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ABSTRACT
Photographs, taken by field
scientists, tourists, auto-
mated cameras, and inci-
dental photographers, are
the most abundant source
of data on wildlife today.
Wildbook is an autonomous
computational system that
starts from massive collec-
tions of images and, by de-
tecting various species of an-

imals and identifying individuals, combined with sophisti-
cated data management, turns them into high resolution
information database, enabling scientific inquiry, conserva-
tion, and citizen science.

We have built Wildbooks for whales (flukebook.org), sharks
(whaleshark.org), two species of zebras (Grevy’s and plains),
and several others. In January 2016, Wildbook enabled the
first ever full species (the endangered Grevy’s zebra) census
using photographs taken by ordinary citizens in Kenya. The
resulting numbers are now the official species census used by
IUCN Red List: http://www.iucnredlist.org/details/7950/0.
In 2016, Wildbook partnered up with WWF to build Wild-
book for Sea Turtles, Internet of Turtles (IoT), as well as
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systems for seals and lynx. Most recently, we have demon-
strated that we can now use publicly available social media
images to count and track wild animals. In this paper we
present and discuss both the impact and challenges that the
use of crowdsourced images can have on wildlife conserva-
tion.
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1. INTRODUCTION
How many African elephants are left in the world and how

fast are they being lost to poaching? How far do whales
travel? How many turtle hatchlings survive? Answers to
these basic questions are critical to saving these and other
endangered species and to the conservation of the biodi-
versity of our planet. However, this basic data is barely
available for just a handful of species. The official body
that tracks the conservation status of planet’s species, In-
ternational Union for Conservation of Nature (IUCN) Red
List of Threatened Species™ [34], currently has over 79,000
species [36]. Yet, the Living Planet report, the most com-
prehensive effort to track the population dynamics of species
around the world, includes just 10,300 populations of just
3,000 species [12]. That’s not even 4%! Scientists do not
have the capacity to observe every species at the needed
spatio-temporal scales and resolutions and there are not
enough GPS collars and satellite tags to do so. Moreover,
invasive tracking can be dangerous to the animals [48].

Images of animals and their environment, intentionally
and opportunistically collected, are quickly becoming one
of the richest, most abundant, highest coverage and widely



available source of data. Coming from camera traps, cam-
eras mounted on vehicles or UAVs (drones), photographs
taken by tourists, citizen scientists, field assistants, scien-
tists, and public photo streams, many thousands of images
may be collected per day from just one location. Taking ad-
vantage of this rich but big and messy source of data is only
possible if we leverage computational approaches for every
stage of the process, including image collection, informa-
tion extraction, data modeling, and query processing. We
have developed algorithms and built a system, called Wild-
book™1, based on the state of the art machine learning and
data management approaches. Wildbook is an autonomous
computational system that starts with an arbitrary hetero-
geneous collection of photographs of animals (Figure 1).
Wildbook can detect various species of animals in those im-
ages (using DCNN) and identify individual animals of most
striped, spotted, wrinkled or notched species [10]. Wildbook
can find matches within the database: once an animal has
been identified, it can be tracked in other photographs. It
stores the information about who the animals are and where
and when they are there in a fully developed database, and
provides query tools to that data for scientists researching
population demographics, species distributions, individual
interactions and movement patterns [22].

Wildbook system allows to add biological data, as simple
as sex and age, but also habitat and weather information
which allows to truly do population counts, birth/death dy-
namics, species range, social interactions or interactions with
other species, including humans. An example of a Wildbook
for whales, Flukebook, page is shown in Figure ??.

Using Wildbook, it is possible to connect the information
about sightings of animals (who? where? when?) derived
from images to additional relevant data, providing the his-
toric, current, and projected context of these sightings, thus
enabling new science, conservation, and education, at un-
precedented scales and resolution. By layering additional
data sets, covering everything from climate change and ex-
treme weather to habitat ecology, agricultural development,
urbanization, deforestation, the exotic animal trade, and the
spread of disease, a much more detailed and useful picture of
what is happening — and why — can be constructed within
our architecture.

