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Abstract

This is a companion document to our Interspeech 2018 paper
“What to Expect from Expected Kneser-Ney Smoothing” [1]. It pro-
vides additional details and considerations regarding derivation, opti-
mizations and extensions of the n-gram smoothing on expected frac-
tional counts, a technique originally introduced in [5].

1 Kneser-Ney Smoothing Recap

The goal of n-gram language modeling is to produce smoothed probability
estimates for words in contexts. Let uuu be the context and w the next word.
Also, let c(uuuw) = #uuuw denote the number of observed occurrences of a
n-gram. The maximum likelihood probability of w given uuu is defined as:

pML(w|uuu) =
c(uuuw)

c(uuu)
=
c(uuuw)

c(uuu •)
=

c(uuuw)∑
w c(uuuw)

(1)

The formula has an obvious problem with counts of n-grams not observed
in training material. Count smoothing mitigates this problem. For each
uuu, it reduces counts of all or some observed n-grams uuuw and redistributes
the saved amount among the unobserved or all n-grams. While counts get
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redistributed, their cumulative is preserved unchanged:

p̃(w|uuu) =
c̃(uuuw)

c̃(uuu •)
=
c̃(uuuw)

c(uuu •)
=

c̃(uuuw)∑
w c(uuuw)

(2)

In absolute discounting [2] the amount by which n-gram counts get reduced
is a constant D, which results in:

c̃(uuuw) =

{
c(uuuw)−D, if c(uuuw) > 0
n1+(uuu •)Dquuu(w) otherwise

(3)

where n1+(uuu •) is the number of possible words • = w such that c(uuuw) ≥ 1.
Basically, we subtract a constant amount from all counts that are larger than
this amount1 and distribute the saved probability mass among all uuuw that
weren’t so lucky in a way that depends on uuu via distribution quuu(w).

Following Eq. 1, this discounting can also be expressed in terms of prob-
abilities:

p̃(w|uuu) =

{
c(uuuw)−D
c(uuu •) , if c(uuuw) > 0

n1+(uuu •)Dquuu(w)
c(uuu •) otherwise.

(4)

Context-independent constant D can be LOO-estimated as

D =
n1

n1 + 2n2

. (5)

where nr is the number of n-grams in the corpus that occurred exactly r
times [3]. Alternatively, a modified version [4] allows D to depend on c(uuuw) ∈
{1, 2, 3+}.

Kneser-Ney (KN) smoothing offers a specialization of quuu making it pro-
portional to a lower-order probability pkn defined below. Assuming u′u′u′ to be
the largest true suffix of uuu (|u′u′u′ | = |uuu | − 1), this proportionality requirement
becomes:

quuu(w) = q′(uuu)pkn(w|uuu′). (6)

Then, probability pkn is estimated from marginal constraints over the oldest
word in uuu [3] as:

pkn(w|u′u′u′) =
n1+(•u′u′u′w)

n1+(•u′u′u′ •)
. (7)

1In the setup with integer counts, this means we subtract some D < 1 from all n-grams
uuuw that occur at least once

2



With that, Eq. 3 can be rewritten like this:

c̃(uuuw) =

{
c(uuuw)−D, if c(uuuw) > 0
γ′(uuu)pkn(w|u′u′u′) otherwise

(8)

and Eq. 4 turns into:

p̃(w|uuu) =

{
c(uuuw)−D
c(uuu •) , if c(uuuw) > 0

γ(uuu)pkn(w|u′u′u′) otherwise
(9)

where relationship between γ′(uuu) and γ(uuu) is simply:

γ(uuu) =
γ′(uuu)

c(uuu •)
=
n1+(uuu •)Dq′(uuu)

c(uuu •)
. (10)

Instead of brute-force calculations, the context-dependent factor γ(uuu) can
be obtained via normalization:∑

w:c(uuuw)>0

p̃(w|uuu) +
∑

w:c(uuuw)=0

p̃(w|uuu) = 1 (11)

under the closed vocabulary assumption.
Taking a closer look at Eq. 7, we can treat its numerator n1+(•u′u′u′w) as a

pseudo-count of lower-order n-gram u′u′u′w. In its turn, the denominator is by
construction the sum of these pseudo-counts over w. Thus:

ckn(u′u′u′w) := n1+(•u′u′u′w)
ckn(u′u′u′ •) =

∑
w c

kn(u′u′u′w) =
∑

w n1+(•u′u′u′w) = n1+(•u′u′u′ •) (12)

