
SpanDex: Secure Password Tracking for Android

Landon P. Cox
Duke University

Peter Gilbert
Duke University

Geoffrey Lawler
Duke University

Valentin Pistol
Duke University

Ali Razeen
Duke University

Bi Wu
Duke University

Sai Cheemalapati
Duke University

Abstract
This paper presents SpanDex, a set of extensions to An-
droid’s Dalvik virtual machine that ensures apps do not
leak users’ passwords. The primary technical challenge
addressed by SpanDex is precise, sound, and efficient
handling of implicit information flows (e.g., information
transferred by a program’s control flow). SpanDex han-
dles implicit flows by borrowing techniques from sym-
bolic execution to precisely quantify the amount of infor-
mation a process’ control flow reveals about a secret. To
apply these techniques at runtime without sacrificing per-
formance, SpanDex runs untrusted code in a data-flow
sensitive sandbox, which limits the mix of operations that
an app can perform on sensitive data. Experiments with
a SpanDex prototype using 50 popular Android apps and
an analysis of a large list of leaked passwords predicts
that for 90% of users, an attacker would need over 80
login attempts to guess their password. Today the same
attacker would need only one attempt for all users.

1 Introduction

Today’s consumer mobile platforms such as Android and
iOS manage large ecosystems of untrusted third-party
applications called “apps.” Apps are often integrated
with remote services such as Facebook and Twitter, and
it is common for an app to request one or more pass-
words upon installation. Given the critical and ubiqui-
tous role that passwords play in linking mobile apps to
cloud-based platforms, it is paramount that mobile op-
erating systems prevent apps from leaking users’ pass-
words. Unfortunately, users have no insight into how
their passwords are used, even as credential-stealing mo-
bile apps grow in number and sophistication [12, 13, 24].

Taint tracking is an obvious starting point for securing
passwords [11]. Under taint tracking, a monitor main-
tains a label for each storage object. As a process ex-
ecutes, the monitor dynamically updates objects’ labels

to indicate which parts of the system state hold secret
information. Taint tracking has been extensively stud-
ied for many decades and has practical appeal because it
can be transparently implemented below existing inter-
faces [11, 19, 5, 14].

Most taint-tracking monitors handle only explicit
flows, which directly transfer secret information from an
operation’s source operands to its destination operands.
However, programs also contain implicit flows, which
transfer secret information to objects via a program’s
control flow. Implicit flows are a long-standing prob-
lem [8] that, if left untracked, can dangerously under-
state which objects contain secret information. On the
other hand, existing techniques for securely tracking im-
plicit flows are prone to significantly overstating which
objects contain secret information.

Consider secret-holding integer variable s and pseudo-
code if s != 0 then x := a else y := b done. This code
contains explicit flows from a to x and from b to y as well
as implicit flows from s to x and s to y. A secure monitor
must account for the information that flows from s to x
and s to y, regardless of which branch the program takes:
y’s value will depend on s even when s is non-zero, and
x’s value will depend on s even when s is zero.

Existing approaches to tracking implicit flows apply
static analysis to all untaken execution paths within the
scope of a tainted conditional branch. The goal of this
analysis is to identify all objects whose values are influ-
enced by the condition. Strong security requires such
analysis to be applied conservatively, which can lead
to prohibitively high false-positive rates due to variable
aliasing and context sensitivity [10, 14].

In this paper, we describe a set of extensions to An-
droid’s Dalvik virtual machine (VM) called SpanDex
that provides strong security guarantees for third-party
apps’ handling of passwords. The key to our approach is
focusing on the common access patterns and semantics
of the data type we are trying to protect (i.e., passwords).

SpanDex handles implicit flows by borrowing tech-

1

niques from symbolic execution to precisely quantify
the amount of information a process’ control flow re-
veals about a secret. Underlying this approach is the
observation that as long as implicit flows transfer a safe
amount of information about a secret, the monitor need
not worry about where this information is stored. For ex-
ample, mobile apps commonly branch on a user’s pass-
word to check that it contains a valid mix of characters.
As long as the implicit flows caused by these operations
reveal only that the password is well formatted, the mon-
itor does not need to update any object labels to indicate
which variables’ values depend on this information.

To quantify implicit flows at runtime without sacrific-
ing performance, SpanDex executes untrusted code in
a data-flow defined sandbox. The key property of the
sandbox is that it uses data-flow information to restrict
how untrusted code operates on secret data. In particular,
SpanDex is the first system to use constraint-satisfaction
problems (CSPs) at runtime to naturally prevent pro-
grams from certain classes of behavior. For example,
SpanDex does not allow untrusted code to encrypt secret
data using its own cryptographic implementations. In-
stead, SpanDex’s sandbox forces apps that require cryp-
tography to call into a trusted library.

SpanDex does not “solve” the general problem of im-
plicit flows. If the amount of secret information revealed
through a process’ control flow exceeds a safe threshold,
then a monitor must either fall back on conservative static
analysis for updating individual labels or simply assume
that all subsequent process outputs reveal confidential in-
formation. However, we believe that the techniques un-
derlying SpanDex may be applicable to important data
types besides passwords, including credit card numbers
and social security numbers. Experiments with a proto-
type implementation demonstrate that SpanDex is a prac-
tical approach to securing passwords. Our experiments
show that SpanDex generates far fewer false alarms than
the current state of the art, protects user passwords from
a strong attacker, and is efficient.

This paper makes the following contributions:
• SpanDex is the first runtime to securely track pass-

word data on unmodified apps at runtime without
overtainting or poor performance.

• SpanDex is the first runtime to use online CSP-
solving to force untrusted code to invoke trusted li-
braries when performing certain classes of compu-
tation on secret data.

• Experiments with a SpanDex prototype show that
it imposes negligible performance overhead, and a
study of 50 popular, non-malicious unmodified An-
droid apps found that all but eight executed nor-
mally.

The rest of this paper is organized as follows: Sec-
tion 2 describes background information and our mo-

tivation, Section 3 provides an overview of SpanDex’s
design, Section 4 describes SpanDex’s design in detail,
Section 5 describes our SpanDex prototype, Section 6
describes our evaluation, and Section 7 provides our con-
clusions.

2 Background and motivation

Under dynamic information-flow tracking (i.e., taint
tracking), a monitor maintains a label for each storage
object capable of holding secret information. A label
indicates what kind of secret information its associated
object contains. Labels are typically represented as an
array of one-bit tags. Each tag is associated with a differ-
ent source of secret data. A tag is set if its object’s value
depends on data from the tag’s associated source. Oper-
ations change objects’ state by transferring information
from one set of objects to another. Monitors propagate
tags by interposing on operations that could transfer se-
cret information, and then updating objects’ labels to re-
flect any data dependencies caused by an operation. We
say that information derived from a secret is safe if it re-
veals so little about the original secret that releasing the
information poses no threat. However, if information is
unsafe, then it should only be released to a trusted entity.

