications access to only
the visual information required for their functionality [9, 10].
Under least privilege, applications must request access to
classes of objects within a camera’s view. If a request is
granted, the system can use computer vision to ensure that
only allowed objects of interest pass from a camera’s view
to an application.

Systems that take a least-privilege approach must antici-
pate the classes of objects that applications will want to ac-
cess, and provide recognizers to accurately and efficiently
detect these objects. For instance, a study of Kinect applica-
tions found that 87 only needed access to objects identified
by four recognizers [9]. However, as illustrated by our use
cases, one is unlikely to anticipate all classes of objects that
mobile apps may need to access.

Thus, least-privilege systems that use predefined recog-
nizers are likely to provide strong security, but support fewer
applications. For example, in the “video chat” scenario, if
the application can only access faces and hands, then it can-
not capture more spontaneous moments, such as sharing an
equation written on the whiteboard. Predefined recognizers
will also fail when nuanced differentiation between objects

is required, such as between the sensitive and non-sensitive
slides in the “presentation” scenario.

A second fine-grained approach is to block secrets by defin-
ing sets of sensitive objects and using computer vision to re-
move those objects from an application’s view [4, 6, 16]. As
with least privilege, these systems require designers to an-
ticipate a large universe of objects, which vision algorithms
must detect and block. For example, to protect a confidential
roadmap from a video-chat application, the system would
have to construct a recognizer for product roadmaps.

In light of these challenges, this paper expands on our
earlier proposal of privacy markers [14], which provide a
promising new approach to mitigating camera-based leaks.
At a high level, privacy markers consist of two parts: (1)
a simple interface for marking objects in the physical en-
vironment, and (2) device software for efficiently recogniz-
ing marked objects. PrivateEye and WaveOff are privacy-
marker systems that take a least-privilege approach. When a
user puts her device into privacy-mode, apps can view only
marked objects through the camera. This approach provides
solutions to each scenario described in Figure 1.

In the “presentation” scenario, Alice’s client would en-
close most of her slides in a special rectangle. The client
trusts that Alice is using a mobile device equipped with Pri-
vateEye that will only reveal the marked slides to her trans-
lation app. Unmarked slides containing secret information
will be blocked from the app’s view. In the “password”
scenario, Cathy can use WaveOff on her mobile device to
mark any keyboard she uses to enter a password. Thereafter,
Cathy can safely allow the password-manager app to view
the camera input and be assured that everything except the
marked keyboard will be blocked from its view. Finally, in
the “video chat” scenario, Bob can mark his face, the part of
the whiteboard that he would like to share via video, and his
prototype drone model using PrivateEye and WaveOff be-
fore starting the chat session so that only those objects are
visible to his collaborators.

3. APPROACH OVERVIEW
This section provides an overview of our two privacy-

marker systems, PrivateEye and WaveOff, including the at-
tacker model and principles underlying their designs. We
also summarize the systems’ limitations.

3.1 Trust and attacker model
We assume that recording devices run a combination of

trusted and untrusted software. The computer-vision soft-
ware needed to recognize and track marked regions must be
part of the trusted computing base. This software must reside
in the camera subsystem of the platform, either integrated
with the camera driver or with a trusted camera service.

We are primarily concerned with inadvertent leaks by un-
trusted, third-party software, such as video-chat and receipt-
scanning apps. We assume that untrusted software can only
access camera data through well known APIs defined by the
device platform, and that privacy-marker software is prop-
erly isolated from third-party software.

(a) (b)

Figure 2: (a) A region on a whiteboard marked as public us-
ing PrivateEye’s marker. (b) A coffee mug marked as public
using WaveOff.

Our trust model is based on settings such as an enterprise
in which a company may purchase video-chat stations and
employee equipment like laptops and smartphones. We can-
not prevent a determined attacker from capturing secrets us-
ing a malicious recording device, such as an analog video
recorder or a digital device that ignores users’ markers.

3.2 Design principles
PrivateEye and WaveOff must be easy to use and effi-

ciently block all non-public regions from a camera’s view at
runtime. The following design principles guided our work.

Avoid special equipment
Ease-of-use was a primary goal for PrivateEye and WaveOff.
Before arriving at our current designs, we considered alter-
natives, such as affixing or projecting QR codes onto sur-
faces and objects. However, we rejected these approaches as
being too inconvenient in practice. Ideally, a user should be
able to mark an object or region without special equipment.

PrivateEye is used for marking content on two dimen-
sional surfaces like whiteboards and presentations. Its marker
is a pair of concentric rectangles delineating a public region
as shown in Figure 2a. The inner rectangle has truncated
corners to differentiate it from other unmarked objects with
concentric rectangles (e.g., window frames). This marker is
unusual and easy to draw, either by hand (e.g., using white-
board markers) or using digital tools (e.g., in a presentation).

WaveOff is used for sharing objects that are difficult to
physically mark, such as three-dimensional objects. To mark
these objects, we take advantage of the recording device’s
screen by overlaying a bounding box on a live camera feed,
as seen in Figure 2b. The marking UI is part of an app that
is trusted to handle unmodified camera data.

Simplify recognition
A potential drawback of simplifying life for users is that
it can create complexity for the vision algorithms needed
to identify objects. Hence, we carefully designed markers
for PrivateEye and WaveOff that play to computer vision’s
strengths.

The concentric rectangle marker in PrivateEye addresses
the nearly impossible task of differentiating between pub-

lic and private text.1 Public text can be enclosed within a
marked region, and all other text is private by default.

At the same time, PrivateEye markers can be easily de-
tected by vision algorithms due to the strong contrast of
straight, dark lines on a light two-dimensional surface. Such
features are apparent under low resolution and regardless of
the lines’ colors. Moreover, by choosing inner rectangles
with truncated corners, the marker is easier to detect since
detecting corners is more robust and faster than detecting
edges. Furthermore, this design distinguishes our marker
from other parts of a camera’s view that contain concentric
rectangles (e.g., window frames).

PrivateEye detects privacy markers using a combination
of computer-vision algorithms. For each frame, it first de-
tects edges in a frame using the well-known Canny algo-
rithm [2]. After edge detection, the system detects contours
in the edge-based image using Suzuki’s algorithm [18]. The
contours are stored in a tree hierarchy structure. Each con-
tour has information about four other contours: (a) parent -
the contour that encompasses the current contour, (b) previ-
ous - the previous sibling contour, (c) next - the next sibling
contour, and (d) child - the contour which is completely in-
side the current contour. Upon detecting a contour that can
be approximated as rectangle [5] (i.e., a convex area poly-
gon with four vertices), PrivateEye searches its children con-
tours. If PrivateEye finds a contour that has 12 corners with
area at least 50% of the parent rectangle contour, the system
concludes that it is a marked region.