These pseudo-counts can be discounted as well [4], leading to a discounted
version of the lower-order probabilities pkn(w|u′u′u′):

p̃kn(w|u′u′u′) =

{
ckn(u′u′u′w)−D

c(u′u′u′ •) , if ckn(u′u′u′w) > 0

γ(u′u′u′)pkn(w|u′′u′′u′′) otherwise
(13)

where u′′u′′u′′ is the right suffix of length |u′′u′′u′′ | = |u′u′u′ |−1 = |uuu |−2. The recursion
can go on all the way to unigrams where unigram KN probability Eq. 7 is
estimated as:

pkn(w) =
n1+(•w)

n1+(••)
(14)
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and the saved probability mass due to discounting can be either distributed
using trivial fall-back probabilities of zerograms or dedicated unknown sym-
bol <unk>, or spread equally (cf. Section 3.5).

Now, let us combine Eq. 7 and Eq. 13 into a single recursive formula for
better readability:

p̃(w|uuu) =

{
ĉ(uuuw)−D
ĉ(uuu •) , if ĉ(uuuw) > 0

γ(uuu) ∗ p̃(w|u′u′u′) otherwise
(15)

with

ĉ(uuuw) =

{
c(uuuw) = #(uuuw), if |uuuw | = N or uuuw = ”<s> . . . ”
ckn(uuuw) = n1+(•uuuw), otherwise

(16)

In practice, a separate constant D(n) (or, in the case of modified KN, 3-vector
of constants) can be estimated and used for each n-gram order n.

2 Kneser-Ney on Expected Counts

In the case of Expected KN, the data is viewed as a collection of n-grams with
probabilities that can be used to generate one or many ”real” corpora with
integer counts [5]. Therefore, all the statistics needed for KN-smoothing can
be computed from the expectations on the population of such ”real” corpora.
Taking expectation of Eq. 2 over observed frequency c(uuuw) = r and noticing
that conditional probabilities are independent of full counts:

p̃(w|uuu) =
E[c̃(uuuw)]

E[c(uuu •)]
=

E[c̃(uuuw)]∑
w E[c(uuuw)]

. (17)

The discounted counts that we used to compute via Eq. 8 for regular KN-
smoothing, now need to be turned into expectations as well:

E[c̃(uuuw)] =
∑
r>0

p(c(uuuw)=r)(r −D) + p(c(uuuw)=0)γ′(uuu)pkn(w|u′u′u′)(18)

= E[c(uuuw)]−DP +p(c(uuuw)=0)γ′(uuu)pkn(w|u′u′u′)

Eq. 18 is just an expanded form of an expectation formula, weighted sum of
several cases: if uuuw occurred one or more times, use the discounted version,
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otherwise fall back to pkn. For the last transition, average discount DP was
introduced as

DP := p(c(uuuw)>0) ∗D (19)

In the modified version of Expected KN, this term becomes:

DP := p(c(uuuw)=1) ∗D1 + p(c(uuuw)=2) ∗D2 + p(c(uuuw)≥3) ∗D3 (20)

where constants Dr correspond to occurrence counts c(uuuw) = r. Substituting
Eq. 18 into Eq. 17:

p̃(w|uuu) =
E[c(uuuw)]−DP∑

w E[c(uuuw)]
+ p(c(uuuw) = 0)γ(uuu)pkn(w|u′u′u′) (21)

We will return to the normalization coefficients γ(uuu) later. For now though,
let us focus on the KN-probability pkn(w|u′u′u′). Similar to Eq. 7 for integer-
count KN, this lower-order probability is defined in terms of numbers of
words w for which n-grams u′u′u′w occurred at least once, except this time, we
need to use expectations [5]:

pkn(w|u′u′u′) :=
E[n1+(•u′u′u′w)]

E[n1+(•u′u′u′ •)]
(22)

Now let us compute all the other statistics needed for Eqs. 19, 20, 21
and 22, such as Dr, E[c(uuuw)], p(c(uuuw) = r) and p(c(uuuw) > r) as well as
E[n1+(•u′u′u′w)] and E[n1+(•u′u′u′ •)].

First, assume that all n-grams come with weights 0 < p ≤ 1. As men-
tioned in the beginning of the section, instead of dealing with a single training
set of n-grams, we pretend to be given a distribution of training sets where
each n-gram is provided with a probability. In a particular instance of train-
ing set drawn from this distribution, the n-gram might or might not occur
(its c(uuuw) could be 1 or 0). The expected number of its occurrences in the
distribution of training sets will obviously be p.