2.1 Related work: soundness, precision,
and efficiency

The three most important considerations for taint track-
ing are soundness, precision, and efficiency. Tracking
is sound if it can identify all process outputs that con-
tain an unsafe amount of secret information. Soundness
is necessary for security guarantees, such as preventing
unauthorized accesses of secret information. Tracking is
precise if it can identify how much secret information a
process output contains. Precision can be tuned along
two dimensions: better storage precision associates la-
bels with finer-grained objects, and better tag precision
associates finer-grained data sources with each tag.

Imprecise tracking leads to overtainting, in which safe
outputs are treated as if they are unsafe. A common way
to compensate for imprecise tracking is to require users
or developers to declassify tainted outputs by explicitly
clearing objects’ tags.

Tracking is efficient if propagating tags slows oper-
ations by a reasonable amount. The relationship be-
tween efficiency and precision is straightforward: in-
creasing storage precision causes a monitor to propagate
tags more frequently because it must interpose on lower-
level operations; increasing tag precision causes a moni-
tor to do more work each time it propagates tags. Finding
a suitable balance of soundness, precision, and efficiency

2

is challenging, and prior work has investigated a variety
of points in the design space.

One approach to information-flow tracking is to use
static analysis in combination with a secrecy-aware type
system and programmer-defined declassifiers to prevent
illegal flows [20]. This approach is sound, precise, and
efficient but is not compatible with legacy apps. Integrat-
ing secrecy annotations and declassifiers into apps and
platform libraries requires a non-trivial re-engineering
effort by developers and platform maintainers.

An alternative way to ensure soundness is to propa-
gate tags on high-level operations that generate only ex-
plicit flows. An explicit flow occurs when an operation
directly transfers information from from a set of well-
defined source objects to a set of well-defined destination
objects [8]. For example, process-level monitors such as
Asbestos [9], Flume [15], and HiStar [23] maintain la-
bels for each address space and kernel-managed commu-
nication channel (e.g., file or socket), and propagate tags
for each authorized invocation of the system API.

Such process-grained tracking is sound and efficient,
but operations defined by a system API commonly ma-
nipulate fine-grained objects, such as byte ranges of
memory. The mismatch between the granularity of la-
beled objects and operation arguments leads to impreci-
sion. For example, once a process-grained monitor sets
a tag for an address space’s label, it conservatively as-
sumes that any subsequent operation that copies data out
of the address space is unsafe, even if the operation dis-
closes no secret information.

As with language-based flow monitors, process-
grained monitors must rely on trusted declassifiers to
compensate for this imprecision. These declassifiers
proxy all inter-object information transfers and are au-
thorized to clear tags from labels under their control.
However, because declassifiers make decisions with lim-
ited context, they can be difficult to write and require
developers to modify existing apps.

Other monitoring schemes have improved precision
by associating labels with finer-grained objects such as
individual bytes of memory [5, 19]. While tracking at
too fine a granularity leads to prohibitively poor perfor-
mance [5, 19] (e.g., 10x to 30x slowdown), propagating
tags for individual variables within a high-level language
runtime is efficient [11]. The primary challenge for such
fine-grained tracking is balancing soundness and preci-
sion in the presence of implicit flows.

As before, consider secret-holding variable s and
pseudo-code if s != 0 then x := a else y := b done. Bor-
rowing terminology from [18], we say that all operations
between then and done represent the enclosed region of
the conditional branch. Thus, the enclosed region con-
tains explicit flows from a to x and from b to y. Opera-
tions like conditional branches induce implicit flows by

transferring information from the objects used to evalu-
ate a condition to any object whose value is influenced
by an execution path through the enclosed region. We
refer to the set of influenced objects as the enclosed set.
The enclosed set includes all objects that are modified
along the taken execution path as well as all objects that
might have been modified along any untaken paths. To
ensure soundness, a monitor must propagate s’s tags to
all objects in the enclosed set.

Propagating tags to members of the enclosed set can
lead to overtainting in two ways. First, because a con-
ditional branch does not specify its enclosed set, the
membership must be computed through a combination
of static and dynamic analysis [5, 18]. In our exam-
ple, a simple static analysis of the program’s control-flow
graph could identify the complete enclosed set consisting
of x and y. However, strong soundness guarantees require
an overly conservative analysis of far more complex un-
taken paths containing context-sensitive operations and
aliased variables. This can overstate which objects’ val-
ues are actually influenced by a branch. Less conserva-
tive tag propagation creates opportunities for malicious
code to leak secret information.

Second and more important, the amount of informa-
tion transferred through a process’ control flow is of-
ten very low. These information-poor flows expose the
problem with tag imprecision. In particular, conventional
monitors can only account for an implicit flow by propa-
gating single-bit tags from the branch condition to mem-
bers of the enclosed set. And yet members of the en-
closed set can only reflect as much new information as
the branch condition reveals. When the condition re-
veals very little information (e.g., s != 0), a single-bit
tag cannot be used to differentiate between an object
whose value is weakly dependent on secret information
and one whose value encodes the entire secret. Thus,
when an execution’s control flow transfers very little in-
formation, propagating tags to members of the enclosed
set significantly overstates how much secret information
the branch transfers to the rest of the program state.

Prior work on DTA++[14] and Flowcheck [18] have
articulated similar insights about the causes of overtaint-
ing. DTA++ propagates tags to an enclosed set only if
an execution’s control flow reveals the entire secret (i.e.,
the execution path is injective with respect to a secret
input). However, DTA++ relies on offline symbolic ex-
ecution of several representative inputs to select which
branches should propagate tags to their enclosed sets.
Offline symbolic execution provides limited code cov-
erage for moderately complex programs and is unlikely
to deter actively malicious programs.

Flowcheck focuses on the imprecision of single-bit
taint tags and precisely quantifies the total amount of
secret information an execution reveals (as measured in

3

bits). However, Flowcheck imposes significant perfor-
mance penalties and must compute the enclosed set (of-
ten with assistance from the programmer) to quantify the
channel capacity of enclosed regions.

To summarize, we are unaware of any prior work on
information-flow tracking that provides a combination of
soundness, precision, and efficiency that would be suit-
able for tracking passwords on today’s mobile platforms.

2.2 Android-app study

To test our hypothesis that conventional handling of im-
plicit flows leads to overtainting and false alarms, we
created a modified version of TaintDroid [11] called
TaintDroid++ that supports limited implicit-flow track-
ing. TaintDroid and TaintDroid++ track explicit flows
the same way. Each variable in a Dalvik executable is
assigned a label consisting of multiple tags, and tags
are propagated according to a standard tag-propagation
logic.

The primary difference between the two monitors is
that TaintDroid ignores implicit flows and TaintDroid++
does not. First, for a Dalvik executable, TaintDroid++
constructs a control-flow graph and identifies the imme-
diate post-dominator (ipd) for each control-flow opera-
tion. It then uses smali [1] to insert custom Dalvik in-
structions that annotate (1) each ipd with a unique iden-
tifier, and (2) each control-flow operation with the iden-
tifier of its ipd. Like Dytan [5], TaintDroid++ does not
propagate tags to objects that might have been updated
along untaken execution paths.

Using these two execution environments, we ran four
popular Android apps that require a user to enter a pass-
word: the official apps for LinkedIn, Twitter, Tumblr,
and Instagram. Both systems tagged password data as
it was input but before it was returned to an app. We then
manually exercised each app’s functionality and moni-
tored its network and file outputs for tainted data.