2. EXAMPLES OF WILDBOOK USES AND
IMPACT

Using our system, estimates of population sizes and move-
ment patterns can be far more accurate, creating a better
understanding of social structures and breeding of species,
relationships between predators and prey, and responses to
environmental pressures, including land use by humans and
long-term climate patterns. Wildlife managers are better
able to monitor the health of entire populations, discover
dangerous trends, and reduce conflicts between humans and
wildlife. Access to information about individual animals,
particularly visual information, can also increase the pub-
lic’s understanding of the workings of science and its role in
guiding conservation. By contributing their photographs for
scientific studies, visitors to parks and nature preserves in
return learn the life histories of the individual animals they
photograph and become connected to research projects and
to the animals. We now present several examples of real

1http://Wildbook.org

impact a system like Wildbook can make in conservation
policy, science, and public engagement.

2.1 Evidence-based conservation policy: Lewa
The first deployment of Wildbook was in January 2015 at

Lewa Wildlife Conservancy2 in Kenya helping manage the
endangered Grevy’s zebra population. The information from
Wildbook for Grevy’s showed that there are not enough ba-
bies surviving to adulthood mainly due to the lion predation.
This lead to a change in the lion population management
policy in Lewa helping save the endangered zebra.

2.2 Crowdsourcing accurate conservation data:
GZGC and GGR

Knowing the number of individual animals within a pop-
ulation (a population census) is one of the most impor-
tant statistics for research and conservation management in
wildlife biology. Moreover, a current population census is
often needed repeatedly over time in order to understand
changes in a population’s size, demographics, and distribu-
tion. This enables assessments of the effects of ongoing con-
servation management strategies. Furthermore, the number
of individuals in a population is seen as a fundamental basis
for determining its conservation status.

Unfortunately, producing a population census is difficult
to do at scale and across large geographical areas using tradi-
tional, manual methods. One of the most popular and preva-
lent techniques for producing a population size estimate is
mark-recapture [33, 35] via a population count. However,
performing a mark-recapture study can be prohibitively de-
manding when the number of individuals in a population
grows too large [41], the population moves across large dis-
tances, or the species is difficult to capture due to evasive-
ness or habitat inaccessibility. More importantly, however,
a population count is not as robust as a population census;
a count tracks sightings whereas a census tracks individuals.
A census is stronger because it can still produce a popula-
tion size estimate implicitly but also unlocks more powerful
ecological metrics that can track the long-term trends of in-
dividuals. In recent years, technology has been used to help
improve censusing efforts towards more accurate population
size estimates [8, 13, 44, 45] and scale up3. However, these
types of population counts are still typically custom, one-off
efforts, with no uniform collection protocols or data analysis,
and do not attempt to accurately track individuals within a
population across time.

To address the problems with collecting data and produc-
ing a scalable population census, we performed the follow-
ing [31]:

• using citizen scientists [9, 19] to rapidly collect a large
number of photographs over a short time period (e.g.
two days) and over an area that covers the expected
population, and

• using computer vision algorithms to process these pho-
tographs semi-automatically to identify all seen ani-
mals.

We showed that this proposed process can be leveraged
at scale and across large geographical areas by analyzing
the results of two completed censuses. The first census is

2http://www.lewa.org/
3penguinwatch.org, mturk.com



Figure 1: The Wildbook pipeline, starting with a collection of images, through species detection and individual
animal identification, to the web-based data management layer and individual animal page.

Figure 2: An example of a Flukebook (Wildbook for whales) page displaying information for an individual.



Cars Cameras Photographs
GZGC 27 55 9,406
GGR 121 162 40,810

Table 1: The number of cars, participating cameras
(citizen scientists), and photographs collected be-
tween the GZGC and the GGR. The GGR had over
3-times as many citizen scientists who contributed
4-times the number of photographs for processing.

