
What to Expect from Expected Kneser-Ney Smoothing

Michael Levit, Sarangarajan Parthasarathy, Shuangyu Chang

Microsoft, USA
{mlevit|sarangp|shchang}@microsoft.com

Abstract

Kneser-Ney smoothing on expected counts was proposed re-
cently in [1]. In this paper we revisit this technique and suggest
a number of optimizations and extensions. We then analyze
its performance in several practical speech recognition scenar-
ios that depend on fractional sample counts, such as training on
uncertain data, language model adaptation and Word-Phrase-
Entity models. We show that the proposed approach to smooth-
ing outperforms known alternatives by a significant margin.

Index Terms: Language Modeling, Fractional Counts, Ex-
pected Kneser-Ney Smoothing

1. Introduction
Despite rapid advances of neural network language modeling,
n-gram models remain at the center of most ASR systems,
be it in the first-pass recognition or as part of a second-pass
rescoring setup in combination with other model types. Kneser-
Ney smoothing and its variants [2, 3] have been de facto stan-
dard smoothing for n-gram LMs for decades. However, when
dealing with LM training on uncertain data, researchers had to
switch to other techniques (such as fractional Witten-Bell [4]),
since there was no straightforward extension of KN-smoothing
to fractional counts. Recently, a clever modification of KN
smoothing was proposed that accommodated fractional counts
[1]. Instead of dealing with fractional counts directly, the au-
thors viewed them as the probability of observing an n-gram in
a sample corpus and modified the KN smoothing algorithm to
work with count expectations over training corpora.

There are several language modeling scenarios that rely on
fractional counts of input samples and can therefore welcome
this extension. For instance, unsupervised language model
training and adaptation on ASR transcripts was shown to be
beneficial as the amounts of unsupervised data increased [5].
The scores of the transcription hypotheses can also be used to
improve LM quality via thresholding [6], sampling [7] or direct
modification of the smoothing algorithm [8]. We therefore ex-
pect the algorithm from [1] to be helpful for this scenario. A
similar argument can be applied to LM training on competing
human transcriptions hypotheses. Another relevant scenario is
adaptation where training material is projected on a number of
pre-defined or latent topics, and for each of these topics a dedi-
cated language model is built. Finally, fractional counting tech-
niques apply naturally to Word-Phrase-Entity LMs [9], where
the probability mass of training sentences is split among its pos-
sible representations in terms of phrases and entities. In this
paper we analyze benefits of the expected KN on all these sce-
narios. We also discuss several modifications of the technique
such as n-gram cutoffs, training on sentences with accumulated
counts and n-best, and review expected version of the Witten-
Bell smoothing.

2. Expected Kneser-Ney Smoothing
In this section we introduce KN smoothing on expected counts,
closely following the material from [1]. In addition, in [10] we
have published an in-depth derivation of the formulae below.
First, recall the standard KN smoothing as a version of absolute
discounting turning n-gram counts into:

c̃(uuuw) =

{
c(uuuw)−D, if c(uuuw) > 0
γ′(uuu)pkn(w|u′u′u′) otherwise (1)

that falls back on special lower order probability of the form:

pkn(w|u′u′u′) = n1+(•u′u′u′w)
n1+(•u′u′u′ •)

. (2)

In the above, D is estimated via Leave-One-Out as

D = n1/(n1 + 2n2)

with nr standing for the number of n-grams in the corpus that
occurred exactly r times (nr+ meaning “at least r”) and • be-
ing “any word”. Normalization factor γ′(uuu) for context uuu is
computed to assure stochastic conditions for probabilities. In
addition, the Modified KN flavor [3] calls for separate esti-
mates D(n)

r for different r (up to 3) and n-gram orders, recur-
sive smoothing applied to KN-estimates and (optionally) replac-
ing back-offs with interpolation. This smoothing technique has
been repeatedly shown to outperform most of its competitors.

