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Abstract
Code-switching or mixing is the use of multiple languages
in a single utterance or conversation. Borrowing oc-
curs when a word from a foreign language becomes part
of the vocabulary of a language. In multilingual soci-
eties, switching/mixing and borrowing are not always
clearly distinguishable. Due to this, transcription of
code-switched and borrowed words is often not standard-
ized, and leads to the presence of homophones in the
training data. In this work, we automatically identify
and disambiguate homophones in code-switched data to
improve recognition of code-switched speech. We use a
WX-based common pronunciation scheme for both lan-
guages being mixed and unify the homophones during
training, which results in a lower word error rate for sys-
tems built using this data. We also extend this frame-
work to propose a metric for code-switched speech recog-
nition that takes into account homophones in both lan-
guages while calculating WER, which can help provide
a more accurate picture of errors the ASR system makes
on code-switched speech.
Index Terms: speech recognition, code-switching, mul-
tilinguality, pronunciation, homophones

1. Introduction
Code-switching or mixing is the use of more than one
language in a single utterance or conversation, and is
common in multilingual communities all over the world.
Automatic Speech Recognition (ASR) systems that can
handle code-switching need to be trained with appro-
priate code-switched data that is transcribed in the two
(or more) languages being switched. In many cases, the
scripts that the two languages use are different, while in
other cases, code-switching may occur in language pairs
that have similar or the same script, such as English and
Spanish. In case the two languages use different scripts,
a transcriber may choose to use either language’s script
while transcribing code-switched speech.

Lexical borrowing occurs when a word from a foreign
language becomes part of the vocabulary of a language
due to language contact. In some language pairs, the dif-
ference between code-switching, mixing and borrowing is
often not very clear, and mixing and borrowing can be
thought of as a continuum [1]. Due to this, transcription
of code-switched speech may not always be standardized,
leading to the same word being transcribed using both
scripts. This may lead to less data per word for build-
ing acoustic models, and more lexical variants for the
language model. Ultimately, this may influence the ac-
curacy of ASR systems built with such data.

A related phenomenon exists in monolingual scenar-
ios in the form of homophones in a single language (eg.
‘meat’ and ‘meet’). Typically, a language model is able
to disambiguate homophones based on context and pick
the correct variant during decoding. Human transcribers
are also able to disambiguate such words using context.
Additional homophones could occur when languages are
mixed, in which case words having the same phonetic re-
alization exist in both languages but have different mean-
ings (eg. ‘come’ in English and ‘कम’, meaning ‘less’, in
Hindi). A strong language model built using a large
amount of code-switched text should be able to disam-
biguate such homophones based on context.

In this work, we focus on homophones that are cre-
ated due to transcription choices and errors. We carry
out experiments on conversational Hindi-English code-
switched speech and use a common pronunciation scheme
to automatically collapse homophones to decrease the
Word Error Rate (WER) of the ASR. We also propose a
modification to the WER that takes into account poten-
tial homophones, which may help give a more accurate
picture of the errors made by a code-switched ASR sys-
tem. Our contributions are as follows:

1. We identify that a large number of homophones
are created due to transcription choices and errors
in code-switched databases

2. We propose using a common pronunciation scheme
to automatically identify and merge potential ho-
mophones

3. We propose a modification to the traditional WER
metric to take into account homophones, to obtain
a better description of code-switched ASR perfor-
mance

2. Relation to Prior Work
Ali et al. propose alternative word error rates based
on multiple crowd-sourced references [2, 3] to evaluate
ASR for dialectal speech, where there isn’t a gold ref-
erence transcription due to non-standard orthography of
the language.

Jyothi et al. [4] describe a technique to use tran-
scripts created by non-native speakers for training an
ASR system. They model the noise in the transcripts
to account for biases in non-native transcribers and es-
timate the information lost as a function of how many
transcriptions exist for an utterance. In an isolated word
transcription task for Hindi, they recover 85% of correct
transcriptions. Our problem is different from this formu-
lation in that transcribers are assumed to be bilinguals
who know the two languages being mixed, and hence the



Table 1: Hindi-English code switched data

Data Utts # of
Spkrs Hrs Total

Words En (%) Unique
Words

En
(%)

Train 41276 429 46 560893 16.6 18900 40.23
Test 5193 53 5.6 69177 16.5 6000 41.01
Dev 4689 53 5.7 68995 16.05 6051 40.04

noise expected is much less and usually in the form of
spelling variants and cross-script transcription.