WaveOff recognizes objects by extracting features from
the bounded area of a camera’s view to build a model of
the objects within and stores the model in a database. We
would like to note that WaveOff recognizes a specific object
(e.g., Cathy’s Mac keyboard) rather than a class of objects
(e.g., any Mac keyboard). This simplifies recognition since
the model can use all distinctive keypoints (including those
that might not be present in other objects of the same type)
without worrying about over-fitting. In order to build the
model, WaveOff computes descriptors at selective keypoints
in the marked region of the camera’s view.

The keypoints are the distinctive regions (e.g., corners and
edges) of the object and descriptors are the features at those
keypoints (e.g., gradient and orientation). We use BRISK [12],
a set of binary features, to compute keypoints and the cor-
responding descriptors. Computing and matching BRISK
features is efficient and is ideal for realtime performance on
low-power mobile devices.

WaveOff uses feature matching to detect the presence of a
marked object in a given frame. For each frame, it computes
the BRISK features and matches them with the features of
models in the database. Since matching is independent for
every object, they can be identified in parallel. WaveOff un-
blocks a region when at least 20% of its features match a
model in the database.

1We do not utilize optical character recognition due to poor
accuracy and computational intensity.

Track to mitigate recognition failures
Recognizing privacy markers on every incoming camera frame
is computationally intensive and can cause a low frame rate.
Furthermore, recognizers can fail if the camera’s viewpoint
changes significantly. Building recognizers for multiple view-
points is costly and inconvenient. We address both issues by
tracking features since tracking is robust to minor changes
in viewpoints and faster than object recognition.

Once PrivateEye detects a marked region, it extracts promi-
nent corners in the region (using [17]) and tracks these fea-
tures using the Lucas-Kanade optical-flow-in-pyramids tech-
nique [21]. WaveOff also tracks object features across con-
secutive frames using Lucas-Kanade. While recognition is
essential when an object appears in a stream for the first
time, it is less helpful when the object is fully visible, be-
cause tracking alone is sufficient to identify the object’s lo-
cation in subsequent frames. Hence, we skip recognition
altogether when tracking finds enough features (at least 75%
of the features stored in the model).

However, when there are not enough features, tracking
alone can introduce localization errors that propagate across
subsequent frames. Hence, we use both matching and track-
ing to find a larger set of features when tracking alone is in-
sufficient. We estimate an object’s location in the camera’s
view using CMT [13].

Block under uncertainty
For privacy-sensitive applications, blocking the entire cam-
era view might be acceptable when the system is uncertain
about the presence of public regions. In fact, in our user
study, we found that initially blocking entire frames for sev-
eral seconds while scanning a QR code did not impact the
utility of the app. Based on this observation, we take a con-
servative approach and only reveal a region when we are
confident that it has been marked. However, blocking the
entire frame under uncertainty may create a poor user expe-
rience when an object is blocked frequently after it appears.
This can happen when a frame becomes blurry due to mo-
tion. To address this issue, during times of uncertainty, the
system displays the previous frame (in which the object was
visible) instead of showing nothing. This approach does not
harm security because it does not reveal any new informa-
tion, but it can help usability. Note, that if the view changes
significantly (i.e., the object disappears), we quickly detect
the change and stop showing the old frame.

3.3 Limitations
Though PrivateEye and WaveOff are robust in many set-

tings, their reliance on standard computer-vision algorithms
limit their security guarantees and can impinge on apps’ util-
ity.

First, both systems require users to mark public regions
with a rectangle. As a result, it is possible for sensitive in-
formation to inadvertently appear within a marked area and
cause a leak. For example, consider a presentation with
slides that have been marked public. If the speaker or any-
one else steps in front of the slides, then their identity will

be revealed regardless of whether this should be kept secret.
Similarly, if a user marks an object with WaveOff as public,
but a secret object is placed in front of it without completely
occluding the public object, then an app may view the se-
cret object. We believe that experience using privacy mark-
ers would reduce the likelihood of such incidents, but they
could never be eliminated.

Second, a camera could zoom so far into a region marked
by PrivateEye that the marker falls outside the camera’s field
of view. In this case, PrivateEye would block the content
of the public region. While this would not be insecure, it
would hurt the utility of an app that needs access to the
blocked region. This could be particularly problematic for
large, marked regions with very small details inside; the only
way to take a picture would be from a far enough distance
that the marker was visible, but at this distance little of the
content may be legible.

Finally, while PrivateEye and WaveOff allow users to mark
arbitrary objects, they only allow objects to be treated as
public or private. Thus, when a device is in privacy-mode,
an app can access all public regions. It is easy to imagine
scenarios in which a user may want to restrict an app to
a narrow subset of private objects, such as our hypotheti-
cal password-entry app. For WaveOff, one could provide a
UI that allows users to specify which marked objects should
be revealed to which apps. Unfortunately, it is much less
clear how to support rich access-control policies for Private-
Eye, such as making a document recordable for executives’
smartphones but not engineers’. Increasing marker expres-
siveness would likely compromise usability and recognition
performance (i.e., accuracy, precision, and efficiency), and
understanding these tradeoffs is beyond the scope of this pa-
per.

4. IMPLEMENTATION
We implemented PrivateEye and WaveOff by modifying

the Android Open Source Project (AOSP) version of An-
droid 5.1. Our prototype currently runs on a Nexus 5 smart-
phone. Before we describe the implementations of Priva-
teEye and WaveOff, we first provide some background on
Android’s camera subsystem. We then present the design
of an initial implementation that recorded video at an un-
acceptable four frames-per-second (FPS). We then highlight
the causes of this poor performance and describe techniques
that allow us to record video at a median framerate of 20
FPS.

4.1 Android’s camera subsystem
In Android 5, Google made significant changes to the cam-

era subsystem to give apps more control over the camera
feed. Figure 3 shows how the subsystem is split between
hardware-dependent and hardware-independent software lay-
ers. The hardware-dependent layer consists of the camera
device-driver that interacts directly with the physical cam-
era, and a hardware abstraction layer (HAL) that implements
a common interface for the camera service. Because the

Preview
android.
graphics.
SurfaceTexture

Image capture
android.
media.
ImageReader

Video
android.
media.
MediaRecorder

android.
hardware.
camera2

BufferQueues

stream
configuration

Hardware Abstraction Layer

Camera Device Driver

Stream1 Stream2 Stream3

App

Application

Framework

Camera Service

Hardware

Independent

Hardware

Dependent

Capture Request

PrivateEye

WaveOff

Figure 3: Android’s camera subsystem. The colored box de-
notes PrivateEye and WaveOff, which intercept all incoming
frames before they are passed to the application framework.

camera service is hardware independent, it is the ideal place
to integrate PrivateEye and WaveOff.