The basic idea behind expected KN (eKN) is to replace the
counts with their expectations over the training corpus in which
each n-gram instance would appear with the probability equal
to the specified fractional count:

p̃(w|uuu) = E[c̃(uuuw)]

E[c(uuu •)] =
E[c̃(uuuw)]∑
v E[c(uuuv)]

. (3)

This turns back-off probability in Eq. (2) into

pkn(w|u′u′u′) := E[n1+(•u′u′u′w)]
E[n1+(•u′u′u′ •)]

. (4)

Following definition of expectation, Eq. (1) becomes:

E[c̃(uuuw)]

=
∑
r>0

p(c(uuuw)=r)(r −D) + p(c(uuuw)=0)γ′(uuu)pkn(w|u′u′u′)

= E[c(uuuw)]−DP +p(c(uuuw)=0)γ′(uuu)pkn(w|u′u′u′) (5)

where the last step introduced average discount

DP := p(c(uuuw)>0) ∗D (6)

which, for the modified KN, turns into

DP := p(c(uuuw)=1)∗D1+p(c(uuuw)=2)∗D2+p(c(uuuw)≥3)∗D3

(7)



(for brevity, we will omit the n-gram index). Going over to
probabilities, and introducing a new normalization factor γ(uuu),
Eq. (5) becomes:

p̃(w|uuu) = E[c(uuuw)]−DP∑
v E[c(uuuv)]

+ p(c(uuuw) = 0)γ(uuu)pkn(w|u′u′u′)

(8)
To compute statistics needed in Eq. (5), [1] notice that if an
n-gram occurs K times in a corpus with respective fractional
counts pk, by taking this counts as probabilities, the expectation
of the total count of this n-gram is:

E[c(uuuw)] =

K∑
k=1

pk. (9)

Probabilities of specific cumulative frequencies r given k frac-
tional instances can be computed recursively with:

p(c(uuuw)=r) = srK (10)

where

srk =

 srk−1(1− pk) + sr−1
k−1pk, if 0 ≤ r ≤ k

1, if k = r = 0
0, otherwise.

(11)

The complexity remains linear in k since r ≤ 4. The expected
value of the number of all n-grams with cumulative frequency r
is computed by summing over all n-grams:

E[nr] =
∑
uuuw

p(c(uuuw)=r) (12)

which, in turn, allows us to define the expectation-version of the
absolute discounts. Here, for the modified version:

D = E[n1]/(E[n1] + 2E[n2])

D1 = 1− 2DE[n2]
E[n1]

D2 = 2− 3DE[n3]
E[n2]

D3 = 3− 4DE[n4]
E[n3]

(13)

For a recursive version of the eKN smoothing, observe that,
just like Eq. (3), probability in Eq. (4) can be viewed as a frac-
tion of two expected counts: “KN-counts”. This and a simple to
prove equivalence of probabilities of zero occurrences for orig-
inal and KN-counts, allows us to write:

p̃(w|uuu) := E[ĉ(uuuw)]−DP∑
v E[ĉ(uuuv)]

+ p(ĉ(uuuw)=0)γ(uuu)p̃(w|u′u′u′)

(14)
with

E[ĉ(uuuw)] =


E[c(uuuw)] =

∑K
k=1 pk if |uuuw | = N

or uuuw = ”<s> . . . ”
E[ckn(uuuw)] =

∑
v p(c(vuuuw)>0) otherwise

For more details, please see [1, 10].

3. Proposed Solutions and Extensions
Next, we describe a number of extensions and practical solu-
tions for the eKN framework making it usable for realistic sce-
narios. To compute normalization factor γ(uuu), we observe that
sum of Eqs. (14) over w should be 1 for all uuu, resulting in:

γ(uuu) =
1−

∑
w

E[ĉ(uuuw)]−DP∑
v E[ĉ(uuuv)]∑

w p(ĉ(uuuw)=0) ∗ p̃(w|u′u′u′)
(15)

First, consider the case, where no n-gram cutoffs are applied. In
this case, Eq. (15) can be simplified as:

γ(uuu) =

∑
wDP∑

w E[ĉ(uuuw)] ∗
∑

w p(ĉ(uuuw)=0)p̃(w|u′u′u′)

=

∑
w:c(uuuw)>0DP∑

w:c(uuuw)>0E[ĉ(uuuw)]
∗ (16)

1

1−
∑

w:c(uuuw)>0(1− p(ĉ(uuuw)=0))p̃(w|u′u′u′)

where the second transition is due to decomposition:∑
w

p(ĉ(uuuw)=0)p̃(w|u′u′u′) =∑
w:c(uuuw)>0

p(ĉ(uuuw)=0)p̃(w|u′u′u′) + 1−
∑

w:c(uuuw)>0

p̃(w|u′u′u′) =

1 +
∑

w:c(uuuw)>0

p̃(w|u′u′u′) (p̂(c(uuuw)=0)− 1) (17)

This allows for easy summation over just the n-grams uuuw that
were observed in training.