Next, acknowledge that a n-gram uuuw can occur not once but K > 1
times; in the most general case, each occurrence will have its own probability
(weight) pk, k = 1, K2. The expected value of the cumulative frequency of
the n-gram in a set drawn from the training set distribution is

E[c(uuuw)] =
K∑
k=1

pk. (23)

2It should also be understood that sets {pk} are different for each n-gram

5



Probabilities of specific cumulative frequencies can be computed recursively:

p(c(uuuw)=r) = srK (24)

where

srk =


srk−1(1− pk) + sr−1k−1pk, if 0 ≤ r ≤ k
1, if k = r = 0
0, otherwise.

. (25)

Note that since we will only need these quantities for r ≤ 4, the overall
computational effort can be considered linear in K.

The expected value of the number of all n-grams with cumulative fre-
quency r is computed by simply summing over all n-grams:

E[nr] =
∑
uuuw

p(c(uuuw)=r) (26)

which, in its turn, allows us to define the expectation-version of the absolute
discount D [5]:

D =
E[n1]

E[n1] + 2E[n2]
, (27)

or a set thereof, for the modified Expected KN:

D1 = 1− 2DE[n2]
E[n1]

D2 = 2− 3DE[n3]
E[n2]

D3 = 3− 4DE[n4]
E[n3]

(28)

Similar to Eq. 26, we can also define marginals:

E[nr(uuu •)] =
∑
w

p(c(uuuw)=r) (29)

E[nr(•u′u′u′w)] =
∑
v

p(c(v u′u′u′w)=r) (30)

One-sided probabilities are similar to Eq. 24 but need to be protected
against rounding errors:

p(c(uuuw)≥r) = max

{
srK , 1−

∑
r′<r

sr
′

K

}
(31)
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and the corresponding marginals:

E[nr+(uuu •)] =
∑
w

p(c(uuuw)≥r) (32)

E[nr+(•u′u′u′w)] =
∑
v

p(c(v u′u′u′w)≥r) (33)

For recursive formulation of adjusted probability in Eq. 15, we treated
numerator and denominator of Eq. 7 as KN-counts. Similarly, we can treat
numerator and denominator in Eq. 22 as expectations of KN-counts:

pkn(w|u′u′u′) =
E[ckn(u′u′u′w)]

E[ckn(u′u′u′ •)]
(34)

with

E[ckn(u′u′u′w)] = E[n1+(•u′u′u′w)] =
∑

v p(c(v u
′u′u′w)>0)

E[ckn(u′u′u′ •)] =
∑

w E[ckn(u′u′u′w)] =
∑

w

∑
v p(c(v u

′u′u′w)>0)
(35)

It is easy to see that regular and KN counts c(uuuw) and ckn(uuuw) can only be
zero at the same time. Therefore, probabilities of either count being zero are
equal:

pkn(c(uuuw)=0) = p(c(uuuw)=0) = s0K . (36)

Hence, the recursive version of Eq. 21 can be written as:

p̃(w|uuu) :=
E[ĉ(uuuw)]−DP∑

w E[ĉ(uuuw)]
+ p(ĉ(uuuw)=0)γ(uuu)p̃(w|u′u′u′) (37)

with

E[ĉ(uuuw)] =

 E[c(uuuw)] =
∑K

k=1 pk (Eq. 23), if |uuuw | = N
or uuuw = ”<s> . . . ”

E[ckn(uuuw)] =
∑

v p(c(v uuuw)>0) (Eq. 35) otherwise

(38)
and p(ĉ(uuuw) = 0) = s0K , due to Eqs. 24 and 36. Again, we can decide to
estimate separate absolute discounts DP (n) for each n-gram order n = |uuuw |,
though for simplicity, we will skip this index in most of the formulae below.

At last, just like it was done for regular KN-smoothing in Eq. 11, we
compute normalization coefficients γ(uuu) for each uuu from stochastic conditions
on probabilities (sum over w is 1.0).