An app can submit a capture request to the camera service
in one or more of the following modes: (a) preview, (b) im-
age capture, and (c) video recording. In addition to a mode,
each capture request describes a set of image attributes, such
as resolution and pixel format. For instance, an app may re-
quest access to the camera in preview mode at a resolution
of 1280 × 960, or in image-capture mode, with the image
stored in a file at a resolution of 640× 480.

The camera service creates one stream (an internal buffer)
for each capture mode. The camera service and HAL can
access all streams, and each stream is protected by its own
lock. Multiple streams can be active at at time, e.g., a pre-
view stream and a video-recording stream, and the active
streams are configured according to their corresponding capture-
request attributes. The application framework also creates a
BufferQueue for each capture mode so that the camera ser-
vice can send image data to an app. When the camera driver
delivers a frame, HAL locks all active streams, copies image
data to those streams according to their configuration param-
eters, and then releases the locks. To forward frames to an
app, the camera service acquires all active streams’ locks,
copies image data from the streams to their corresponding
BufferQueues, and releases all locks.

4.2 PrivateEye and WaveOff in Android
In this section, we present our Android implementations

of PrivateEye and WaveOff. We start with a naive design that
highlights the challenges of achieving realtime performance,
and then describe how we overcame these challenges.

4.2.1 A simple implementation
Our initial implementation integrated PrivateEye and Wave-

Off into Android as follows: (1) the camera service locked
each active stream and sequentially passed each stream’s im-
age data to PrivateEye or WaveOff; (2) PrivateEye or Wave-
Off detected any public regions and masked the rest of the

image; (3) the camera service copied each modified image
to its corresponding BufferQueue and released all locks.

This straightforward implementation resulted in unaccept-
able video-recording performance. In particular, on our Nexus
5 we could only record video at a median rate of four FPS.
This was due to two factors. First, the camera service held all
active-stream locks while waiting for PrivateEye and Wave-
Off to identify public regions within a frame. This blocked
the HAL for long stretches, and caused it to drop frames.
Second, streams with different resolution and pixel format
still contain most of the same visual information. Our initial
implementation ignored similarities across streams, e.g., be-
tween a preview and video-recording stream, and needlessly
analyzed each frame independently. Our current implemen-
tation addresses both of these problems.

4.2.2 Improved implementation
PrivateEye and WaveOff are separate modules loaded by

the camera service when the camera is turned on. We rely on
OpenCV for all computer-vision algorithms. Each module
exposes an API of six calls to the camera service, which is
described in Table 1.

Both PrivateEye and WaveOff modules maintain one queue
for incoming frames, InQueue, and a second queue for pro-
cessed frames, OutQueue. The camera-service thread blocks
until it receives a frame from HAL, and then passes the frame
to PrivateEye and WaveOff via a processFrame call. We
currently set InQueue’s maximum depth to 15, and calls to
processFrame will add a new frame to InQueue as long
as there is enough room. If there are already 15 frames in
the queue, processFrame drops the new frame. An al-
ternative approach would have been to make room for the
new frame by dropping the oldest frame in InQueue, but we
found that this made tracking objects across frames more
difficult. All calls to processFrame return as soon as the
passed-in frame has been copied onto InQueue or dropped.

To process frames in InQueue, PrivateEye and WaveOff
each have a dispatch thread that blocks waiting for frames
to be added to InQueue. After dequeueing a frame from In-
Queue, the dispatch thread hands off the frame for further
processing. Processed frames are eventually forwarded back
to the camera service by placing them in OutQueue.

After calling processFrame, the camera-service checks
for processed frames by calling isFrameAvailable. If
a frame is available in OutQueue, isFrameAvailable
dequeues the frame and returns it to the camera service. The
camera service then copies the processed frame to the ap-
propriate BufferQueues. Allowing the camera service to ac-
cept new frames from HAL before older ones have been pro-
cessed prevents the HAL from dropping frames. However, if
PrivateEye and WaveOff cannot analyze frames fast enough,
InQueue will fill up and cause the camera service to drop
frames.

To make frame processing faster, PrivateEye is implemented
as a four-stage pipeline, with a separate thread for each stage.
The four stages are: (1) downsize a frame and convert it to
grayscale, (2) detect marker contours, (3) track previously
detected markers and merge them with newly detected mark-

ers, and (4) mask all non-public regions and add the final
image to OutQueue.

WaveOff’s performance depends on the number of object
models in its database, and for each model WaveOff spawns
one thread. Each thread is responsible for matching and
tracking a specific public object. However, before tasking
the object threads, WaveOff’s dispatch thread dequeues a
frame from InQueue and makes a single pass over the data
to compute all image features. It then passes these features
to the object threads before they begin their work. The last
object thread to complete its analysis aggregates the results
of the others to render the final frame.

Video recording
When multiple streams are active, e.g., the preview and video-
recording streams, our initial implementation sequentially
and independently processed a frame from each source. This
effectively doubled the work that PrivateEye and WaveOff
had to perform even though the visual content of each stream
was nearly identical. To eliminate redundant analysis, Pri-
vateEye and WaveOff only process frames from the preview
stream. After processing a preview frame, they add the mod-
ified frame to OutQueue and save the coordinates of all pub-
lic regions so that they can be applied to other frames. In
particular, for non-preview streams, the camera service uses
the getLastRects method to retrieve the coordinates of
any public regions that were identified in the preview stream.
It then masks the non-preview frame after adjusting for the
stream’s settings, such as its resolution.

In addition, to re-using processing results across multiple
streams, PrivateEye and WaveOff applied several other opti-
mizations. First, analyzing frames in the Nexus 5’s original
resolution of 1280 × 960 takes several seconds. Therefore,
PrivateEye and WaveOff resize each frame to 400×240 and
320 × 240, respectively, before performing any compute-
intensive operations.

In addition, PrivateEye and WaveOff operate on grayscale
frames to reduce processing times. The camera-preview stream
delivers frame data in the full-color YUV format, and OpenCV
converts a YUV frame with resolution 1280×960 to grayscale
in about 30 ms. However, for a 1280× 960 image, the YUV
format uses the first 1280 × 960 bytes to store an image’s
luminance data, which encodes a grayscale version of the
frame. We found that simply copying the luminance data
of a YUV frame into a separate buffer creates a grayscale
version of the frame in under one ms.