Annots. Individuals Estimate
GZGC Masai 466 103 119 ± 4
GZGC Plains 4,545 1,258 2,307 ± 366
GGR Grevy’s 16,866 1,942 2,250 ± 93

Table 2: The number of annotations, matched in-
dividuals, and the final mark-recapture population
size estimates for the three species. The Lincoln-
Peterson estimate has a 95% confidence range.

the Great Zebra and Giraffe Count (GZGC) held March
1-2, 2015 at the Nairobi National Park in Nairobi, Kenya
to estimate the resident populations of Masai giraffes (Gi-
raffa camelopardalis tippelskirchi) and plains zebras (Equus
quagga). The second is the Great Grevy’s Rally (GGR)
held January 30-31, 2016 in a region of central and north-
ern Kenya covering the known migratory range of the en-
dangered Grevy’s zebra (Equus grevyi). While our method
relies heavily on collecting a large number of photographs,
it is designed to be simple enough for the average person
to help collect them. Any volunteers typically must only be
familiar with a digital camera and be able to follow a small
set of collection guidelines.

Mark-recapture is a standard way of estimating the size
of an animal population [7, 33, 35]. Typically, a portion of
the population is captured at one point in time and the in-
dividuals are marked as a group. Later, another portion
of the population is captured and the number of previously
marked individuals is counted and recorded. Since the num-
ber of marked individuals in the second sample should be
proportional to the number of marked individuals in the en-
tire population (assuming consistent sampling processes and
controlled biases), the size of the entire population can be
estimated.

The population size estimate is calculated by dividing the
total number of marked individuals during the first capture
by the proportion of marked individuals counted in the sec-
ond. The formula for the simple Lincoln-Peterson estima-
tor [30] is:

Nest =
K ∗ n
k

where Nest is the population size estimate, n is the number
of individuals captured and marked during the first capture,
K is the number of individuals captured during the second
capture, and k is the number of recaptured individuals that
were marked from the first capture.

The number of cars, volunteers, and the number of pho-
tographs taken for both rallies can be seen in Table 1.

By giving the collected photographs to a computer vi-
sion pipeline, a semi-automated and more sophisticated cen-

sus can be made. The speed of processing large qualities
of photographs allows for a more thorough analysis of the
age-structure of a population, the distribution of males and
females, and the movements of individuals and groups of
animals, etc. By tracking individuals, related to [21, 42],
our method is able to make more confident claims about
statistics for the population. The more individuals that are
sighted and resighted, the more robust the estimate and
ecological analyses will be.4 The resulting estimates of the
populations of Plains zebra and Maasai giraffe in NAirobi
National Park and of the species census of the Grevy’s ze-
bra are the most accurate to date and the Grevy’s zebra
numbers are now used as the official numbers of the Grevy’s
zebra global population size by IUCN Red List [38].

2.3 Crowdsourcing conservation data at scale:
Whaleshark, Flukebook, online social me-
dia

Today, Wildbooks for over a dozen species are available
or are in the process of development. Wildbook for whales,
Flukebook (http://flukebook.org/, started with just over
800 individuals less than two years ago, is fully functional
and helps track, protect, and study more than 11,600 marine
mammals. Wildbook for whale sharks (http://whaleshark.
org/) is the longest running animal sighting website which
started with a couple fo hundred individuals animals 16
years ago and has more than 8,000 individuals with over
50,000 sightings today. IUCN Red List uses whaleshark.org
for global populatino estimates [32]. There are several projects
with the WWF, World Wildlife Fund, with wildbooks for
Suomi rigned seals (http://norppagalleria.wwf.fi/), lynx
(http://lynx.wildbook.org), and sea turtles (the real IoT,
Internet of Turtles: http://iot.wildbook.org/). As each
Wildbook goes online, the number of identified individuals
for each species grows over an order of magnitude within less
than a year and Wildbook becomes the most reliable source
of data for the species. Moreover, over the last year, we
showed that social media can be a reliable source of infor-
mation about animal populations [27] and Whaleshark.org
uses public videos [46], while Flukebook is starting to use
public images as a supplementary source of information.

3. WITH GREAT DATA COMES GREAT RE-
SPONSIBILITY

3.1 Bias and accuracy
Like all data, photographic samples of animal ecology are

biased. These biases may lead to inaccurate population size
or dynamic estimates. For example, even for such an iconic
species as snow leopard, the last population estimate was
in 2003 and “many of the estimates are acknowledged to be
rough and out of date” [20]. Yet, its conservation status can
change depending on just a difference of a few individuals for
some geographic locations. Human observers tend to overes-
timate population sizes since they may misidentify the same
individual as different ones, while photo id provides evidence
that those are indeed the same. Thus, image-based census
can be used to support the more accurate population counts,

4Portions of the results in this section were previously re-
ported in two technical reports: [39] for the GZGC and [2]
for the GGR.



which, in turn, will affect conservation status or policies for
a species. That is indeed a big responsibility.