γ(uuu) =
1−

∑
w

E[ĉ(uuuw)]−DP∑
v E[ĉ(uuu v)]∑

w p(ĉ(uuuw)=0) ∗ p̃(w|u′u′u′)
(39)
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If the language model is to be built without n-gram count cutoffs, the
above formula can be simplified:

γ(uuu) =

∑
wDP∑

w E[ĉ(uuuw)] ∗
∑

w p(ĉ(uuuw)=0)p̃(w|u′u′u′)
(40)

(for impact of cutoffs, see Section 3.6). According to that, summation has
to be conducted over all words w in the vocabulary for all contexts uuu. This
is often infeasible for realistic models with 100M n-grams and vocabulary
size on the order of millions. The good news is that only n-grams uuuw that
actually occur in the training data get to contribute to the numerator sum
and the first denominator sum, but what about the other denominator sum:∑

w p(ĉ(uuuw) = 0)p̃(w|u′u′u′)? This sum can be split into two: one for w’s such
that uuuw exists in the training data, the other for the ones where it doesn’t.
The first sub-sum is computed as prescribed, the addends of the second all
have in common that their p(ĉ(uuuw)=0) is always 1.0. Therefore, the second
sub-sum is just:

∑
w:c(uuuw)=0 p̃(w|u′u′u′). On the other hand, due to stochastic

conditions on the lower-order probabilities p̃(w|u′u′u′):∑
w:c(uuuw)=0

p̃(w|u′u′u′) = 1−
∑

w:c(uuuw)>0

p̃(w|u′u′u′) (41)

and so we are back to just the observed n-grams. Then, the entire sum
becomes: ∑

w

p(ĉ(uuuw)=0)p̃(w|u′u′u′) =∑
w:c(uuuw)>0)

p(ĉ(uuuw)=0)p̃(w|u′u′u′) + 1−
∑

w:c(uuuw)>0

p̃(w|u′u′u′) =

1 +
∑

w:c(uuuw)>0)

(p̂(c(uuuw)=0)− 1)p̃(w|u′u′u′) (42)

and a more practical version of Eq. 39:

γ(uuu) =

∑
w:c(uuuw)>0DP∑

w:c(uuuw)>0E[ĉ(uuuw)] ∗
(

1−
∑

w:c(uuuw)>0(1− p(ĉ(uuuw)=0))p̃(w|u′u′u′)
)

(43)
We now have everything to compute discounted probabilities.
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3 Practical Considerations

In this section several practical topics of working with Expected KN are
addressed.

3.1 Back-off LM

Formula 37 can be easily split into two cases:

• “Out of Training” case where n-gram uuuw is not present in the training
material at all. This means p(c(uuuw) = 0) = 1.0 and only a simplified
version of the second addend survives

• the most general case where formula 37 is used in its original form.

This means that the model defines probability of w following uuu as:{
p̃(w|uuu) (from 37) if uuuw observed in input data set
γ(uuu) ∗ p̃(w|u′u′u′) otherwise

(44)

In Eq. 44, it is easy to recognize Katz back-off model with adjusted n-gram
probability p̃(w|uuu) and back-off penalty γ(uuu), which means that the Expected
KN smoothing can be saved in the familiar ARPA format.

3.2 Implementation

Let’s summarize the algorithm to compute discounted probabilities p̃(w|uuu)
and γ(uuu).

1. assume for now that we have already accumulated statistics srK for
r = 0, 4 for each n-gram uuuw

2. compute occurrence probabilities p(c(uuuw) = r) (Eq. 24), p(c(uuuw)≥ r)
(Eq. 31) and p(c(uuuw) > 0) = 1 − p(c(uuuw) = 0). Also compute count
expectations E[c(uuuw)] (Eq. 23)

3. compute Expected KN-counts E[ckn(u′u′u′w)] using Eq. 35

4. estimate per-n-gram-order frequency expectations E[nr] with Eq. 26
and absolute discounts DP (or DP (n)) with Eqs. 19 and 27 for regular
Expected KN and Eqs. 20 and 28 for the modified version.
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5. recursively, starting with n-gram order n=1 and increasing to full order
N , do the following:

(a) compute count expectations for each observed n-gram uuuw using
Eq. 38 (while relying on statistics precomputed in Steps 2 or 3)

(b) estimate γ(uuu) via Eq. 43 (assuming that the lower-order discounted
KN-probabilities p̃(w|u′u′u′) are already available from the previous
iteration)