Finally, PrivateEye and WaveOff avoid allocating and de-
allocating memory whenever possible. The camera service
pre-allocates all circular buffers, queues, and other data struc-
tures when it loads our modules. We only allocate new mem-
ory when a stream’s configuration, such as its resolution,
changes, and we only de-allocate memory when the camera
is turned off.

Image capture
Capturing an image with an active preview stream is slightly
different than video recording. When a user takes a picture,
the HAL returns a JPEG-compressed byte stream rather than

Method Description
processFrame sends a camera frame data for processing
isFrameAvailable checks if a frame is available for the

delivery to application
getLastRects returns a list of regions marked public

in the last frame
addObjectModel builds and adds model of the marked

public object in model database
removeObjectModel removes a model of the marked public

object from the model database

Table 1: PrivateEye and WaveOff API for interacting with
the camera service.

a YUV frame. The coordinates returned by getLastRects
correspond to raw pixels, and thus the JPEG image must first
be converted before it can be masked. After masking any
non-public regions, the camera service converts the result
back to a JPEG and forwards it to the appropriate Buffer-
Queue.

AOSP provides jpeglib (version 6b) for encoding and de-
coding JPEG data. However, this version of the library only
decodes and encodes JPEG data through the file system. Thus,
we avoided costly system calls by adding two support func-
tions to perform in-memory encoding and decoding.

Finally, to read and write to the image-capture JPEG stream
in the camera service, we modified the Nexus 5 HAL im-
plementation provided by LG. Each stream has a usage flag
that determines how the stream will be accessed by different
components in the camera subsystem. We added two flags to
the JPEG stream: GRALLOC_USAGE_SW_READ_OFTEN
and GRALLOC_USAGE_SW_WRITE_OFTEN. These flags
direct all JPEG data to the camera service for reading and
writing. These small changes were the only modifications
we made to a hardware-dependent component.

5. EVALUATION
To evaluate PrivateEye and WaveOff, we sought answers

to the following questions:
• What is the perceived burden of using PrivateEye and

WaveOff?
• Do PrivateEye and WaveOff interfere with app func-

tionality?
• How well do PrivateEye and WaveOff detect public re-

gions, and under what conditions?
• How well do PrivateEye and WaveOff perform when

the number of objects increases?
• What are the energy and performance overheads of Pri-

vateEye and WaveOff?
To answer the first two questions we conducted a user

study with 26 participants. The study was approved by our
university Internal Review Board (IRB), and involved mark-
ing and scanning QR codes on flat and curved surfaces. We
answered the next question by developing a benchmark with
videos of typical settings and camera movements. We used
these videos to measure how precisely, accurately, and effi-
ciently our prototype would handle these scenarios. We eval-
uated scalability using experiments with multiple marked re-

gions and objects. Finally, we answered the last question by
measuring our prototype’s resource usage with the camera
preview enabled.

As mentioned previously, our prototype is based on AOSP
for Android 5.1 and runs on a Nexus 5 smartphone.

5.1 User Study
To better understand PrivateEye and WaveOff’s impact on

usability we conducted a user study in which participants
marked public regions containing QR codes and then used a
third-party app to scan the codes.

5.1.1 Study design
The aim of our user study was to understand how privacy

markers affect the experience of using a camera-enabled app.
We randomized participants into two groups. Members of
the control group performed tasks on a Nexus 5 running un-
modified AOSP, and members of the case group performed
tasks on a Nexus 5 running AOSP augmented with Private-
Eye or WaveOff.

Both groups performed simple tasks with a QR-code scan-
ning app. Marking and scanning a QR code provided a lim-
ited but informative context for understanding PrivateEye
and WaveOff’s usability. First, QR-code scanning is a com-
mon smartphone task that requires realtime image process-
ing. Second, input images must be clear enough for accu-
rate and fast scanning. Third, scanning codes allowed us to
measure usability quantitatively (e.g., time to scan and scan-
ning accuracy) and qualitatively (e.g., user-perceived ease
and speed). We used the Barcode Scanner2 app for our tests.
At the time of testing, this app was freely available on the
Google Play Store, had been downloaded more than 100 mil-
lion times, and had received an average rating of 4.1 out of
5.

We initially asked each participant to complete a short
pre-study questionnaire about their familiarity with smart-
phone apps and, in particular, camera-enabled apps. Then
we explained the purpose of the study and described the
tasks they would perform. Each control session involved us-
ing AOSP to scan a QR code affixed to a whiteboard and
scanning a QR code affixed to a coffee mug. Case ses-
sions were similar, except that participants marked the QR
codes before scanning them. After completing these tasks,
we asked each participant to fill out a post-study question-
naire about their experience. If a participant could not scan
a QR code within one minute, we asked them to repeat the
experiment at most three times.

To ensure that volunteers were comfortable performing
their tasks, we showed them how to scan a QR code. We
told them to start the app and point the camera at the QR
code so that it stayed in focus in the center of the viewfinder.
We also showed them how to adjust the position of the cam-
era (e.g., near or far from the code) while scanning.

For PrivateEye, we showed volunteers a marker and demon-
strated how to draw it on a blank sheet of paper. We stressed

2https://play.google.com/store/apps/details?id=com.google.
zxing.client.android&hl=en

https://play.google.com/store/apps/details?id=com.google.zxing.client.android&hl=en
https://play.google.com/store/apps/details?id=com.google.zxing.client.android&hl=en

that the marker lines needed to be thick and continuous. Be-
cause participants had not seen the PrivateEye marker be-
fore, we asked them to practice drawing a marker on paper
and pointed out any mistakes they made.

We similarly explained how to mark an object using Wave-
Off. First, we showed them how to mark a cup using the
WaveOff UI. We emphasized that the marked object should
be clearly visible and fully enclosed by the UI’s bounding
box. Once participants understood how to mark an object,
we asked them to mark the coffee mug and to scan its QR
code.

To measure how quickly and accurately participants scanned
QR codes, we created a testing app. The app allowed users
to launch Barcode Scanner via an Android Intent. After a
successful scan, our testing app received the captured im-
age. Using this app, we recorded the time to scan each QR
code and whether the scan was successful.

We also measured the time participants took to mark a
public region. For PrivateEye, we manually measured mark-
ing time with a stopwatch. For WaveOff, the marking UI
logged the time taken to capture an image of the target ob-
ject, to adjust the marker bounding box, to extract the ob-
ject’s features, and to store the object’s model.

Finally, we designed a short post-study questionnaire that
asked participants to respond to two statements and provided
an optional section for general feedback. The questionnaire
statements were ‘Completing the study tasks was fast’ and
‘Completing the study tasks was easy’. Users reported their
level of agreement with each statement on a scale from one
(strongly disagree) to seven (strongly agree).