To administer a correct population census, we must take
these biases into account explicitly as different sources of
photographs inherently come with different forms of bias.
For example, stationary camera traps, cameras mounted on
moving vehicles, and drones are each biased by their loca-
tion, by the presence of animals at that location, by pho-
tographic quality, and by the camera settings (such as sen-
sitivity of the motion sensor) [14, 16, 17, 37]. These factors
result in biased samples of species and spatial distributions,
which recent studies are trying to overcome [1,23,50].

Any human observer, including scientists and trained field
assistants, is affected by observer bias [24, 25]. Specifically,
the harsh constraint of being at a single given location at a
given time makes sampling arbitrary. Citizen scientists, as
the foundation of the data collection, have additional vari-
ances in a wide range of training, expertise, goal alignment,
sex, age, etc. [11]. Nonetheless, recent ecological studies are
starting to successfully take advantage of this source of data,
explicitly testing and correcting for bias [47]; recent compu-
tational approaches address the question of if and how data
from citizen scientists can be considered valid [49], which can
be leveraged with new studies in protocol design and vali-
dation. There are multiple biases that influences the final
outcome of estimating population of a certain species from
images that are obtained from social media. Some of the
most prominent biases which influence the data we obtain
from social media are outlined in Figure 3. There are several
layers of biases, accumulating in the resulting bias of esti-
mating animal population properties from images. First,
there are biases in the types of animals that people typ-
ically photograph in sufficient numbers in the first place.
These may be charismatic or endangered species, or simply
the ones easily observed. Second, there are biases in what
images people take versus which ones they decide to share
publicly on social media. These range from the Hawthorne
Effect [3, 29, 40, 43] of changing behavior when knowing to
be observed, to biases introduced by the demographics of
the person sharing [5,29] and the choice of the social media
platform [6,15,28]. There are biases of our notions of beauty
and aesthetics and cultural differences. Any mark-recapture
model used to estimate the population size makes many as-
sumptions and introduces its own biases. The fundamental
question, however, is: Do any of these actually affect the es-
timates of the population size and other parameters and if so,
how? Menon has begun to answering this question [26] but a
lot of work remains to be done. Moreover, combining these
differently biased sources of data mutually constrains these
biases and allows much more accurate statistical estimates
than any one source of data would individually allow [4].

3.2 Security
As mobile phone masts went up across the world’s jun-

gles, savannahs and mountains, so did poaching. Wildlife
crime syndicates can not only coordinate better but can
mine growing public data sets [18]. Tourists are now warned
not to geotag photos [51] of big game but most have no
idea how to comply. The push for open research data is of-
ten in conflict with conservation, and new technologies such
as animal recognition from photographs bring new hazards.
Privacy matters for tigers, for snow leopards, for lions, and
indeed for elephants and rhinos and even tortoises or any

other endangered species. The privacy problems that hu-
mans face in an online globalized world mostly have parallels
for wildlife, with some of them different in fascinating ways.
The issues sprawl across many of the technical and policy
areas of classical security and privacy, from insider threats to
jurisdictional tangles, from multilevel policies to secondary-
use hazards, from covert channels to geofencing, and from
security economics to usability. Conservation law is stuck
in the twentieth century, and no-one seems to have started
to think about information security policy. It is urgent to
address the issues of privacy and security for image-based
wildlife data. To start, Wildbook has worked with the Cen-
ter for Trustworthy Scientific Cyberinfrastructure to design
a secure system to prevent data leakage and poachers’ access
yet more work remains to be done.