(c) compute discounted version of KN-probability p̃(w|uuu) using Eq. 37

3.3 Repeated Patterns

Now, let us focus on statistics srK accumulated individually for each n-gram.
These statistics can be computed in a single pass over the training corpus. As
we advance in the training data set and encounter new instances of an n-gram,
we can use Eq. 25 to update five probabilities sr of observing this n-gram
r = 0, 4 times in a “real” (non-fractional) corpus sampled from probabilities
defined by these instances. However, a significant speed-up can be achieved
if “compact” representations of the n-grams are provided in format:

n-gram probability #repetitions
For instance, let us estimate all sr for unigram “hello” from this data:

hello world 0.8 14
hello world 0.3 9
hello baby 0.9 11

Having only seen the first sentence (probability p = 0.8 and number of
repetitions m = 14) we can already generate a sample of a training cor-
pus. The probability of not observing “hello” a single time in this sample is
s0 = (1− 0.8)14 (none of the 14 coin tosses with success probability 0.8 actu-
ally succeeded). By comparison, observing this n-gram exactly once means
that only one coin toss succeeded and the rest failed. The general formula is
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k-combination:

s0m = (1− p)m

s1m = m(1− p)m−1 ∗ p

s2m =
m(m− 1)

2
(1− p)m−2 ∗ p2

s3m =
m(m− 1)(m− 2)

6
(1− p)m−3 ∗ p3

s4m =
m(m− 1)(m− 2)(m− 3)

24
(1− p)m−4 ∗ p4 (45)

and remember that we only need to compute these statistics for r ≤ 4. As
we take into consideration the second sentence, probability s0 of not seeing
“hello” in the corpus generated from these two sentences is the probability of
generating this n-gram neither from the m1 = 14 occurrences of probability
p1 = 0.8 nor from m2 = 9 occurrences of probability p2 = 0.3. Summarizing
updates for all five sr:

s0m1+m2
= s0m1

∗ s0m2
(46)

s1m1+m2
= s1m1

∗ s0m2
+ s0m1

∗ s1m2

s2m1+m2
= s2m1

∗ s0m2
+ s1m1

∗ s1m2
+ s0m1

∗ s2m2

s3m1+m2
= s3m1

∗ s0m2
+ s2m1

∗ s1m2
+ s1m1

∗ s2m2
+ s0m1

∗ s3m2

s4m1+m2
= s4m1

∗ s0m2
+ s3m1

∗ s1m2
+ s2m1

∗ s2m2
+ s1m1

∗ s3m2
+ s0m1

∗ s4m2

In exactly the same way we continue updating running values srm1+m2+m3...

for all other input sentences containing “hello”. As a result, the overall com-
plexity is linear in the number of unique n-gram/probability combinations.

3.4 Input as a Number of Weighted Alternatives

One of the most common reasons for fractional counts is training on uncertain
data. The uncertainty can be expressed via weighted graphs (e.g. speech
lattices) or a number of linear alternatives (ASR n-best). What makes this
setup interesting is that n-grams from alternative paths (explicit or through
graph) cannot be considered independently. For instance, if there are two
alternatives with weights:

hello world 0.8
hello baby 0.2
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they do not contribute to the unigram “hello” twice (once with p=0.8 and
another time with p=0.2), but rather a single time with p=1.0. The difference
is significant: in the first version there is a positive chance that the sample
corpus drawn from the training data will have no “hello” at all. In the second,
this chance is nil. Therefore, probabilities of each n-grams in all paths need
to be accumulated (sometimes, for convenience we need to assume that each
path contains at most one). This is, for instance, how Good-Turing approach
on uncertain data works in [6].

In this report, we are only concerned with a simplified setup with a num-
ber of discrete linear alternatives for each sentence weighted by their poste-
riors. In that case, one approximate solution is to merge these into a single
word trie while accumulating posteriors on each arc3. Then, all paths of
length up to N from the root of this trie can be extracted with weights
computed as products of probabilities along each path.

3.5 Dealing with the Unknown

Language models can contain a token explicitly representing all unknown
words. Usually, this token is only present as a unigram and never occurs
in higher order n-grams. Therefore, when computing discounted probability
p̃(w|uuu), uuu is truncated (from the “older” side) to contain only known words
without incurring any penalty. On the other hand, if w itself is unknown, this
probability automatically turns into unigram probability punk = p(<unk>).
If this probability is very small, its effect is negligible. However, for larger
punk, the already discounted n-gram probability estimates p̃(w|uuu) from Eq. 37
need to be further reduced to accommodate for an extra addend in the
stochastic condition.