5.1.2 Recruiting participants
We recruited participants by sending messages to univer-

sity mailing lists and posting on Facebook. We asked poten-
tial participants to fill out a demographic questionnaire on a
website, and based on the completeness of the responses, we
selected 26 volunteers for our study.

Among the 26 participants, 19 were male and seven were
female. The median age was 27, with the youngest 23 and
the oldest 53. Due to soliciting participation through univer-
sity mailing lists and Facebook, 20 of the 26 had some kind
of computer-science degree.

Many of our participants frequently used their smartphone
camera. Seven reported using their smartphone camera at
least ten times per week; eight reported video chatting at
least twice per week; 14 reported using at least three differ-
ent camera-enabled apps each month. Finally, many partic-
ipants had used a smartphone to scan documents, with 16
reporting that they had scanned a check and seven reporting
that they had scanned a receipt.

We randomly divided our 26 volunteers between two equally
sized control and case groups. As an incentive to participate,
we gave each volunteer a $10 Amazon gift card once they
had completed the study.

5.1.3 Results
Figure 4b shows how long participants took to mark the

regions around the QR codes. The median time taken to

AOSP PrivateEye
0

10

20

30

40

50

T
im

e
 (

s
e
c
)

AOSP WaveOff
0

10

20

30

40

50

T
im

e
 (

s
e
c
)

(a) Scanning time

PrivateEye WaveOff

10

20

30

T
im

e
 (

s
e
c
)

(b) Marking time

Figure 4: User-study results: (a) Time taken by users to scan
a QR code with and without using our systems. (b) Time
taken by users to mark a QR code with PrivateEye and Wave-
Off.

draw a marker on the whiteboard was 20.64 seconds, whereas
the median time for marking a coffee mug was 11.2 seconds.
While most participants felt that the marking scheme for
WaveOff was simple, 20% of participants reported that the
PrivateEye marker was complex. Two participants needed
two attempts to correctly draw the PrivateEye marker.

Each participant correctly scanned the QR codes and com-
pleted the study within 10 minutes. The 100% success rate
indicates that PrivateEye and WaveOff preserve enough in-
formation in camera frames to support applications like QR-
code scanning.

Figure 4a shows how long participants took to scan QR
codes under PrivateEye and WaveOff compared to a baseline
of unmodified AOSP. Our AOSP control group took a me-
dian of 4.9 seconds to scan a QR code on a whiteboard and a
median of 5.5 seconds to scan a code on a mug. One mem-
ber of the control group took nearly 40 seconds to scan the
mug code because they initially held the camera too close.

Scan times for case-group members using PrivateEye and
WaveOff were comparable to the baseline. For PrivateEye,
the median scan time was 7.2 seconds, and for WaveOff the
median scan time was 7.4 seconds. The main reason that
case participants took longer is that PrivateEye and WaveOff
block all camera input to an app until they have detected a
marked region. As a result, users needed to guess the initial
location of the QR codes before they became visible through
the display.

Despite the additional time, participants rated the speed
and ease of using PrivateEye and WaveOff on par with using
AOSP. Figure 5 shows users’ average levels of agreement
with statements that scanning codes was fast and that scan-
ning codes was easy. Users chose their level of agreement
on a scale of one to seven, where one meant strong disagree-
ment and seven meant strong agreement.

0	
1	
2	
3	
4	
5	
6	
7	
8	

Control	2D	 PrivateEye	 Control	3D	 WaveOff	

Easy	 Fast	

Figure 5: On a scale from one (strong disagreement) to seven
(strong agreement), user-study participants’ average levels
of agreement that scanning QR codes was easy and fast. Er-
ror bars represent standard deviations.

When rating the speed of scanning the whiteboard code,
the average levels of agreement were 6.4 (standard deviation
1.7) and 6.3 (standard deviation 1.2) for AOSP and Priva-
teEye, respectively. When rating the speed of scanning the
mug code, the average levels of agreement were 5 (standard
deviation 2.5) and 6.7 (standard deviation 0.8) for AOSP and
WaveOff, respectively. When rating the ease of scanning the
whiteboard code, the average levels of agreement were 6.2
(standard deviation 1.7) and 6.1 (standard deviation 0.9) for
AOSP and PrivateEye, respectively. When rating the ease
of scanning the mug code, the average levels of agreement
were 5.1 (standard deviation 2.6) and 6.4 (standard deviation
1.1) for AOSP and WaveOff, respectively.

The high standard deviation in ratings for the control groups
scanning under AOSP is due to two participants’ requiring
multiple attempts to scan the code. We found that in gen-
eral, it is hard to scan a QR code on the curved surface if the
camera is not positioned properly. This did not impact the
WaveOff experiment because participants initially marked
the object through the camera preview, and therefore were
more careful when positioning the camera while scanning
the code.

There were several notable results from our user ratings.
First, PrivateEye’s perceived ease-of-use and speed were sta-
tistically equivalent to unmodified AOSP. Second, for AOSP,
users’ felt that scanning a QR code on a flat surface was eas-
ier and faster than scanning a code on a curved surface. This
makes sense since scanning a code on the mug using AOSP
took longer, on average, than scanning a code on the white-
board. Yet despite being quantitatively slower, WaveOff’s
perceived ease-of-use and speed were greater than Private-
Eye’s. Even more surprising, WaveOff’s perceived ease-of-
use and speed were greater than AOSP’s!

We believe that these counter-intuitive results were due
to users’ mental model of the camera subsystem, and that
WaveOff primed video streams for fast QR-code capture.
Under WaveOff, the camera-preview screen was completely
black until it recognized the coffee mug, and users likely at-
tributed the blank screen to a camera delay rather than to

WaveOff. Furthermore, the camera preview only appeared
when a frame was clear enough for WaveOff to recognize
the mug, which meant that the frame was also clear enough
to scan the code. As a result, users likely scanned the QR
code almost immediately after the camera preview appeared.

Note that PrivateEye also kept the screen blank until it rec-
ognized the whiteboard marker, but users rated PrivateEye
the same as AOSP. This is because recognizing the Private-
Eye marker was faster than recognizing either the mug or QR
code, which caused a greater delay between the time the pre-
view appeared and the time the QR code could be scanned
than under WaveOff. As a result, WaveOff likely seemed
faster and easier to use than either PrivateEye or AOSP.

5.2 Video benchmark
To characterize how well PrivateEye and WaveOff per-

form under a variety of settings and camera movements, we
developed a simple video benchmark. Each video in the
benchmark lasted 10 seconds, was shot with our Nexus 5
at a resolution of 1280× 960 at 30 FPS, and captured public
regions in controlled settings using predefined camera move-
ments.