In this work, we use the WX notation for mapping
English and Hindi words to a common pronunciation
scheme [5], similar to [6]. The Unitran mapping is a
similar scheme that maps all Unicode characters to a
phoneme in the X-SAMPA phoneset [7]. The Global-
Phone project proposed by Schultz et al. [8] attempts
to unify the phonetic units based on their articulatory
similarity shared across 12 languages. Both Unitran and
GlobalPhone can be used in place of WX in our proposed
framework.

3. Data
The dataset used in this work contains conversational
speech recordings spoken in code-switched Hindi and En-
glish. Hindi-English bilinguals were given a topic and
asked to have a conversation with another bilingual.
They were not explicitly asked to code-switch during
recording, but around 40% of the data contains at least
one English word per utterance. The conversations were
transcribed by Hindi-English bilinguals, in which they
transcribed Hindi words in the Devanagari script, and
English words in Roman script. There was no distinction
made between borrowed words and code-switching, which
led to some inconsistencies in transcription. Hindi, like
other Indian languages, is usually Romanized on social
media, in user generated content and in casual commu-
nication, which could have contributed to making tran-
scription of Hindi words in Devanagari even more difficult
for the transcribers.

The code-switched dataset contains 51158 utterances
spoken by 535 different speakers. Hindi words made up
85% of the data, making it the predominant language
in this corpus. However, 40% of the total words in the
vocabulary were in English. The distribution of Hindi
and English words and vocabulary were similar in train,
test and dev. A summary of the code switched dataset
is shown in Table 1.

4. Homophone merging
Errors and ambiguities in transcription of code-switched
speech occur because bilinguals have access to two tran-
scription schemes, which inflate the word error rate of a
code-switched ASR system and complicate their evalua-
tion. One approach to solving this problem would be to
come up with more standardized schemes for transcrip-
tion of code-switching, however, this is difficult due to
the fuzziness of borrowing vs mixing. Enforcing a stan-
dard may be even harder if we rely on relatively untrained
transcribers such as crowd-workers to provide transcrip-
tions for audio. Instead, in this work, we focus on ap-
proaches that can automatically smoothen out these ir-
regularities by identifying them across the corpus. Due
to the nature of our proposed approach, we not only iden-

tify homophones, but also spelling variants and errors.

4.1. Common pronunciation scheme

In order to identify words in different languages with sim-
ilar pronunciation, they must be decoded using a com-
mon pronunciation scheme. We choose the WX notation
as the pronunciation scheme since Hindi words written
in Devanagari can be directly transcribed into WX and
using a simple rule-based method the pronunciation of
the word can be obtained. To get the pronunciation of
a Devanagari word, it is first converted to its WX rep-
resentation using wxILP1. Then, each character is sep-
arated and special characters like nukta and anunasika
are processed to ignore the character or make it part of
the phoneme.

To get the pronunciation for English words written
in Roman characters, we train a sequence-to-sequence
neural network using CMUDict as training data which
takes a sequence of Roman characters as input and pro-
duces sequence of CMUDict phonemes. We used Mi-
crosoft CNTK [9] to build the sequence-to-sequence re-
current network with Long Short Term Memory (LSTM)
cells along with attention on hidden layers. The CMU-
Dict phone sequence obtained by applying this model is
then converted to WX using a mapping that we created.
If there exists a word-final schwa(ə), it is deleted.

4.2. Approach

Result: Lexicon,Rmap
EN = {valid English words with frequency};
HI = {valid Hindi words with frequency};
V = {vocab to be merged};
PMAP ← {pronunciation map};
while vi in V do

PMAP [pron(vi)]← {vi};
end
while wordlist in PMAP do

if len(wordslist) == 1 then
Lexicon← (wi, pron(wi));

else
Select wi amongst wordlist with highest
frequency in EN or HI;

Lexicon← (wi, pron(wi));
anchor = wi;
Rmap[anchor]← {wordlist− anchor};

end
end

Algorithm 1: Homophone merging algorithm which
returns the compact lexicon and Rmap. Rmap contains
potential suggestions for words that can be replaced
(replacee) by an anchor word (replacer). Each group of
candidates is then searched for an alpha (anchor word)
which must replace others in the group based on its
frequency in the corpus.