Figure 1 shows the number and type of tainted out-
puts we observed for apps running under TaintDroid
and TaintDroid++. For each tainted output, we manu-
ally inspected the content to determine whether it con-
tained password data or not. Each tainted output under
TaintDroid appeared to be an authentication message that
clearly contained a password. TaintDroid++ also tainted
these outputs, but generated many more tainted network
and file writes. We were unable to detect any password
information in these extra tainted outputs, and regard
them as evidence of overtainting.

Overtainting is only a problem if incorrectly tainted
data is copied to an inappropriate sink. Thus, a false
positive occurs when an app copies data that is safe but
tainted to an inappropriate sink. Apps authenticate us-
ing the OAuth protocol and should not store a local copy

 0

 10

 20

 30

 40

 50

 60

 70

linkedin

tw
itter

tum
blr

instagram

linkedin

tw
itter

tum
blr

instagram

N
u
m

b
e
r

o
f

T
a
in

te
d
 O

u
tp

u
ts

File Network SSL

TaintDroid++TaintDroid

Figure 1: Tainted outputs for apps running under Taint-
Droid and TaintDroid++.

of a password once they receive an OAuth token from
a server. Thus, each tainted file write generated under
TaintDroid++ is a false positive.

For network writes, we also consider whether the
password data was sent over an encrypted connection
(i.e., over SSL) and the IP address of the remote server.
Both Tumblr and Instagram under TaintDroid++ gen-
erated unencrypted tainted network writes. None of
these writes were tainted under TaintDroid. Furthermore,
TaintDroid only taints outputs to appropriate servers,
but under TaintDroid++ several overtainted outputs were
sent to third-parties such as the cloudfront.net CDN and
flurry.com analytics servers. These results are consistent
with previous work on overtainting [4, 22], and confirm
that securing users’ passwords requires a better balance
of soundness and precision.

3 System Overview

This section provides an overview of SpanDex, including
the principles and attacker model that inform its design.

3.1 Principles
SpanDex’s primary goal is to soundly and precisely track
how information about a password circulates through a
mobile app. For example, if an app requests a Face-
book password, then SpanDex should raise an alert only
if the app tries to send an unsafe amount of information
about the password to a non-Facebook server. Prevent-
ing leaks also requires a way for users to securely en-
ter and categorize their passwords, and to address these
issues we rely on secure password-entry systems such
as ScreenPass [17]. SpanDex is focused on tracking in-
formation after a password has been securely input and
handed over to an untrusted app. The following design
principles guided our work.

4

Monitor explicit and implicit flows differently. In
practice, explicit and implicit flows affect a program’s
state in very different ways. Operations on secret
data that trigger explicit flows transfer a relatively large
amount of secret information to a small number of ob-
jects. The inverse is true of control-flow operations that
depend on secret data. These operations often transfer
very little secret information to members of a large en-
closed set. These observations led us to apply different
mechanisms to tracking explicit and implicit flows.

First, SpanDex uses conventional taint tracking to
monitor explicit flows. SpanDex is integrated with Taint-
Droid and Android’s Dalvik VM, and maintains a label
for each program variable. Each label logically consists
of a single-bit tag indicating whether the variable con-
tains an unsafe amount of information about a character
within a user’s password. Because explicit flows trans-
fer a relatively large amount of information between ob-
jects, when an object’s tag is set, SpanDex assumes that
the variable contains an unsafe amount of secret infor-
mation.

Second, when SpanDex encounters a branch with a
tainted condition, it does not immediately propagate tags
to objects in the enclosed set. Rather, SpanDex first up-
dates an upper bound on the total amount of secret infor-
mation the execution’s control flow has revealed to that
point. This upper bound precisely captures the maximum
amount of secret information that an attacker could en-
code in untagged objects. As long as the total amount
of secret information transferred through implicit flows
is safe, SpanDex can ignore where that information is
stored.

Like DTA++, SpanDex borrows techniques from sym-
bolic execution to quantify the amount of information re-
vealed through implicit flows. In particular, SpanDex in-
tegrates operation logging with tag propagation to record
the chain of operations leading from a tainted variable’s
current state back to the original secret input. When
SpanDex encounters a tainted conditional branch, it up-
dates its information bounds by using these records to
solve a constraint-satisfaction problem (CSP). The CSP
solution identifies a set of secret inputs that could have
led to the observed execution path. This set precisely
captures the amount of information transferred through
implicit flows.

The drawback of applying these techniques at runtime
is the potential for poor performance. A monitor can ef-
ficiently record operations on tainted data at runtime, but
solving a CSP when encountering a tainted branch could
be disastrous. In the worst case, trying to solve a CSP
could cause a non-malicious app to halt. For example,
passwords must be encrypted before they are sent over
the network, but it is infeasible to compute the set of all
plaintext inputs that could have generated an encrypted

output. Balancing the need to track implicit flows while
preventing common primitives such as cryptography
from slowing, or even halting, non-malicious apps led to
our second design principle.

If commonly used functionality makes tracking diffi-
cult, force apps to use a trusted implementation. Mo-
bile apps typically receive a password, perform sanity
checks on the characters, encode the password as an http-
request string, encrypt the http-request, and forward the
encrypted string to a server. The code used to transform
password data from one representation to another (e.g.,
encoding a character array as an http-request string and
then encrypting the string) is problematic because it uses
a number of operations that make quantifying implicit
flows prohibitively slow or even impossible. This code
includes a large number of bit-wise and array-indexing
operations interleaved with tainted conditional branches.
If SpanDex tracked implicit flows within this code as we
have described thus far, non-malicious apps would be-
come unusable.

Fortunately, it is exceedingly rare for apps to imple-
ment this functionality themselves. Instead, apps rely on
platform libraries for common transformations, such as
character encoding and cryptography. On Android this
library code is small in size, easy to understand, and pro-
tected by the Java type system.

Tracking explicit flows remains the same for trusted
libraries as for untrusted app code. However, within a
trusted library, SpanDex does not solve CSPs when en-
countering a tainted branch and may directly update the
information bound of a secret before exiting. This ap-
proach is sound for library code whose state is strongly
encapsulated and whose semantics are well understood.

For example, encrypting a tainted string involves a
sequence of calls into a crypto library for initializing
the algorithm’s state, updating that state, and retrieving
the final encrypted result. Ignoring tainted conditional
branches within this code is sound for two reasons. First,
tracking explicit flows within the library ensures that any
intermediate outputs as well as the final output are prop-
erly tagged. Second, external code can only access li-
brary state through the narrow interface defined by the
library API; there is no way for untrusted code to infer
properties about the plaintext except those that the library
explicitly exposes through its interface or by branching
on the plaintext data itself. SpanDex tracks both cases.

The protection boundary separating untrusted code
from trusted library code has two novel properties. First,
the boundary is defined by both data flow and con-
trol flow. An app is allowed to use a custom crypto-
graphic implementation on untainted data, but must use
the trusted crypto library to encrypt tainted data. Second,
the boundary is enforced by the aggregate complexity of

5

the operations performed rather than by hardware or a
conventional software guard. If an app attempts to en-
crypt password data using a custom implementation or
branches on encrypted data returned by the trusted li-
brary, it will be forced to solve an intractable CSP and
halt.