In particular, we shot videos of a public region on three
two-dimensional surfaces and a three-dimensional object in
three settings. To test two-dimensional surfaces we marked
public regions on a whiteboard, a paper document, and in a
presentation slide shown on a laptop screen. To test three-
dimensional objects, we placed a white coffee mug alone
in front of a white background, next to a soda can in front
of a white background, and alone with a PC monitor and a
keyboard in the near background.

We also designed three camera movements to understand
how motion affected PrivateEye and WaveOff. Under the
still movement, the camera was steady and remained focused
on the marked region for the entire video. This movement
approximated taking a picture. Under the spin movement,
the camera rotated while keeping its view centered on the
same region. This camera movement helped us understand
orientation changes. Finally, under the scan movement, pub-
lic regions moved in and out of the camera’s view. For the
first three seconds of these videos, a public region was cen-
tered. Then the camera panned to the right so that the public
region disappeared from view. Lastly, the camera panned
left so that the region returned to its original position, where
it remained for final three seconds.

All together, our benchmark consisted of 18 videos: each
two-dimensional surface captured under each camera move-
ment, plus each three-dimensional setting captured under
each camera movement. To test our PrivateEye and WaveOff
implementations, we modified the Android camera subsys-
tem to load pre-recorded videos from memory rather than
from the HAL. After loading a video frame, we passed it
along the same path that live frames pass, i.e., through our
PrivateEye and WaveOff modules and ultimately to a video-
recording app. Using this setup we evaluated PrivateEye and
WaveOff’s precision, recall, and performance.

0	

0.2	

0.4	

0.6	

0.8	

1	

WB	
(STILL)	

PAPER	
(STILL)	

PPT	
(STILL)	

WB	
(SPIN)	

PAPER	
(SPIN)	

PPT	
(SPIN)	

WB	
(SCAN)	

PAPER	
(SCAN)	

PPT	
(SCAN)	

Precision	 Recall	

Figure 6: Median precision and recall for PrivateEye analyz-
ing video frames of a public region on a whiteboard (WB),
on a paper document (PAPER), and in a presentation slide
on a laptop screen (PPT) under steady (STILL), rotating
(SPIN), and panning (SCAN) camera movements.

5.2.1 Precision and recall
To calculate precision and recall, we partitioned each video

frame into a grid of 5 × 5 pixel cells. Since we captured
the original videos at a resolution of 1280× 960 resolution,
each frame contained 49,152 cells. We manually labeled all
cells containing part of a marked region or object as public.
We labeled all other cells private. Public cells should be re-
vealed to applications, and private cells should be blocked
from applications.

For each frame in the output videos, we analyzed which
public cells PrivateEye and WaveOff revealed to compute
precision and recall. We considered a cell blocked if none of
it appeared in the frame; otherwise, we considered the cell to
be revealed. More formally, let pbt be the set of true public
cells and pbr be the set of cells revealed in a given frame.
For all output videos, we calculated precision and recall for
each frame as follows:

precision =
|pbt ∩ pbr|
|pbr|

recall =
|pbt ∩ pbr|
|pbt|

Precision captures the percent of revealed cells that were
truly public, and is a measure of a system’s security. A per-
fectly secure system would reveal only true public cells, and
thus have a precision of one. However, a system that blocked
all cells would also be perfectly secure but would not support
applications. Thus, precision must be considered in tandem
with recall. Recall captures the percent of true public cells
that a system revealed, and is a measure of how compati-
ble the system is with applications. Similar to precision, if
a system revealed all cells it would have perfect recall but
provide no security. An ideal system would score highly on
both precision and recall.

Figure 6 shows the median precision and recall under Pri-
vateEye for frames in nine videos of two-dimensional sur-
faces. PrivateEye’s lowest median precision was 0.98 for
frames of a whiteboard with the camera still. In seven of the

0	

0.2	

0.4	

0.6	

0.8	

1	

WHITE	
(STILL)	

SODA	
(STILL)	

PC	
(STILL)	

WHITE	
(SPIN)	

SODA	
(SPIN)	

PC		
(SPIN)	

WHITE	
(SCAN)	

SODA	
(SCAN)	

PC	
(SCAN)	

Precision	 Recall	

Figure 7: Median precision and recall for WaveOff analyz-
ing video frames of a white coffee mug in front of a white
background (WHITE), the mug next to a soda can in front
of a white background (SODA), and the mug in front of a
PC screen and keyboard (PC) under steady (STILL), rotat-
ing (SPIN), and panning (SCAN) camera movements.

nine videos, PrivateEye exhibited a median precision of one.
These results indicate that PrivateEye will provide strong se-
curity for many surfaces and under a variety camera move-
ments.

It is worth noting that PrivateEye’s median precision was
greater than its median recall for all videos. This is a con-
sequence of our design decision to prioritize security by re-
vealing marked regions instead of blocking them. Our re-
sults show how blocking marked regions can compromise
security. In particular, camera motion would cause systems
that block marked regions to expose sensitive information,
whereas PrivateEye exhibited a median precision of one for
all spin and scan video frames.

It may seem counter-intuitive that PrivateEye’s precision
was lowest when the camera was still, i.e., 0.98 and 0.99 for
the whiteboard and presentation slide, respectively. Across
all videos, PrivateEye most often incorrectly revealed cells
near the border of the marked region because marker lines
were not perfectly straight, which led to slight differences
between the marked region and PrivateEye’s mask. In frames
with motion blur, as in the spin and scan videos, border-cell
features became fuzzy and did not register with our tracking
algorithm. Still videos contained many more frames with
clear marker boundaries, leading to lower median precision
across the entire video.

PrivateEye’s lowest median recall was 0.87 for the on-
screen presentation slide with the camera rotating. In this
case, the rotating camera created image blur that caused Pri-
vateEye’s tracking to incorrectly block cells just inside the
public region. Nonetheless, in seven of the nine videos, Pri-
vateEye exhibited a recall of 0.96 or greater. Overall, these
results are highly encouraging and indicate that, despite pro-
viding strong security, PrivateEye is likely to reliably reveal
public regions under most conditions.

Figure 7 shows the median precision and recall for frames
under WaveOff. WaveOff’s lowest median precision was

0	

5	

10	

15	

20	

25	

30	

PE	
(STILL)	

PE	
(SPIN)	

PE	
(SCAN)	

WO	
(STILL)	

WO	
(SPIN)	

WO	
(SCAN)	

FP
S	

Figure 8: PrivateEye (PE) and WaveOff (WO) box plots
for FPS under steady (STILL), rotating (SPIN), and panning
(SCAN) camera movements.