3.1. Cutoffs and Pruning

Practical applications often impose restrictions on LM size.
One of the ways to reduce the size is through introducing cutoff
thresholds on n-gram counts. In our experiments, we confirmed
that just like for standard KN, eKN provides best results when
these cutoffs are applied to KN-counts. Like the counts them-
selves, these thresholds can be real-valued. With some n-grams
eliminated, the numerator term of Eq. (15) needs to be revisited.
This time, cumulative counts

Ĉ(uuu) :=
∑
w

ĉ(uuuw) (18)

need to be maintained separately (at least for the KN-counts)
and the formula for γ becomes:

γ(uuu) =
E[Ĉ(uuu)]−

∑
w(E[ĉ(uuuw)]−DP (n))

E[Ĉ(uuu)] ∗
∑

w p(ĉ(uuuw)=0)p̃(w|u′u′u′)
(19)

A similar adjustment needs to be made to other formulae as
well; for instance, in the denominator of Eq. (14).

The other technique to reduce the model size is entropy-
based pruning which is independent of the smoothing method
and can be applied to the resulting LM without restrictions.
Nonetheless, mindful of possible losses due to aggressive
entropy-based pruning of KN-trained LMs [11], for our exper-
iments, we kept the pruning threshold to be less than 1e-8 and
observed little to no degradation due to pruning while still dras-
tically reducing model size.

3.2. Compact Representation

Realistic corpora often contain multiple instances of the same
examples. Their counts can be easily incorporated in the com-
putation of all standard smoothing techniques, including KN,
but for eKN a variation of Eq. (11) needs to be applied to pro-
duce cumulative statistics srK . If m instances of an n-gram oc-
curred with probability p, the probability of observing this n-



gram r = 0, 1, 2, . . . times is:

s0m = (1− p)m (20)
s1m = m(1− p)m−1 ∗ p

s2m =
m(m− 1)

2
(1− p)m−2 ∗ p2

. . .

which can be efficiently computed via recursion. If we have two
instances, one occurring m1 times with probability p1 and the
other occurring m2 times with probability p2, corresponding
statistics srmi

can be combined in an obvious way:

s0m1+m2
= s0m1

∗ s0m2
(21)

s1m1+m2
= s1m1

∗ s0m2
+ s0m1

∗ s1m2

s2m1+m2
= s2m1

∗ s0m2
+ s1m1

∗ s1m2
+ s0m1

∗ s2m2

. . .

By induction, this can be applied to all occurrences of the n-
gram in the corpus eventually resulting in srK .

3.3. N-best

Training on sets of alternative sentence representation is a com-
mon strategy in language modeling. For instance, it is known
that unsupervised training on ASR n-best hypotheses can boost
language model quality for an existing application [7]. Un-
like independent training sentences, n-grams from n-best al-
ternatives of the same sentence can’t be considered indepen-
dently. For instance, if there are two alternatives with (poste-
rior) weights:

hello world 0.8
hello dolly 0.2

they do not contribute to the unigram “hello’’ twice (once with
p=0.8 and another time with p=0.2), but rather a single time
with p=1.0. The difference is significant: in the first case, there
is a non-zero probability that a sample corpus drawn from the
training data will have no “hello”’ at all. In the second case,
the “hello” is guaranteed to appear in the sample corpus . The
proper way to handle such input is to operate on lattices [8].
In our experiments, we use a simpler representation that turns
n-best strings into an n-gram trie.

3.4. Interpolated Version (with Cutoffs)

In [3] it was noted that interpolated version of the KN smooth-
ing generally leads to better results. The difference to the origi-
nal KN is in spreading saved probability mass across all words
in the context uuu and not just the words that never occurred in
it. This version also happens to be easier to implement [1]: we
just need to drop p(c(uuuw) = 0) from all formulae for γ(uuu) and
p̃(w|uuu). For instance, instead of Eq. (14) there will be:

p̃(w|uuu) := E[ĉ(uuuw)]−DP
E[Ĉ(uuu)]

+ γ(uuu)p̃(w|u′u′u′) (22)

and in place of Eq. (19):

γ(uuu) =
E[Ĉ(uuu)]−

∑
w(E[ĉ(uuuw)]−DP )

E[Ĉ(uuu)] ∗
∑

w 1 ∗ p̃(w|u′u′u′)

=
E[Ĉ(uuu)]−

∑
w(E[ĉ(uuuw)]−DP )

E[Ĉ(uuu)]
(23)