Thus, the key property of a SpanDex’s sandbox is that
it restricts the classes of computation that untrusted code
may directly perform on secret data. Instead, an app must
yield control to the trusted platform so that these compu-
tations can be performed on its behalf.

Given an execution environment that can efficiently
quantify the amount of secret information transferred
through implicit flows, SpanDex’s final challenge is
determining whether the quantified amount is safe to
release. This challenge led to our final design principle.

Use properties of a secret’s data type to set release
policies. Like SpanDex, DTA++ requires a threshold
on the amount of information revealed through implicit
flows. DTA++ applies a strict policy to determine when
to propagate tags by doing so only when the control flow
is injective. That is, DTA++ propagates tags when a sin-
gle secret value could have led to a particular execution
path.

Though simple, this policy is inappropriate for Span-
Dex. Revealing an entire secret value via implicit flows
is clearly unsafe, but revealing partial information about
a password may be too. For example, using carefully
crafted branches, malware could cause significant harm
by narrowing every character of a password to two pos-
sible values. However, as we have seen, treating all im-
plicit flows as unsafe leads to prohibitive overtainting.
SpanDex’s challenge is to support practical release poli-
cies that sit between these two extremes.

SpanDex benefits from its focus on passwords. Pass-
words have a well-defined representation and fairly well
understood attacker model. For example, it is reasonable
to assume that an attacker knows that a password consists
of a sequence of human-readable characters (i.e., ASCII
characters 32 through 126), many of which are likely to
be alphanumeric. An attacker gains no new information
from observing the control flow of a process if the flow
reveals that each character is within the expected range
of values. We investigate what apps’ control flows reveal
in Section 6.

3.2 Trust and attacker model

SpanDex is implemented below the Dalvik VM interface
(i.e., the Dex bytecode ISA), and the protections pro-
vided by this VM provide the foundation for SpanDex’s
trust model. Most Android app logic is written in Java
and compiled into Dex bytecodes, which run in an iso-

lated Dalvik VM instance. SpanDex cannot protect pass-
words from an app that executes third-party native code
while there is password data in its address space. Thus,
objects tainted with password data must be cleared be-
fore an app is allowed to execute its own native code. In
addition, once a process invokes third-party native code,
it may not receive password data. SpanDex must rely on
the kernel to maintain information about which processes
have invoked third-party native code. Finally, apps may
not write tainted data to persistent storage or send it to
another app via IPC.

SpanDex is focused on securely tracking how pass-
word data flows within an app. Attacks on other aspects
of password handling are outside the scope of our de-
sign. First, we assume that users can securely enter their
password before it is given to an app, and that users will
tag a password with its associated domain. A secure,
unspoofable user interface, such as the one provided by
ScreenPass [17], can provide such guarantees. Special
purpose hardware, such as Apple’s Touch ID fingerprint
sensor and secure enclave [2], could also provide this
guarantee.

Second, SpanDex can help ensure that password data
is shared only with servers within the domain specified
by the user, but provides no guarantees once it leaves
a device. For example, SpanDex cannot prevent an at-
tacker from sending a user’s Facebook password as a
message to a Facebook account controlled by the at-
tacker. Preventing such cases requires cooperation be-
tween SpanDex and the remote server. SpanDex could
notify the service when a message contains password
data, and the service could determine whether such mes-
sages should contain password data.

We assume that an attacker completely controls one or
more apps that a user has installed, and that the attacker
is also in control of one or more remote servers. The
attacker’s servers can communicate with the attacker’s
apps, but the servers reside in a different domain than the
one the user associates with her password. The attacker
can make calls into the platform libraries and manipulate
its apps’ data and control flows to send information about
passwords to its remote servers.

Based on the large-scale leakage of large password
lists from major services, such as Gawker [21] and Sony
Playstation [3], we assume that an attacker has access to
a large list of unique passwords, and that the user’s pass-
word is on the list. However, we assume that the attacker
does not know which usernames are associated with each
entry in its list (though it does know the user’s username).

Thus, our attacker’s goal is to de-anonymize the user
within its password list using information gathered from
its apps. The attacker can send its servers as much un-
tainted data describing a user’s password as SpanDex’s
release policies allow (i.e., the password length as well

6

as a range of possible values for each password charac-
ter). In the worst case, the attacker will eliminate all but
one of the passwords in its list. On the other hand, if the
app provides no new information, then the user’s pass-
word could be any on the list.

Once the attacker has computed the set of possible
passwords for a username, it can only identify the correct
username-password combination through online query-
ing. For example, if an attacker infers that Bob’s Face-
book password is one of ten possibilities, then the at-
tacker needs at most ten tries to login to Facebook as
Bob.

The attacker may also have extra information about the
usage distribution of passwords in its database. For ex-
ample, the attacker may know that one password is used
by twice as many users as another. While information
from the app can help the attacker narrow a user’s pass-
word to a smaller set of possibilities, the usage distri-
bution allows the attacker to prioritize its login attempts
to reduce the expected number of attempts before a suc-
cessful login. We return to this issue in Section 6.

4 SpanDex

As with conventional taint tracking, SpanDex updates
objects’ labels on each operation that generates an ex-
plicit flow. If the monitor encounters a control-flow op-
eration with a tainted condition, it does not update the
labels of objects in the enclosed set. Instead, the moni-
tor updates an upper bound on the amount of information
the execution’s control flow has revealed about the secret
input.

SpanDex represents this bound as a possibility set (p-
set). SpanDex maintains a p-set for each password char-
acter an app receives. P-sets logically contain the pos-
sible values of a character revealed by a process’ control
flow. Each time the app’s control flow changes as a result
of tainted objects, SpanDex attempts to remove values
from the secret’s p-set.

4.1 Operation dag
In order to narrow a p-set, SpanDex must understand the
data flow from the original secret values to a tainted con-
dition. We capture these dependencies in an operation
dag (op-dag). This directed acyclic graph provides a
record of all taint-propagating operations that influenced
a tainted object’s value as well as the order in which the
operations occurred.

SpanDex reuses TaintDroid’s label-storage strategy,
and stores each 32-bit label adjacent to its object’s value.
However, whereas each bit in a TaintDroid label repre-
sents a different category of sensitive data (e.g., location
or IMEI), SpanDex labels are pointers to nodes in the

op-dag. If an object’s label is null, then it is untainted.
If an object’s label is non-null, then its value depends on
secret data.

Label storage in SpanDex most significantly differs
from TaintDroid for arrays. In TaintDroid, each array
is assigned a single label for all entries. If any array ele-
ment becomes tainted, then the entire array is treated as
tainted. This approach is inappropriate for SpanDex be-
cause we want to track individual password characters.
Thus, SpanDex maintains per-entry labels. However, the
reason that TaintDroid maintains a single label for each
array is storage overhead. Byte and character arrays ac-
count for a large percentage of an app’s memory usage,
and assigning a 32-bit label for each byte-array entry
could lead to a minimum fourfold increase in memory
overhead for array labels.