4. CONCLUSIONS AND CHALLENGES
We have designed, implemented and deployed a prototype,

and are continuing to develop Wildbook, an image-based
ecological information system. Using image analysis algo-
rithms and state-of-the-art information management infras-
tructure, Wildbook adds images, opportunistically and in-
tentionally crowdsourced and scientifically collected, to the
source of data about animals and provides the analytical
tools to gain scientific and conservation insight from those
data. As the new type of data, the images are not only aug-
menting the scale and resolution of existing scientific and
conservation inference, but allow new types of questions that
lead to new scientific understanding of why animals do what
they do, as well as a change in the conservation policy. More-
over, we have already demonstrated that Wildbook provides
a platform and a tool for a much more personal and commit-
ted public engagement in science and conservation than has
been available to date. By enabling events such as the Great
Zebra and Giraffe Count and Great Grevy’s Rally, Wildbook
both presents an instant, easily available, no-training-needed
route for general public contribution to science and conser-
vation, as well as creating a personal bond with animals and
nature by providing an instant individual animal identity.
Moreover, it provides data for evidence-based conservation
policy at large scale and high resolution over time, space,
and individual animals.

However, to achieve these new insights and engagement,
many challenges need to be overcome. In addition to the
many computational, scientific, and societal challenges, there
are two directly related to data. First, Wildbook requires a
new infrastructure that can function, synchronize, and coor-
dinate across many platforms, from the mobile phones and
GPS cameras of the citizen scientists, the bandwidth and
electricity-starved research stations and conservation out-
posts in remote uninstrumented locations, to the cloud in-
frastructure containing information about entire species and
regions, as well as the algorithms necessary for its analysis.
The data-related aspects of this infrastructure challenges
are about information aggregation, integration, synchroniza-
tion, semantic complexity, and access control. The second
big data-related challenge that the new data sources and the
enabled use of those data present is the unknown data biases
that challenge traditional computational methods and ana-
lytical tools. From the simplest population size and species
range estimates, the traditional methods rely on a uniform
random sampling regime. While it is not clear that the as-
sumption is true for any of the data collection methods, it



Figure 3: High level schematic representation of the problem of population estimation of wildlife species
using images from social media, its challenges and biases in play.

is most definitely does not hold for the data coming from
citizen scientists’ and tourists’ photographs. Our prelimi-
nary analysis shows that there are wide variations in the
number and rate of images taken and complex patterns of
camera and species fatigue that arise from demographic, cul-
tural, and event-specific factors. Accounting for or leverag-
ing those in designing the new generation of analytical tools
is a challenge and a goal of Wildbook and it is critical for
reliable conservation policy decisions.

Finally, one potential use of Wildbook that presents very
different data-related challenges is as a tool in wildlife crime
prevention. Wildbook ability to track individuals through
photographs during their life, as well as identifying these in-
dividuals by a reasonably sized part of the body later, given
that part has been previously photographed, allows photo-
graphic evidence to be used both in forensics and as a deter-
rence in poaching, killing, and illegal trafficking of animals.
Wildlife crime is threatening to wipe out many charismatic
species from the planet: rhino population (across species)
is down 90% from its hight [?] and 100,000 elephants were
killed over the last 3 years in Africa for ivory [?]. Many
charismatic fauna species, such as leopards, elephants, tigers,
zebras, snow leopards, turtles, and tortoises, have individual-
level uniquely identifiable body patterns, essentially ‘body-
prints’. With an Wildbook app, a law-enforcement official
would be able to take a picture of an animal crime victim
(alive or not) and be able to find a match in the reference
database if one exists. Thus, the identity, geographic ori-
gin and life history of the animal will be instantly available.
There are two types of primary users. The first are con-
servation and wildlife managers responsible for overseeing
a particular endangered species of identifiable fauna. They
collect photographs and submit information to Wildbook to
build up the databases. The second type of users are law
enforcement officials who would take pictures of animals or
their hides or carcasses, submit these to Wildbook to obtain,
if known, the identity and origin of the specimen.

The use of Wildbook or a similar information system in
the for the purposes of conservation of highly endangered
species or wildlife crime prevention presents a unique prob-
lem in data security and privacy. Ironically, every new tech-
nology is a “double-edged sword” for wildlife and is often
used by the criminals to aid in illegal wildlife trade [?], as
highlighted by the recent killing of Cecil the lion (who was

tracked using his GPS collar). Thus, the location, current
or predicted, of criminally valuable or highly endangered
species or individuals must be protected. Privacy and se-
curity protocols must be developed to protect animal data.
The balance of opening data for science, conservation, and
human curiosity must be weighed against the danger of ex-
posing animals to extinction.
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