0.79 for the still video when the coffee mug was next to a
soda can. Precision scores for WaveOff in still videos with
the mug front of a white background and in front of a PC
were 0.82 and 0.84, respectively. As with PrivateEye, Wave-
Off’s precision was lowest in still videos because they had no
motion blur. However, mask mis-alignment was more acute
with WaveOff than with PrivateEye because of the irregu-
lar shape of the coffee mug. WaveOff occasionally revealed
cells close to the mug’s handle when they should have been
blocked. PrivateEye’s rectangular marker was less prone to
these errors.

WaveOff’s lowest median recall scores were in spin videos.
Its lowest median recall was 0.78 in the spin video with the
mug next to a soda can. Recall was highest in scan videos
because approximately 40% of the frames in these videos
did not contain the mug. When the mug was absent, Wave-
Off correctly blocked all content and scored a perfect recall
even though pbt was empty. As with PrivateEye, median re-
call was lower in still videos because every frame contained
the mug, and these frames provided more opportunities for
WaveOff to incorrectly block cells near the border of the
mug.

Overall, we were encouraged by WaveOff’s benchmark
results. Marking irregularly shaped three-dimensional ob-
jects is more challenging than marking two-dimensional re-
gions with PrivateEye. In general, whenever WaveOff in-
correctly blocked or revealed cells it was due to mask mis-
alignment at the boundary of the coffee mug. Errors by Pri-
vateEye and WaveOff were all localized to cells in the im-
mediate vicinity of the marked regions. Consistent with our
user-study, errors at the edge of an object seem unlikely to
create major problems for applications or to leak sensitive
information.

5.2.2 Performance
Supporting live camera feeds is critical for PrivateEye and

WaveOff. Figure 8 shows box plots of PrivateEye and Wave-
Off’s framerates on our video benchmark; the top whisker
shows the max FPS achieved by a system for a collection of
videos, the top of the white box shows the 75th percentile,

0	

10	

20	

30	

1	 2	 3	

FP
S	

Marked	regions	

PrivateEye	 WaveOff	

Figure 9: PrivateEye and WaveOff framerates with multiple
marked regions.

the bottom of the white box shows the median, the bottom
of the black box shows the 25th percentile, and the bottom
whisker shows the minimum. The median framerate over all
benchmark videos was 20 FPS and 22 FPS for PrivateEye
and WaveOff, respectively. PrivateEye and WaveOff exhib-
ited their highest median framerates on scan videos. The
public regions and objects were absent for large portions of
the scan videos, which eliminated the overhead of feature
tracking on those frames. On the other hand, both systems
exhibited their lowest median framerates on spin videos be-
cause camera rotation caused more tracking overhead. Fi-
nally, WaveOff achieved higher framerates than PrivateEye
because WaveOff processes lower resolution images, i.e.,
320 × 240 for WaveOff and 400 × 240 for PrivateEye. Pri-
vateEye requires higher resolution images to reliably detect
the concentric rectangle marker. Overall, these framerates
are encouraging. Consistent with feedback from our user
study, framerates between 20 and 25 FPS are acceptable for
many camera-based applications.

5.3 Scalability
Our video benchmark evaluated PrivateEye and WaveOff

using scenes with a single marked region or object. It is nat-
ural to ask how scenes with multiple marked regions and ob-
jects affect our systems’ precision, recall, and performance.
To answer this question, we recorded videos for PrivateEye
with one, two, and three marked regions on a whiteboard,
and a video for WaveOff with three objects (i.e., a soda can,
green robot toy, and white coffee mug) in front of a white
background. For WaveOff, we pre-computed models for all
three objects, and loaded one, two, or three models at a time.
The camera was still in all videos.

For both PrivateEye and WaveOff, the number of regions
and objects did not have a significant impact on precision
and recall. PrivateEye’s average precision and recall were
between 0.97 and 0.99 for all videos. WaveOff’s recall de-
clined from 0.95 to 0.90 after adding the toy model, but this
was primarily due to its irregular shape. On the other hand,
as Figure 9 shows, increasing the number of regions and ob-
jects decreased the framerates of both systems. The framer-
ates for PrivateEye with one, two, and three public regions

AOSP PE WO

P
o

w
e

r
(i
n

 m
W

)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

AOSP PE WO

M
e

m
o

ry
 (

in
 M

B
)

800

820

840

860

880

900

920

940

960

980

AOSP PE WO

C
P

U
 L

o
a

d
 (

in
 %

)

0

10

20

30

40

50

60

70

80

90

Figure 10: Power consumption, memory usage, and CPU
load for AOSP, PrivateEye (PE), and WaveOff (WO) for a
60-second camera preview.

were 24, 19, and 13, respectively. The framerates for Wave-
Off with one, two, and three objects were 21 FPS, 18 FPS,
and 16 FPS, respectively. These results suggest that Private-
Eye and WaveOff are best suited to applications that require
a small number of public regions per video frame.

5.4 Resource usage
Our final experiment was designed to measure the impact

of PrivateEye and WaveOff on a mobile device’s resource us-
age. We performed a simple experiment in which we turned
on the camera and let it run for one minute in preview mode
while measuring CPU load (in percentage), memory con-
sumption (in MB) and power consumption (in mW). We
took measurements every 100 ms using Trepn [8], a perfor-
mance monitoring tool developed by Qualcomm. For this
experiment, we set the smartphone on airplane mode to avoid
measurement fluctuations due to network usage. We ran the
experiment five times with unmodified AOSP, AOSP with
PrivateEye, and AOSP with WaveOff, and rebooted our Nexus
5 between trials. For PrivateEye, the camera was focused on
a public region, for WaveOff, the camera was focused on an
object whose model was loaded in memory.

Figure 10 shows the power, memory, and CPU load re-
sults of our experiment. PrivateEye required a median of
40 MB more memory than AOSP. WaveOff’s memory con-
sumption was higher than PrivateEye’s because it stores an
object model in memory to perform matching. PrivateEye
and WaveOff both increased the CPU load from a median
of 11% to 26% and 31%, respectively. This CPU load was
due to the detection and tracking algorithms applied on ev-
ery frame during a camera session. As expected, power
consumption exhibited a similar trend, with PrivateEye and
WaveOff introducing median increases of 935 mW and 1150
mW, respectively. Overall, the additional resource usage of
PrivateEye and WaveOff are reasonable, particularly since
they only impose overhead when an app accesses the cam-
era.