To avoid this overhead, SpanDex allocates labels for
arrays only after they contain tainted data. Each array is
initially allocated a single label. If the array is untainted,
then its label points to null. If the array contains tainted
data, then its label points to a separate label array, with
one label for each array entry. As with local-variable and
object-field labels, array-element labels point to nodes
in the op-dag. Since very few arrays contain password
data, the overhead of maintaining per-entry labels is low
overall.

The roots of the op-dag are special nodes that con-
tain the original value of each secret (i.e., each password
character), a pointer to the secret’s p-set, and domain in-
formation. A p-set is represented as a doubly-linked list
of value ranges. Each entry in the list contains a pointer
to the previous and next entries, as well as a minimum
and maximum value. Ranges are inclusive, and the union
of the ranges specifies the set of possible secret values
revealed by an app’s control flow. SpanDex initializes p-
sets to the range [32,126] to represent all printable ASCII
characters. A secret’s domain can be specified by the
user through a special software keyboard [17].

Each tainted object version has an associated non-
root node that records the operation that created the ver-
sion, including its source operands. Source operands
can be stored as concrete values (when operands are un-
tainted) or as pointers to other nodes in the op-dag (when
operands are tainted).

A node can point to more than one node, and there
may be multiple paths from a node to one or more roots.
The more complex the paths from a node to the op-dag
roots are, the more complex updating p-sets becomes.

4.2 Example execution

If a tainted variable influences an app’s control flow (e.g.,
via a conditional branch), then SpanDex traverses the op-
dag from the node pointed to by the object’s label toward

7

the roots. To demonstrate how SpanDex maintains and
uses op-dags and p-sets, consider the simple snippet of
pseduo-code below. Figure 2 shows the resulting op-dag
and p-set.
0000: mov v1, v0 // v0, v1 label=ROOT
0002: add v2, v1, 3 // v2’s label=N1
0004: add v2, v2, 2 // v2’s label=N2
0006: sub v3, 6, v2 // v3’s label=N3
0008: add v2, v2, 7 // v2’s label=N4
000a: const/16 v4, 122 // v4’s label=0
000c: if-le v3, v4, 0016
000e: ...

The first character of the password is ’p’, or numeric
value 112, and is stored in register v0. The password’s
domain is Facebook. v0’s label points to the Root node
for the secret character. v0 is then copied into v1, whose
label must also point to Root. The sum of v1 and 3 is
then stored in v2, whose label then points to new node,
N1. N1 contains the addition operation, the 3 operand,
and points to Root. The next line adds 2 to v2. This cre-
ates a new version of v2, which is recorded in N2. N2
contains the 2 operand and points to the node for the pre-
vious version of v2, node N1. The remaining arithmetic
operations proceed similarly. Finally, the code loads the
constant value of 122 into v4 for an upcoming condi-
tional branch. v4’s label is null, since it is not tainted.

When the code reaches the conditional branch, v3 is
less than or equal to v4, since v3’s value is 111, and v4’s
value is 122. Because v3’s label is non-null, SpanDex
uses the op-dag node in v3’s label (N3) to update the p-
set.

Updating the p-set is equivalent to solving a CSP to de-
termine which secret values could have led to the control-
flow change. In our example, updating the p-set is easy.
SpanDex solves the inequality v0+6−2−3≤ 122, lead-
ing to v0 ≤ 121. Thus, the control flow reveals that the
first character of the user’s password is within the range
of [32,121]. SpanDex updates the p-set to reflect this be-
fore resuming execution. Figure 2 shows the state of the
op-dag and p-set at this point.

This simple example demonstrates some of the chal-
lenges and nuances of SpanDex’s approach. First, each
node in the op-dag represents a version of a tainted vari-
able. N3 points to the version of v2 used to update v3,
so that when SpanDex reaches the conditional branch, it
can retrieve the sequence of operations that led to v3’s
current value.

Second, reversible operations such as addition and
subtraction make updating p-sets straightforward. Un-
fortunately, Dalvik supports a number of instructions that
are much trickier to handle. For example, Dalvik sup-
ports instructions for operating on Java Object references
and arrays that behave very differently than simple arith-
metic operations. Even some classes of arithmetic oper-
ations, such as bit-wise operators and division, can make
solving a CSP non-trivial.

V1

V1 label=Root

V0

V0 label=Root

V2

V2 label=N4

V3

V3 label=N3

p-set Secret
= 'p'Root

+ 3 RootN1

+ N1 2N2

- 6 N2N3

+ N2 7N4

Dalvik internal heapDalvik internal stack

p-set = [32, 121]

V4

V4 label=null

Domain
= 'FB'

Figure 2: Simple op-dag and p-set example.

Third, there was a single path from N3 to Root in
our example. If N3 had forked due to multiple tainted
operands, or had led to multiple root nodes due to mix-
ing secret characters, solving the CSP would have been
far more complex. Compression and cryptography often
mix information from multiple characters, which creates
a complex nest of paths from nodes to the op-dag roots.

Fortunately, among the popular non-malicious apps
that we have studied, difficult-to-handle operations oc-
cur only in platform code such as the Android cryptog-
raphy library. Furthermore, it is rare to find apps that
branch on the results of these operations outside of plat-
form code. Thus, as long as SpanDex can ensure that
all outputs from these libraries are explicit and tainted,
then we can ignore implicit flows within them (and, thus,
avoid CSP solving).

This approach is intuitive. First, outside of simple san-
ity checking on a password, there is little reason for an
app to operate on password data itself. Second, libraries
such as a crypto library are designed to suppress implicit
flows. Observing an encrypted output or a cryptographic
hash should not reveal anything about the plaintext input.
Third, there is no obvious reason why app code should
branch on either encrypted data or a cryptographic hash.
Apps simply use the platform libraries to encode these
outputs as strings and send them to a server.

There are many difficult operations that we have not
observed in either app code or library code. Our general
approach to these operations is to propagate taint to the
results of these operations, but to fault if they cause the
control flow to change. For example, an app may use
bit-wise operations to encode a character, but branching
on the encoded result is not allowed. This is secure and
does not disrupt non-malicious apps. In the next section,
we describe how SpanDex treats each class of Dex byte-
codes in greater detail.

8

4.3 Dex bytecodes

In this section, we describe how SpanDex handles
each of the following classes of bytecodes: type-
conversion operations, object operations, control-flow
operations, arithmetic operations, and array operations.
Type conversions. Dalvik supports the following data
types: boolean, byte, char, short, int, long, float, double,
and Object reference, as well as arrays of each of these
types. P-set ranges are represented internally as pairs of
floats. Solving CSPs involving conversions to alternate
representations is supported as long as the type is a native
and numeric.
Object operations. Dex provides a number of instruc-
tions for converting between data types, but conversions
can also occur through Object-method invocations and
arrays. For example, an app could index into an Object
array with a tainted character, where the fields of each
Object encodes its position in the array. The returned
Object reference would be tainted, and would identify
the character used to index into the array. The return
value of any method used to access a field of the tainted
Object would also be tainted. However, SpanDex would
have to understand the internal semantics of the Object
in order to solve a CSP involving the tainted returned
value. Thus, branching on data derived from a tainted
Object reference is not allowed.
Control-flow. A Dalvik program’s control flow can
change as a result of secret data in many ways. Con-
ditional branch operations such as if-eq are the most
straightforward, and SpanDex handles these as described
in Section 4.2.