In our corpus we have around 19k words (tokens), out
of which 7k are written in Roman script and 12k are in
Devanagari. We found 442 candidate words which could
be merged with anchor words. Anchor words (replacer in

1https://github.com/irshadbhat/litcm/blob/master/litcm/wxILP.py



Type Replacee Replacer

Misspellings/ Al-
ternate spelling

benifit benefit
x-boyfriend ex-boyfriend

compair compare
suprise surprise
हौक हॉक
डॉक डॉक्
ऑर और
थाळी थाली

Cross-
transcription/
Borrowing

टफ tough
ब्रेकप breakup
स्कन skin
सलैरी salary

saavan सावन
rohu रोहू

mochi मोची
biriyani िब रयानी

Misidentified in-
stances

maal male
केम chem
oks ox
uae you
lic लक
eg egg

umar अमर
jonny जानी

tt टीटी
colours colour’s

Table 2: Instances of word-pairs identified for homophone
merging

Table 2) are defined as the words which are selected to re-
place candidate homophones (replacee in Table 2). The
frequency of these 442 is around 1% that of the words
in the entire corpus. It is observed that they are be-
ing replaced by more frequent words whose frequency is
around 9% that of the words in the entire corpus. We also
observe that 288/442 replacements are either English-
to-English or Hindi-to-Hindi which indicate misspellings
or alternate spellings. 154/442 replacements are either
English-to-Hindi or Hindi-to-English which attributes to
borrowed words or cross-transcriptions. Table 2 presents
some of the instances identified in our corpus using Al-
gorithm 1.

Algorithm 1 accepts a vocabulary of words to be
merged in all languages, a list of possibly valid words
in all languages, and yields a Lexicon for final merged
words and a key-value map of words Rmap, with key as
the word (anchor) which will replace all the words in the
list mapped as the corresponding value. First, PMAP
aggregates all the homophones according to the common
pronunciation scheme. Then for each pronunciation, we
go through the wordlist and disambiguate words as ac-
tual homophones or different words. Finally, we select
an anchor word which will replace all the selected homo-
phone variants and compose Rmap using this informa-
tion.

We trained ASR systems using the Kaldi toolkit [10]
with a phoneset of 89 phones, with 39 English and 50
Hindi phones. We used the CMU Pronunciation dic-
tionary [11] as the lexicon for all the English words in
the data. To generate the pronunciation for the Hindi

words, we used the Festvox Indic front end [12]. We used
a word-level trigram language model built on the train-
ing transcripts of the code-switched data for all experi-
ments. After merging all such instances (WER comb. in
Table 3), we observe around 1.2% relative improvement
in the WER as compared to baseline (Baseline comb. in
Table 3).

We conducted another experiment to ascertain that
homophone merging leads to better ASR performance by
reducing the LM perplexity. We trained an RNNLM and
an SRILM model using the training transcripts before ap-
plying the homophone merging and tested using the test
transcriptions. We repeated this after applying the ho-
mophone merging and observed a relative improvement
of 0.5% in the perplexity of LMs trained over merged
data as compared to LMs trained over the original tran-
scriptions.

The errors made by the homophone merging algo-
rithm can be attributed to the following. Firstly, the
monolingual vocabularies contain most of the valid words
in both languages, so lexical features such as inflections
are not modeled and can introduce noise in the pronun-
ciations. Secondly, the mapping between ARPABet and
Wx takes into consideration the sound change that occurs
when English words are pronounced by Hindi speakers.
This can lead to some errors due to the assumption that
the mapping is an accurate manifestation of the sound
change[13].

In order to overcome these issues the algorithm must
take into account the orthographic and phonetic features
of each language and build a robust model to disam-
biguate homophones. In future work, we plan to combine
character-level language models with the existing model
to make the homophone merging more resilient to the
errors mentioned above.

5. Pronunciation-optimized Word
Error Rate (poWER)

Conventional word error rate is not sufficient for mea-
suring the performance of code-mixed acoustic models
due to cross-transcription, misspellings and borrowing of
words. Therefore, we extend the usage of the common
pronunciation scheme developed in Section 4 to propose a
metric which smooths out these inconsistencies and helps
us do a more accurate error analysis of the ASR perfor-
mance by precluding the inflation of WER caused by such
irregularities.

We call this metric pronunciation-optimized word er-
ror rate (poWER) and it is defined as the Levenshtein
distance between the pronunciation optimized hypothe-
sis (H) and reference (R) sentence, normalized by the
number of words in the reference sentence (Equation 1).

poWER = D(po(H), po(R))/N (1)

po(S) = g2p(wS
1 ), SIL, ..., SIL, g2p(w

S
N ) (2)

S = wS
1 , w

S
2 , ..., w

S
N (3)

Here pronunciation optimization po(.) of a sentence S
is defined as the grapheme-to-phoneme (g2p) conversion
of each word in S as per the rules established in section 4
with SIL token inserted between each word to demarcate
word boundaries. For example,



Models Baseline WER poWER WER poWER
comb. WX WX comb. comb.