The easiest way to do this is by computing γ(uuu) and p̃(w|uuu) just like we
did before in Eqs. 37, 43 and 44, and then retrospectively renormalize the
probabilities to sum up to 1− punk:

p̃′(w|uuu) = (1− punk)p̃(w|uuu) (47)

γ′(uuu) = (1− punk)γ̃(uuu) (48)

3Compare this with the proper way where forward/backward statistics from the full
graph would be considered.
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Next, just like with higher orders, unigram probability estimates need to
be discounted as:

E[ĉ(uuuw)]−DP∑
w E[ĉ(uuuw)]

(49)

However, KN smoothing does not offer a clear guidance as to how to redis-
tribute spared unigram probability mass in this case. If we want to continue
rely on Eq. 37, some kind of replacement for zerogram KN-probability needs
to be agreed upon. For instance, the spared probability can be redistributed
among all unigrams equally (SRILM approach) or according to the ML prob-
ability estimates (which amounts to doing no smoothing at all), or following
some compromise solution. For instance, in our experiments we found it
advantageous to apply square root flattening to ML unigram probability es-
timates for this purpose.

3.6 N-gram Frequency Cuttoffs

Oftentimes, minimum frequency requirements (cutoffs) are imposed on n-
grams while estimating language models. Together with entropy-based prun-
ing, cutoffs are useful to keep in check language model size. Specifically for
KN-smoothing, such cutoffs appear to be working better when applied to
KN-counts rather than the original counts [7]. For Expected KN, the thresh-
olds can be real-valued.

What is the effect of cutoffs on the formulae we devised earlier and, specif-
ically, on how these formulae can be applied in practice? For instance, in the
numerator of Eq. 39, we assumed the sum over all present n-grams uuuv to be
the same as the sum over all present and considered n-grams uuuw, and this
allowed to simplify this formula into Eq. 40. With cutoffs, this simplification
does not work, and as a result an additional quantity needs to be maintained
for each context:

Ĉ(uuu) :=
∑
w

ĉ(uuuw). (50)

For regular counts, values Ĉ(uuu) are identical to counts c(uuu), and for KN-
counts, they are the sum of KN-counts over all uuuw before cutoff thresholds
are applied. Going over to expectations, Eq. 39 can be rewritten as:

γ(uuu) =
1−

∑
w

E[ĉ(uuuw)]−DP
E[Ĉ(uuu)]∑

w p(ĉ(uuuw)=0) ∗ p̃(w|u′u′u′)
=

E[Ĉ(uuu)]−
∑

w(E[ĉ(uuuw)]−DP )

E[Ĉ(uuu)] ∗
∑

w p(ĉ(uuuw)=0)p̃(w|u′u′u′)
(51)
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Since summation happens only over the n-grams that survived cutoff applica-
tion, the difference to Eq. 39 is significant (E[Ĉ(uuu)] 6=

∑
w E[ĉ(uuuw)]). Other

variants of Eq. 39 need to be adjusted accordingly as well. For instance,
Eq. 43 turns into:

γ(uuu) =
E[Ĉ(uuu)]−

∑
w:c(uuuw)>0(E[ĉ(uuuw)]−DP )

E[Ĉ(uuu)] ∗ (1−
∑

w:c(uuuw)>0(1− p(ĉ(uuuw)=0))p̃(w|u′u′u′))
(52)

Similarly, the discounted probability from Eq. 37 is now

p̃(w|uuu) :=
E[ĉ(uuuw)]−DP

E[Ĉ(uuu)]
+ p(ĉ(uuuw)=0)γ(uuu)p̃(w|u′u′u′) (53)

4 Interpolated Modified Expected Kneser-Ney

Smoothing

In [4] it was noted that interpolated version of the KN smoothing generally
leads to better results. The difference to the back-off KN lies in distributing
the saved probability mass among all words in the vocabulary and not just
among the words that never occurred in the context uuu. Not only does this
version lead to better results, it also happens to be easier to implement: we
just need to drop p(ĉ(uuuw) = 0) from all formulae for γ(uuu) and p̃(w|uuu). For
instance, instead of Eq. 53 we will have:

p̃(w|uuu) :=
E[ĉ(uuuw)]−DP

E[Ĉ(uuu)]
+ γ(uuu)p̃(w|u′u′u′) (54)

and in place of Eq. 51, there will be

γ(uuu) =
E[Ĉ(uuu)]−

∑
w(E[ĉ(uuuw)]−DP )