Dalvik also supports two case switching operations:
packed-switch and sparse-switch. Both in-
structions take an index and a reference to a jump table as
arguments. The difference between the instructions is the
format of the jump table and how it is used. The table for
a packed-switch is a list of key-target pairs, in which
the keys are consecutive integers. Dalvik first checks to
see if the index is within the table’s range of consecutive
keys. If it is not, then the code does not branch and ex-
ecution resumes at the instruction following the switch
instruction. If it is in the table, then the code computes
the new PC by adding the matching target to the current
PC.

The table for a sparse-switch is also a list of key-
target pairs, but the keys do not have to be consecutive in-
tegers (though they have to be sorted from low-to-high).
To handle this instruction, the VM checks whether the
index is greater than zero and less than or equal to the ta-
ble size. It then uses the index to perform a binary search
on the keys to find a match. If it finds a match, then it
jumps to the instruction at the sum of the matching target

and current PC.
Although more complex than conditional branches,

handling these switch instructions is straightforward. If
the code falls through the switch instruction, then the re-
sulting implicit flow reveals that the index is not equal
to any of the table keys. SpanDex can solve a CSP for
each of the keys and update its p-sets accordingly. If the
control-flow is diverted by the switch instruction, then
the resulting implicit flow reveals that the index is equal
to the matching table key. SpanDex can solve a CSP for
this condition as well. In practice, most switch instruc-
tions are packed and the corresponding jump tables are
small, which makes solving CSPs for these operations
fast.

Finally, a program’s control flow can be influenced by
tainted data if an operation on tainted data causes an ex-
ception to be thrown. For example, an app could divide
a number by a tainted variable with a value of zero, or
it could use a tainted variable to index beyond the length
of an array. SpanDex could compute a CSP for the infor-
mation revealed by each of these conditions, e.g., that a
tainted variable is equal to zero or that a tainted variable
is greater than the length of an array. However, we have
not seen this behavior in any of the apps we have stud-
ied. As a result, our current implementation simply stops
the program when an instruction with a tainted operand
causes an exception to be thrown.
Arithmetic. As we saw in Section 4.2, reversible arith-
metic operations are straightforward to handle. Other
arithmetic operations are not impossible to handle, but
require a complex solver. For example, reversing mul-
tiplication and division operations is tricky because of
rounding. Bit-wise operations are even more difficult to
reason about. Fortunately, it is exceedingly rare for app
code to branch on the results of these operations. Instead,
we have observed that trusted library code is far more
likely to branch on the results of these operations. As
long as we can ensure that all library outputs are explicit,
then we do not need to solve CSPs involving difficult op-
erations when in trusted code.
Arrays. Dex provides instructions for inserting (iput)
and retrieving (iget) data from an array. Due to type-
conversion problems, SpanDex does not allow tainted in-
dexing of non-numeric arrays. In particular, an app may
not use a tainted variable to index into an Object array.

Handling an iget operation requires keeping a
checkpoint of the array in the op-dag node for the vari-
able holding the result. For example, say that all of the
entries in an int array are zero or one, and that an app
indexes into the array with a tainted variable. The re-
turned value would be stored in a tainted variable. If the
app later branched on the tainted variable, then SpanDex
must look at the array checkpoint to determine which in-
dexes would have returned the same value as the exe-

9

cuted iget. In practice, tainted iget instructions are
rare, and when they do occur the arrays are small.

Unlike a tainted iget, a tainted iput instruction is
dangerous. Consider an attacker that initializes an array
a with known size, such that all entries are equal to zero.
It then stores the first password character in the variable
s and inserts a one into a[s]. Because SpanDex maintains
per-entry labels for arrays, a[s] is tainted, but no other en-
tries are. The attacker can then incrementally send each
value in the array to its server: only a[s] is tainted and
will be stopped by SpanDex. Unfortunately, stopping the
app at this point is too late, since the number of received
zeros reveals the value of s. As a result of this attack,
tainted iput instructions are illegal.

Finally, Dex also provides instructions such as
filled-new-array for creating and populating ar-
rays, and SpanDex disallows tainted operands on these
instructions.

4.4 Trusted libraries

As described above, there are a number of operations
on tainted data that would add significant complexity
to SpanDex’s CSP solver to support. Even worse, the
complexity of the op-dags that combinations of these op-
erations would create make it doubtful that even a so-
phisticated solver could handle them quickly, if at all.
Ideally, these operations would never arise, and if they
did, an app would never branch on their results. Sadly,
this not the case. Many apps require cryptographic and
string-encoding libraries to handle passwords, and these
libraries are rife with difficult to handle operations as
well as branching on the results of those operations.

Trying to solve such complex CSPs would make Span-
Dex unusable: non-malicious apps would halt just trying
to encrypt a password. At the same time, ignoring flows
generated by these operations is not secure. Luckily, we
have observed that branching on the results of difficult
operations consistently occurs within a handful of sim-
ple platform libraries.

Thus, SpanDex’s approach to handling difficult im-
plicit flows is to identify the functionality that creates
them in advance and to isolate these flows inside trusted
implementations. As long as the outgoing information
flows from these libraries are always tainted and ex-
plicit, SpanDex does not need to worry about their in-
ternal control-flow leaking secret information. Further-
more, this code is open and well known, is protected by
the Java type system, and can be modified to eliminate
implicit flows through the library API.

The set of libraries that SpanDex trusts not to leak
information implicitly is: java.lang.String (selected
methods excluded), java.lang.Character, java.lang.Math,
java.lang.IntegralToString, java.lang.RealToString,

java.lang.AbstractStringBuilder, java.net.URLEncoder,
java.util.HashMap, android.os.Bundle, android.os.-
Parcel, and org.bouncycastle.crypto. Nearly all of this
code is either stateless string encoding and decoding or
cryptography.

4.5 Various attacks and counter-measures

We described several attacks in Section 3.2 that are be-
yond the scope of SpanDex. In this section, we describe
several other attacks and how SpanDex might handle
them.

First, SpanDex does not allow tainted data to be writ-
ten to the file system or copied to another process via
IPC. This is reasonable because mobile apps should only
require a user’s password to retrieve an OAuth token
from a remote server. After receiving the token, the app
should discard the user’s password. If an app tries to
copy tainted data to an external server, then SpanDex
must consult the domains in the set of reachable op-dag
root nodes.

Second, an attacker could have multiple apps under
its control generate multiple overlapping (but not iden-
tical) p-sets. Each individual p-set would appear safe,
but when combined at the attacker’s server, they could
collectively reveal an unsafe amount of information. Re-
latedly, a malicious app could request a user’s password
multiple times and compute different ranges on each
password copy.