Like the integer-valued KN, the interpolated version of the ex-
pected KN can be also expressed as a back-off language model

(ARPA format) with discounted logscores for n-gram uuuw

α(uuuw) = log(p̃(w|uuu) + γ(uuu) ∗ p̃(w|u′u′u′)) (24)

and the back-off penalty associated with context uuu

β(uuu) = log(γ(uuu)) (25)

3.5. Expected Witten-Bell

Similar to eKN, we can define expectation-based conditional
probability for Witten-Bell [12] smoothing (eWB):

p̃(w|uuu) =
∑
r>0

p(c(uuuw) = r)
c(uuuw)∑

v c(uuuv) + n1+(uuu •)

+ p(c(uuuw)=0)γ(uuu)p̃(w|u′u′u′) (26)

As in Eq. (5), we again recognize an expectation term c(uuu) in
the first addend. However, taking expectation inside a fraction
is only a first order approximation in this case:

p̃(w|uuu) ≈ E[c(uuuw)]∑
v E[c(uuuv)] + E[n1+(uuu •)

+ p(c(uuuw)=0)γ(uuu)p̃(w|u′u′u′). (27)

As before, γ(uuu) can be obtained via normalization [10].

4. Applications and Experiments
To evaluate the benefits of eKN and its interpolated version
ieKN, we focused on three scenarios that depend on fractional
counts. We compare perplexity numbers of eKN against several
following baselines: fractional Witten-Bell (fWB), expected
WB (eWB) and interpolated stochastic KN (isKN). As an ad-
ditional baseline, we experimented with a number of methods
implemented in OpenGRM [13] including fractional counting
as described in [8], and report the best perplexities obtained.

4.1. Uncertain Data

Our first corpus is a collection of alternative transcriptions as
well as n-best recognition results for 115K utterances from the
Cortana domain. Each utterance has up to 5 alternative tran-
scriptions obtained using the crowdsourcing approach (H) from
[14] and up to 5 unsupervised ASR transcriptions (A). Each
transcription comes with a confidence score which we normal-
ize to sum up to 1.0 over all alternatives (including rejection)
for each modality. For LM training, we have a choice be-
tween using only the highest scoring alternative with and with-
out weights (e.g. H1 and H1-W for human transcriptions) and
considering the entire set of weighted 5-bests (e.g. A5-W for
ASR). For each corpora, we train 4-gram LMs using each of
the smoothing techniques described earlier. The test corpus is a
collection of highest-scoring transcriptions for 8.5K utterances
from the same domain. Results are shown in Table 1.

First, note that fractional and expected techniques are iden-
tical for weightless 1-best training where they fall back to their
integer-valued variants. Second, observe that perplexities of
LMs trained on 5-best strings are higher than ones trained on
1-best hypotheses. The primary reason for this anomalous re-
sult is that these numbers do not account for OOVs in perplexity
computation and 5-best LMs have much lower OOV rates than
1-best LMs. To make comparison between setups with different
vocabularies fair, a very conservative estimate p(<unk>)=1e-
6 (same as the lowest probability actually in the LMs) can be



Table 1: Effect of smoothing techniques for 1-best and n-best
training material.

fWB eWB OpenGRM eKN ieKN
H1 73.2 73.2 61.6 69.8 61.4
H1-w 73.2 73.4 65.8 69.7 61.4
H5-w 73.2 74.1 66.2 69.4 62.0
A1 72.8 72.8 61.8 69.8 61.7
A1-w 72.1 73.1 65.5 67.0 61.3
A5-w 78.2 75.8 71.5 67.4 63.4

introduced. With that, the benefits of n-best training become
evident. For instance, for the ASR setup with ieKN we then
get: ppx(A1)=76.6 and ppx(A5-W)=74.1. In the case of man-
ual transcriptions, the effect is much weaker because most of the
time, only a single transcription alternative is available per ut-
terance. Most importantly, we observe that eKN, and in partic-
ular its interpolated variant ieKN significantly outperform other
smoothing methods, including the strong OpenGRM baseline.
The expected version of the WB smoothing leads to perplexity
numbers comparable with the fractional WB.

4.2. Split-and-Merge Technique for LM Adaptation

Our next experiment is focused on language model adaptation
which was also the subject of the eKN experiments in [1].
There, the training material was soft-partitioned into in-domain
and out-of-domain subsets according to a pair of in- and out-
of-domain seed LMs. eKN was used to train a language model
on the in-domain partition after each sentence was assigned a
fractional score reflecting how much higher the LM-log-scores
of the in-domain seed LM for this sentence were compared to
out-of-domain.