GMM 52.63 40.21 37.73 52.42 48.72
NNET

(DBN Pretrained) 45.42 33.78 31.80 44.88 41.22
TDNN 42.15 31.78 29.97 41.77 38.73
TDNN

Discriminative 40.26 29.80 28.03 39.86 36.92
Table 3: WER and poWER for all systems for two different phonesets. WX phoneset used for acoustic modeling contains
45 phonemes as per the mapping described in section 4. The combined (comb.) phoneset contains 89 phones aggregated
from English and Hindi

Ref: म service आपको कैसी लगी
Hyp: room service आपको कैसी लगी

The WER for this pair is 20% whereas the poWER
is 0% because “ म” is a borrowed version of “room” and
they can be often cross-transcribed.

We build 4 ASR models using the WX phoneset
and the combined phoneset to compare the conventional
WER to poWER. WX as a phoneset performs better
across all models to the combined phoneset because it
minimally models all the pronunciations variants in En-
glish and Hindi spoken by a native bilingual speaker.
We build a standard GMM-HMM model trained us-
ing feature-space maximum likelihood linear regression
(fMLLR) as features. The alignments obtained from
this model and fMLLR features are used to train a
feed-forward neural network (NNET-DBN Pretrained),
pre-trained using a stack of Restricted Boltzmann Ma-
chines (RBMs) forming a Deep Belief Network (DBN).
In addition, we train a chain time delay neural network
(TDNN) [14] model, and perform discriminative training
(TDNN Discriminative) on the TDNN system.

5.1. WER vs poWER comparison
The WER and poWER performance of each of the above
systems is listed in Table 3. We observe that the poWER
is lower than the WER in all cases and the difference
becomes smaller as the acoustic model gets better. This
might be because lower phone errors result in a relatively
better word prediction accuracy of the model.

Next, we compare WER and poWER for various
types of code-switching found in the corpus. We ag-
gregate the WER and poWER of utterances falling in
different ranges of the code-mixing index (CMI) [15], de-
fined as linear combination of the fraction of embedded
words (in English) in the matrix language (Hindi) and
the language alternation points. A higher CMI implies
frequent code-switching points and larger phrases of em-
bedded language within the matrix language. It can be
compared across varying length utterances since it is nor-
malized by utterance length. From Figure 1 we can see
that the difference between WER and poWER is high-
est when either the CMI is very low or very high. We
also see that the WER is highest in these ranges. Ut-
terances with low CMI indicate sporadically embedded
words in a matrix language sentence. Such instances are
hard to model through a code-switched language model
due to the lack of context at switch-points. The predicted
words might be among the irregularities mentioned pre-
viously; hence the high WER. Such irregularities may
be normalized using poWER and a more authentic error
rate is obtained reflecting a better transcript. Among the

Figure 1: WER vs poWER comparison aggregated for
CMI bins of size 5. The results were computed on the
output of our best performing acoustic model (TDNN Dis-
criminative). CMI range 40-45 has no test samples.

other CMI buckets, poWER performs consistently better
than the WER. Both poWER and WER are high at the
highest CMI range, which indicates that the utterances
have a high number of switch points with almost an equal
fraction of both languages, which are highly code-mixed
utterances. We observe a steady rise in the WER as
the CMI in sentences increases. This follows intuitively
from the fact that sentences with frequent code-mixing
are more difficult to recognize than those with less fre-
quent code-mixing.

6. Conclusion
In this paper, we introduce the problem of homophone
identification and merging for code-switched ASR. We
propose a technique to merge homophones in Hindi-
English conversational speech. Systems with homophone
merging have 1.2% lower relative WER compared to the
baseline without merging. Our technique correctly iden-
tifies words that have been cross-transcribed, borrowed
words, spelling variants and errors. We also propose a
modified WER metric called poWER using the technique
provided by homophone merging, which takes into ac-
count these irregularities to provide a more accurate pic-
ture of the performance of the system. We compare WER
and poWER across different acoustic models and levels of
code-switching in the corpus, and find that poWER can
reduce the inflation of WER caused by the complexity of
code-switching within utterances, across various types of
code-switching.
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