One way to detect this class of attacks is by inspect-
ing the membership of a secret’s p-sets. For the apps
that we have observed, p-sets usually correspond to natu-
ral character groupings, e.g., numbers, lower-case letters,
upper-case letters, and related special characters. P-sets
containing unusual character groupings could be a strong
signal that an app is malicious.

The solution to this attack suggests a larger class of
counter-measures that use information from the p-sets
and op-dag to detect malicious behavior. For example,
anomalous operation mixes or an unusually large op-dag
could indicate an attack. One of the advantages of Span-
Dex is that it gives the monitor a great deal of insight into
how an app operates on password data. We believe that
this information could enable a rich universe of policies,
though enumerating all of them is beyond the scope of
this paper.

Finally, it is possible that SpanDex is vulnerable to
certain classes of side-channel and timing attacks that we
have not considered. However, any attack that relies on
branching on tainted data would be detected. For exam-
ple, consider the well-known attack on Tenex’s password
checker [16]. Even though the attack uses a page-fault
side channel that is out of SpanDex’s scope, SpanDex
would have prevented it because each additional charac-

10

ter comparison would have narrowed its p-set to an un-
safe level.

5 Implementation

Our SpanDex prototype is built on top of TaintDroid for
Android 2.3.4. We modified TaintDroid to support p-
sets and op-dags, and made several modification to the
Android support libraries. Most of our changes to these
libraries were made in java.lang.String.

First, public String methods whose return value could
reveal something about a tainted string’s value are not
considered trusted to ensure that p-sets are updated prop-
erly (e.g., equals(Object), compareTo(String)).

Second, as a performance optimization, the Dalvik
VM replaces calls to certain performance-critical Java
methods with inlined ”intrinsic” functions that are
written in C and built in to the Dalvik VM (e.g.,
String.equals(Object), String.compareTo(String)). How-
ever, if an intrinsic inlined function operates on a tainted
string and performs comparisons involving the string’s
characters, we are unable to update the p-sets accord-
ingly. To avoid this, we modified Dalvik’s intrinsic in-
lines that operate on strings to check if the string is
tainted and, if so, invoke the Java version instead.

Third, Android’s implementation of java.lang.String
performs an optimization when converting an ASCII
character to its String value: it uses the character’s ASCII
code to index into a constant char array containing all
ASCII characters. If the character to be converted is
tainted, we prevent this optimization from being used,
as it would result in an array lookup with a tainted index.

Finally, we modified the android.widget.TextView and
implemented a custom IME with a special tainted input
mode that can be enabled to indicate to SpanDex when a
sequence of characters is sensitive (i.e., a password).

6 Evaluation

In order to evaluate SpanDex, we sought answers to the
following questions: How well does SpanDex protect
users’ passwords from an attacker? What is the perfor-
mance overhead of SpanDex?

6.1 Password protection
As described in Section 3.2, we have designed SpanDex
based on an attacker that has access to a large list of clear-
text passwords. The attacker knows that a user’s pass-
word is in the list, and uses untainted information from
its malicious app to narrow a user’s password to a smaller
set of possibilities. To understand how well SpanDex can
protect users from such an attack, we need to know the

kind of p-sets that real apps induce, we need access to
a large list of cleartext passwords, and we need a realis-
tic distribution of how passwords are used. All of these
pieces of information will allow us to calculate the num-
ber of expected logins an attacker would need to guess a
user’s password, given the amount of untainted password
information that SpanDex allows apps to reveal.

First, we ran 50 popular apps from Google’s Play
Store. Each of these apps required a login, and we used
the same 35-character password for each app. The pass-
word contained one lower-case letter (“a”), one upper-
case letter (“A”), one number (“0”), and one of each of
the 32 non-space special ASCII characters. 42 ran with-
out modification1. The top row of Table 1 shows each
character in the password.

Eight apps invoked native code before requesting a
user’s password2. While these apps would have to be
modified to run under SpanDex, waiting to invoke native
code before requesting a user’s password is unlikely to
require major changes. All other apps ran normally.

For the 42 apps that ran unmodified, after their pass-
word was sent, we inspected the p-set for each password
character and counted its size. Table 1 shows the maxi-
mum, 75th percentile, median, 25th percentile, and min-
imum p-set size for each password character. The header
of the table shows the password. The first thing to notice
is that the p-sets for the letters in our password (i.e., “A”
and “a”) were never smaller than 26. This makes sense,
since each app is branching to determine that the charac-
ter is either a lower or upper case letter. The same is true
for the number in our password, “0”. No numeric p-set
was smaller than 10.

The more difficult cases are the non-alphanumeric spe-
cial characters. For these cases, the p-sets are fairly
app specific. In some cases, the app’s control flow de-
pends on a specific character (e.g., Skout with several
special characters), but most characters’ p-sets remain
large across most apps. With the exception of “*”, “-
”, “.”, and “ ”, all non-alphanumeric characters had large
p-sets for 75% of apps or more.

Given this observed app behavior, we next ob-
tained the uniqpass-v11 list of 131-million unique pass-
words [7]. The list contains passwords from a number of
sources, including the Sony [3] and Gawker [21] leaks.
To simulate an attack, we selected a password, p, from
the list and computed the p-sets that a typical app would
generate for p. In particular, we assume that the at-

1Audible, Amazon, Amazonmp3, Askfm, Atbat, Badoo, Chase,
Crackle, Ebay, Etsy, Evernote, Facebook, Flipboard, Flixster,
Foursquare, Heek, Howaboutwe, Iheartradio, imdb, LinkedIn, Myfit-
nesspal, Nflmobile, Pandora, Path, Pinger, Pinterest, Rhapsody, Sk-
out, Snapchat, Soundcloud, Square, Tagged, Textplus, Tumblr, Tunein,
Twitter, Walmart, Wordpress, Yelp, Zillow, Zite, and Zoosk

2Dropbox, Hulu+, Kindle, Mint, Skype, Spotify, Starbucks, and
Voxer

11

! ” # $ % & ’ () * + , - . / 0 : ; < = > ? @ A [\] ˆ ‘ a { | } ˜
Max 95
75th 90 16 33 90 90 33 33 90 90 90 90 90 90 90 83 92 90 90 33 90 92 90 90 90 90 32 65 90 90 90 95 90 90 90 90
Med 16 12 12 16 16 12 12 16 16 13 16 16 13 13 14 10 7 7 7 7 7 7 7 26 6 6 6 6 6 6 90 4 4 4 4
25th 12 4 12 12 12 12 12 12 12 1 12 12 1 1 12 10 7 7 7 7 7 7 7 26 5 5 5 5 1 5 26 4 4 4 4
Min 1 1 3 1 1 1 1 1 1 1 3 4 1 1 1 10 1 1 1 1 1 1 3 26 1 1 2 4 1 4 26 1 1 3 4

Table 1: Password-character p-set sizes for 42 popular Android apps

tacker can infer p’s length and whether each character is
a lower-case letter (26 possibilities), an upper-case letter
(26 possibilities), a number (10 possibilities), or a mem-
ber of a block of special ASCII characters (i.e., the 16
characters below “0”, the seven characters between “9”
and “A”, the six characters between “Z” and “a”, and the
four characters after “z”).