In this paper, we extended this approach in several ways.
First, we trained 5 seed LMs that included message dic-
tation, Command-and-Control utterances, Wikipedia, Xbox-
related searches as well as generic voice search (VS). Next, we
took a collection of five unseen training corpora (news, text web
search, Twitter, Cortana recognition results and Cortana manual
transcriptions) with a total of about 50M sentences, and com-
puted their LM scores in all 5 seed LMs. This allowed us to
project each input sentence on each of the 5 LMs using relative
scores as projection values. These relative scores played the role
of fractional counts. They were either fed directly to the frac-
tional/expected smoothing techniques or dealt with via stochas-
tic sampling before being made subject to standard smoothing
algorithms. To speed up the training, counts were associated
with unique sentences (cf. Section 3.2). Next, the 25 trained
LMs were linearly interpolated using context-depended inter-
polation weights [15] optimized for one of 5 target domains:
Command-and-Control, Xbox, message dictation, VS and TED
talks. In other words, with our split-and-merge strategy, we de-
composed all training sets into subsets and re-assembled those
to best fit target domains. All language models (before and after
interpolation) were pruned with threshold 1e-10 to contain on
the order of 100M n-grams and share a common dictionary of
300K words. The models were then evaluated on tests from the
5 target domains. Results are shown in Table 2. An additional
baseline iKN-all shows perplexities that were obtained by di-
rectly merging all input corpora (using EM-optimized weights)
without prior decomposition.

In addition to seeing the obvious benefit of decomposition,
we observe that eKN smoothing consistently outperforms other
smoothing techniques, although its advantage against stochastic

Table 2: Different smoothing techniques for split-and-merge
adaptation strategy.

iKN-all fWB eWB isKN ieKN
C&C 66.1 40.4 39.6 38.0 37.3
Xbox 93.3 66.7 64.5 62.1 61.2
dictation 114.2 90.4 86.9 82.4 80.1
VS 142.2 138.3 137.4 129.7 128.3
TED 341.3 241.5 236.4 209.5 204.0

Table 3: Different smoothing techniques for split-and-merge
adaptation strategy.

fWB ieKN
n-grams WPE 37.6 34.8
n-grams WPE + RNN WPE 32.4 32.2

KN is only moderate. This is in contrast to a single-step adap-
tation from [1] lacking the merging stage. Indeed, when com-
paring perplexities of LMs trained on individual projections of
input corpora, ieKN outperformed isKN by about 12% on av-
erage with conservative estimate p(<unk>)=1e-8. We there-
fore conclude that benefits of better smoothing techniques get
diluted when the resulting models are merged with other LMs.
Also, notice that in this setup, expected WB achieved consistent
improvements over fractional WB. A similar experiment was
carried out with other training corpora and seed LMs, including
LDA-based seeds like in [16] with analogous results.

4.3. Word-Phrase-Entity LMs

Our last LM scenario that depends on fractional input weights
are WPE-LMs from [9]. In WPE LMs for each sentence its
alternative parses in terms of stable word phrases and named
entities are generated. The parses are scored according to their
LM scores in the previous iteration LM and contribute to the
next iteration LM according to these scores. By nature, the rel-
ative contributions are fractional and in the past, we used to em-
ploy fractional WB. Now, we can replace it with expected KN
smoothing. The resulting perplexity numbers for WPE n-gram
LMs as well as these LMs interpolated with WPE RNN [17, 18],
are shown in Table 3. Note that unlike [18] where the point of
comparison was the advantage of the WPE technique, these per-
plexity numbers are provided w/o taking unknown words into
consideration because vocabularies are identical. Again, we see
7.5% improvement due to superior smoothing method, but this
advantage mostly disappears after interpolation.

5. Conclusion
We presented several extensions and optimizations for the
Kneser-Ney smoothing on expected counts first introduced in
[1]. They included training on compact corpus representations,
weighted alternative representations of sentences, support for
cutoff thresholds and training Witten-Bell on expected counts.
We then investigated how this smoothing technique compares
to traditional alternatives in three practical scenarios: train-
ing on uncertain data, split-and-merge technique for language
model adaptation and training Word-Phrase-Entity models. Our
conclusions are that KN on expected counts consistently out-
performs other smoothing techniques on fractional counts, al-
though the advantage gets diluted when the produced models
are interpolated with other LMs (n-grams or NNLMs).
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