6. RELATED WORK
Several systems have applied the principle of least privi-

lege to control fine-grained access to visual information [9,
20]. Recognizer [9] analyzes camera frames at runtime and

limits third-party apps to accessing only the visual objects
that they are authorized to view. SurroundWeb [20] limits
3D web browsers to skeleton views of rooms. An alternative
but similar approach is to detect objects of interest and re-
move them [1, 4, 16]. Respectful Cameras use clothing such
as special hats and vests to identify which users to remove
from an image [16]. I-Pic uses a combination of short-range
wireless signaling to disseminate policies and remote multi-
party computation to transform captured images [1]. Pri-
vacy markers provide a more general way for users to spec-
ify what image data may be revealed to apps.

Another approach is to allow apps to manipulate trans-
formed images through a high-level API rather than directly
accessing them. Darkly [10] has some support for object-
specific distortion (e.g., face morphing), but its primary means
of restricting access to sensitive information are image-wide
transformations (e.g., sketching) and limited access to the
OpenCV API. However, because Darkly applies transforma-
tions to an entire image, it cannot support an arbitrary mix of
high- and low-fidelity regions within an image as PrivateEye
and WaveOff do.

Several projects [11, 19] protect visual content through
sophisticated machine-learning tools. These systems require
a great deal of training data and time, which limits their use
to offline applications. PrivateEye and WaveOff both sup-
port realtime camera use.

Finally, many projects have tried to give users greater in-
sight into and control over how apps use sensor data. Sensor-
access widgets [7] graphically indicate when an app accesses
sensor data, and SensorSift [6] automatically removes se-
lected facial attributes, such as age, race, and expression,
from images. ipShield [3] conveys privacy risks by list-
ing inferences that could be drawn from sensor data. In
world-driven access-control (WDAC) [15], real-world ob-
jects broadcast access-control policies to nearby recording
devices. All of these projects are orthogonal to PrivateEye
and WaveOff and could be easily integrated.

7. CONCLUSION
This paper made the case that privacy markers are a promis-

ing way to prevent third-party apps from inadvertently leak-
ing visual information. We designed and implemented two
privacy-marker systems, PrivateEye and WaveOff, that help
users mark public regions in a camera’s view and deliver
only content within the public regions to apps. A user study
with our prototype implementation revealed that users deemed
camera operations with PrivateEye and WaveOff fast and
easy-to-use. Other experiments with our prototype showed
that PrivateEye and WaveOff provide strong security without
compromising app functionality.

8. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers and our

shepherd Jakob Eriksson for their invaluable feedback. Our
work was supported by Intel, Google, NSF award CNS-1253327,
and DARPA and SPAWAR under contract N66001-15-C-
4067.

References
[1] P. Aditya, R. Sen, S. J. Oh, R. Benenson, B. Bhattachar-

jee, P. Druschel, T. T. Wu, M. Fritz, and B. Schiele. I-
pic: A platform for privacy-compliant image capture.
MobiSys, 2016.

[2] J. Canny. A computational approach to edge detection.
TMAPI, 1986.

[3] S. Chakraborty, C. Shen, K. R. Raghavan, Y. Shoukry,
M. Millar, and M. Srivastava. ipshield: A framework
for enforcing context-aware privacy. In NSDI, 2014.

[4] J. Chaudhari, S. Cheung, and M. Venkatesh. Privacy
protection for life-log video. In SAFE, 2007.

[5] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to represent
a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and
Geovisualization, 1973.

[6] M. Enev, J. Jung, L. Bo, X. Ren, and T. Kohno. Sen-
sorsift: Balancing sensor data privacy and utility in au-
tomated face understanding. ACSAC, 2012.

[7] J. Howell and S. Schechter. What you see is what
they get: Protecting users from unwanted use of mi-
crophones, cameras, and other sensors. In Web 2.0 Se-
curity and Privacy. IEEE, May 2010.

[8] Q. T. Inc. Trepn Power Profiler. https://developer.
qualcomm.com/software/trepn-power-profiler. [On-
line; accessed 7-Dec-2015].

[9] S. Jana, D. Molnar, A. Moshchuk, A. Dunn,
B. Livshits, H. J. Wang, and E. Ofek. Enabling Fine-
Grained Permissions for Augmented Reality Applica-
tions With Recognizers. In USENIX Security, 2013.

[10] S. Jana, A. Narayanan, and V. Shmatikov. A Scanner
Darkly: Protecting User Privacy from Perceptual Ap-
plications. In S & P, 2013.

[11] M. Korayem, R. Templeman, D. Chen, D. J. Crandall,
and A. Kapadia. Screenavoider: Protecting computer
screens from ubiquitous cameras. CoRR, 2014.

[12] S. Leutenegger, M. Chli, and R. Siegwart. Brisk: Bi-
nary robust invariant scalable keypoints. In ICCV,
2011.

[13] G. Nebehay and R. Pflugfelder. Clustering of Static-
Adaptive correspondences for deformable object track-
ing. In CVPR, 2015.

[14] N. Raval, A. Srivastava, K. Lebeck, L. Cox, and
A. Machanavajjhala. Markit: Privacy markers for pro-
tecting visual secrets. UbiComp ’14 Adjunct, 2014.

[15] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and
H. J. Wang. World-driven access control for continuous
sensing. Technical Report MSR-TR-2014-67, 2014.

[16] J. Schiff, M. Meingast, D. Mulligan, S. Sastry, and
K. Goldberg. Respectful cameras: detecting visual
markers in real-time to address privacy concerns. In
IROS, 2007.

[17] J. Shi and C. Tomasi. Good features to track. 1994.

[18] S. Suzuki and K. Abe. Topological structural analysis
of digitized binary images by border following. Com-
puter Vision, Graphics, and Image Processing, 1985.

[19] R. Templeman, M. Korayem, D. Crandall, and A. Ka-
padia. PlaceAvoider: Steering first-person cameras
away from sensitive spaces. In NDSS, 2014.

[20] J. Vilk, D. Molnar, E. Ofek, C. Rossbach, B. Livshits,
A. Moshchuk, H. J. Wang, and R. Gal. Surroundweb
: Mitigating privacy concerns in a 3d web browser. In
IEEE Symposium on Security and Privacy, May 2015.

[21] J. yves Bouguet. Pyramidal implementation of the lu-
cas kanade feature tracker. Intel Corporation, Micro-
processor Research Labs, 2000.

https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler

	Introduction
	Use cases and motivation
	Approach overview
	Trust and attacker model
	Design principles
	Limitations

	Implementation
	Android's camera subsystem
	PrivateEye and WaveOff in Android
	A simple implementation
	Improved implementation

	Evaluation
	User Study
	Study design
	Recruiting participants
	Results

	Video benchmark
	Precision and recall
	Performance

	Scalability
	Resource usage

	Related work
	Conclusion
	Acknowledgements