This information gave us a kind of regular expression
for p based on the type of each of its characters. We call
the set of passwords matching this expression the match
set and the size of the match set the match count. The
larger a password’s match count, the more uncertain an
attacker is about what password the user entered. We
computed the match count for all passwords in the uniq-
pass list in this way. Finally, we counted the number of
passwords with a given match count to arrive at the in-
verse distribution function.

These calculations show that if SpanDex allows an at-
tacker to learn the p-sets for a password from a typical
app, the attacker will have trouble narrowing the set of
possible passwords for the user. In particular, 92% of
passwords have a match count greater than 10,000, 96%
of passwords have a match count greater than 1,000, 98%
of passwords have a match count greater than 100, and
99% of passwords have a match count greater than 10.

Unfortunately, recent work on a variety of password
databases suggest that password usage follows a zipf dis-
tribution [6]. Thus, we also model the N passwords in a
match set as a population of N elements that contains ex-
actly one success (as a user would only have one correct
password). Next, we let n be the random variable de-
noting the number of tries required to guess the correct
password and find E[n], the expected value of n. If the
passwords are all equally probable, we try them in ran-
dom order. Otherwise, we try them in the descending
order of their probability. Note that each password try is
done without replacement, i.e., after trying i passwords,
we only consider the remaining (N − i) passwords when
picking the next most probable password.

A study of the distribution of passwords publicly
leaked from Hotmail, flirtlife.de, computerbits.ie, and
RockYou found that the passwords in each of these sets
can be reasonably modelled by a zipf distribution with
s parameter values of 0.246, 0.695, 0.23, and 0.7878 re-
spectively [6]. Using these values of s, we modeled the
passwords in each match set and computed the CDF of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06

P
e
rc

e
n
ta

g
e

Expected number of tries (logscale)

CDF of expected tries

s=0.7878 (rockyou)
s=0.695 (flirtlife)

s=0.246 (hotmail)
s=0.23 (c-bits)

Figure 3: CDFs of expected login attempts using the
uniqpass password list.

E[n].
When s = 0.7878, 95% of the time, the attacker is

likely to guess the correct password within 50 tries.
When the s value for the zipf distribution is 0.246 or less,
99% of passwords are expected to require 10 or more lo-
gin attempts, and 90% of passwords are expected to re-
quire 80 or more attempts. Figure 3 shows the CDFs for
all four s values.

Unfortunately, we do not know the usage distribution
for the uniqpass dataset since it contains only unique
passwords.

6.2 Performance overhead

To measure the performance overhead of SpanDex we
used the CaffeineMark benchmark and compared it to
stock Android 2.3.4 and TaintDroid. Both TaintDroid
and SpanDex ran without any tainted data. Since Span-
Dex only handles password data that is discarded after an
initial login, this is SpanDex’s common case. The bench-
mark was run on a Nexus S smartphone. The results are
in Figure 4.

Overall, SpanDex performs only 16% worse than
stock Android and 7% worse than TaintDroid. Stock An-
droid performs significantly better than either TaintDroid
or SpanDex in the string portion of the benchmark. This
is because TaintDroid and SpanDex both disable some
optimized string-processing code to store labels.

Finally, we would like to note that when testing apps
in Section 6.1, we did not encounter any noticeable slow
down under SpanDex. This was due to login being dom-
inated by network latency and the simplicity of the CSPs
these apps generated.

12

0

500

1000

1500

2000

2500

sieve loop logic string float method overall

Figure 4: CaffeineMark results for Android (left bar),
TaintDroid (middle bar), and SpanDex (right bar).

7 Conclusion

SpanDex tracks implicit flows by quantifying the amount
of information transferred through implicit flows when
an app executes a tainted control-flow operation. Using
a strong attacker model in which a user’s password is
known to exist in a large password list, we found that for
a realistic password-usage distribution, for 90% of users
an attacker is expected to need 80 or more login attempts
to guess their password.

Acknowledgements

We would like to thank the anonymous reviewers for
their helpful comments. Our work was supported by Intel
through the ISTC for Secure Computing at UC-Berkeley
as well as the National Science Foundation under NSF
awards CNS-0747283 and CNS-0916649.

References

[1] smali: An assembler/disassembler for android’s
dex format, 2013.

[2] Apple. iphone 5s, 2013.

[3] P. Bright. Sony hacked yet again, plaintext pass-
words, e-mails, dob posted, 2011.

[4] L. Cavallaro, P. Saxena, and R. Sekar. On the limits
of information flow techniques for malware analy-
sis and containment. In DIMVA ’08, 2008.

[5] J. Clause, W. Li, and A. Orso. Dytan: a generic
dynamic taint analysis framework. In ISSTA ’07,
2007.

[6] David Malone and Kevin Maher. Investigating the
Distribution of Password Choices. In WWW ’12,
April 2012.

[7] Dazzlepod. Uniqpass v11, 2013.

[8] D. E. Denning. A lattice model of secure infor-
mation flow. Commun. ACM, 19(5):236–243, May
1976.

[9] P. Efstathopoulos, M. Krohn, S. VanDeBogart,
C. Frey, D. Ziegler, E. Kohler, D. Mazières,
F. Kaashoek, and R. Morris. Labels and event pro-
cesses in the asbestos operating system. In SOSP
’05, 2005.

[10] M. Egele, C. Kruegel, E. Kirda, and G. Vigna.
PiOS: Detecting Privacy Leaks in iOS Applica-
tions. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), San
Diego, CA, February 2011.

[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime pri-
vacy monitoring on smartphones. In OSDI’10,
2010.

[12] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
Riskranker: scalable and accurate zero-day android
malware detection. In MobiSys ’12, 2012.

[13] X. Jiang. Smishing vulnerability in multiple an-
droid platforms, 2012.

[14] M. G. Kang, S. McCamant, P. Poosankam, and
D. Song. DTA++: Dynamic taint analysis with tar-
geted control-flow propagation. In NDSS ’11, 2011.

[15] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information
flow control for standard OS abstractions. In SOSP
’07, 2007.

[16] B. W. Lampson. Hints for computer system design.
SIGOPS Oper. Syst. Rev., 17(5):33–48, Oct. 1983.

[17] D. Liu, E. Cuervo, V. Pistol, R. Scudellari, and L. P.
Cox. Screenpass: Secure password entry on touch-
screen devices. In MobiSys ’13, 2013.

[18] S. McCamant and M. D. Ernst. Quantitative infor-
mation flow as network flow capacity. SIGPLAN
Not., 43(6):193–205, June 2008.

[19] J. Newsome. Dynamic taint analysis for automatic
detection, analysis, and signature generation of ex-
ploits on commodity software. In NDSS ’05, 2005.

13

[20] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Se-
lected Areas in Communications, 21:2003, 2003.

[21] L. Segall. Gawker data exposed in major hack at-
tack, 2010.

[22] A. Slowinska and H. Bos. Pointless tainting? evalu-
ating the practicality of pointer tainting. In EuroSys
’09, 2009.

[23] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In OSDI ’06, 2006.

[24] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In IEEE SP ’12,
2012.

14