E[Ĉ(uuu)] ∗
∑

w 1 ∗ p̃(w|u′u′u′)
=
E[Ĉ(uuu)]−

∑
w(E[ĉ(uuuw)]−DP )

E[Ĉ(uuu)]
(55)

The interpolated version can also be expressed as a back-off language model
(ARPA format) with discounted probability of an observed and preserved
n-gram uuuw defined as:

α(uuuw) = log10(p̃(w|uuu) + γ(uuu) ∗ p̃(w|u′u′u′)) (56)

and the back-off penalty associated with context uuu being

β(uuu) = log10(γ(uuu)) (57)
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5 Witten-Bell Smoothing Recap

In Witten-Bell Discounting, probability of falling back on the shortened con-
text is the ML estimate of how often during training, previously unseen
tokens had been observed following given history. The interpolation version
is:

p̃(w|uuu) =
c(uuuw)∑

w c(uuuw) + n1+(uuu •)
+

n1+(uuu •)∑
w c(uuuw) + n1+(uuu •)

p̃(w|u′u′u′) (58)

and the back-off modification:

p̃(w|uuu) =

{
c(uuuw)∑

w c(uuuw)+n1+(uuu •) , if c(uuuw) > 0

γ(uuu)p̃(w|u′u′u′), otherwise
(59)

Summing over all words in the lexicon, realizing that cumulative proba-
bility of the observed tokens is just one minus probability of the unseen ones
and, finally, taking probability of unknown into account:

1.0 = punk +

∑
w c(uuuw)∑

w c(uuuw) + n1+(uuu •)
+ γ(uuu)(1.0− punk−

∑
w

p̃(w|u′u′u′)) (60)

with summation carried out over words w that have been observed after uuu.
This leads to an estimate for γ(uuu):

γ(uuu) =

n1+(uuu •)∑
w c(uuuw)+n1+(uuu •) − punk

1−
∑

w p̃(w|u′u′u′)− punk
(61)

6 Expected Witten-Bell Smoothing

Similarly to Expected KN, we can define conditional probability via expec-
tations:

p̃(w|uuu) =
∑
r>0

p(c(uuuw) = r)
c(uuuw)∑

w c(uuuw) + n1+(uuu •)
+ p(c(uuuw)=0)γ(uuu)p̃(w|u′u′u′)

= E

[
c(uuuw)∑

w c(uuuw) + n1+(uuu •)

]
+ p(c(uuuw)=0)γ(uuu)p̃(w|u′u′u′) (62)

15



Unlike Expected Kneser-Ney, taking expectation over c(uuu) under the fraction
can only be considered a first order approximation [8]. In the absence of a
better option, let’s proceed with that approximation.

p̃(w|uuu) ≈ E[c(uuuw)]∑
w E[c(uuuw)] + E[n1+(uuu •)

+ p(c(uuuw)=0)γ(uuu)p̃(w|u′u′u′) (63)

Summing up over all words w in the vocabulary (and taking punk into ac-
count):

1.0 = punk +

∑
w E[c(uuuw)]∑

w E[c(uuuw)] + E[n1+(uuu •)]
+
∑
w

p(c(uuuw)=0)γ(uuu)p̃(w|u′u′u′) (64)

Solving for γ(uuu):

γ(uuu) =
1−

∑
w E[c(uuuw)]∑

w E[c(uuuw)]+E[n1+(uuu •)] − punk∑
w p(c(uuuw)=0)p̃(w|u′u′u′)

(65)

Next, following the same arguments we used in Eq. 42 (and not forgetting
punk), we notice:∑

w

p(ĉ(uuuw)=0)p̃(w|u′u′u′) = 1−punk−
∑

w:c(uuuw)>0)

p̃(w|u′u′u′)(1− p̂(c(uuuw)=0)) (66)

Besides, since we are only dealing with ordinary counts, the sum
∑

w E[c(uuuw)]
in the numerator that goes over all observed n-grams (incl.those that will be
removed after cutoffs) can be replaced by E[c(uuu)]. With that:

γ(uuu) =
1−

∑
w:c(uuuw)>0) E[c(uuuw)]

E[c(uuu)]+E[n1+(uuu •)] − punk
1− punk−

∑
w:c(uuuw)>0) p̃(w|u′u′u′)(1− p̂(c(uuuw)=0))

(67)

7 Experiments and Results

For experimental evaluation of the above techniques please see our Inter-
speech paper [1].
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