

Hardware-Aware Security
Verification and Synthesis

Margaret Martonosi
H. T. Adams ‘35 Professor
Dept. of Computer Science

Princeton University

Joint work with Caroline Trippel, Princeton CS PhD student
and Dr. Daniel Lustig, NVIDIA

The Check Suite: An Ecosystem of Tools For Verifying
Memory Consistency Model Implementations

High-Level Languages (HLL)

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

Compiler
COATCheck [ASPLOS “16] [IEEE MICRO Top Picks]
Architecture (ISA)

PipeCheck [Micro-47] [IEEE MICRO Top Picks]
Microarchitecture CCICheck [Micro-48] [Nominated for Best Paper Award]

RTL (e.g. Verilog) RTLCheck [Micro-50] [IEEE MICRO Top Picks Honorable Mention]
A
Our Approach (B
e Axiomatic specifications -> Happens-before graphs ¢
e Check Happens-Before Graphs via Efficient SMT solvers |
e Cyclic => A->B->C->A... Can’t happen
e Acyclic => Scenario is observable

Check: Formal, Axiomatic Models and Interfaces

Q-
Axiom "PQO_Fetch”: Microarchitecture Specification in 8::8:_:8
forall microops "i1", uSpec DSL o 2R 9
forall microops "i2", P A
SameCore il i2 /\ ProgramOrder il i2 => 6$?é§ég Q}
AddEdge ((il, Fetch), (i2, Fetch), "PO"). 6§§é§9 Eg
¢ &F

Axiom "Execute stage is in_order":
forall microops "il",
forall microops "i2",
SameCore il i2 /\ ﬁ
EdgeExists ((il, Fetch), (i2, Fetch)) =»>
AddEdge ((il, Execute), (i2, Execute), "PPO").

Microarchitectural happens-before (1hb) graphs

Example: ARM Read-Read Hazard

e ARM ISA spec ambiguous regarding
same-address Ld-> Ld ordering: ctd::atomic<int> z = {0}:

e Compiler’s job? Hardware job? std::atomic<int> xy = {&z};
void thread@()

e C/C++ variables with atomic type {
. . z.store(1l, std::memory_order_relaxed);
reqUIre Same'addr' Ld%l-d Orderlng int r@ = y->load(std: :memory_order_relaxed);
] int rl = z.load(std::memory_order_relaxed);
e ARM issued erratal: if(ro != r1)
. . _ z.store(3, std::memory_order_relaxed);
 Rewrite compilers to insert fences }
(ordering instructions) with void threadi()
performance penalties {
z.store(2, std::memory_order_relaxed);
 ARM ISA had the right ordering ’
instructions — just needed to use
them.

Original: Alglave 2011
Google Nexus 6: http://check.cs.princeton.edu/tutorial _extras/SnapVideo.mov

TriCheck Framework: Verifying Memory Event
Ordering from Languages to Hardware

Permitted/
Forbidden

|

Compare Outcomes

Not obs

Permit Over

strict

Forbid

Observable/
Unobservable

TriCheck Framework: Verifying Memory Event
Ordering from Languages to Hardware

Permitted/
Forbidden

|

Compare Outcomes

Not obs

Permit Over

strict

Forbid

Observable/
Unobservable

TriCheck Framework: RISC-V Case Study

1701 C11
Programs

High-level Lang

Base RISC-V ISA:

ISA-level
Litmus tests

Permitted/ 144 buggy outcomes
HLL Forbidden Base+Atomics:
' 221 buggy outcomes

Outcomes

Obs. Not obs
ok

Over
strict

ok

uArch
Mem Model Observable/

7 Distinct RISC-V Implementations (All abide by RISC-V
specifications, but vary in reordering / performance

CheckMate: January 2018:
From Memory Consistency Models to Securitv Spectre & Meltdown

We"_known CaChe < FI u S h + Re | Oa d REVIEWS | NEWS | VIDEO HOWTO SMARTHOME CARS DEALS DOWNLOAD

side-channel attack ey 1 st
- Spectre and Meltdown:
Details you need on those
big chip flaws
a Design flaws in processors from leading chipmakers
Widely_used . c?uld.let attackers access sensit?ve information. How
< S p e C u I at I 0 n did this happen, and what's the fix?]
hardware feature fyroe
~ Project Zero
. e News and updates from the Project Zero team at Google
New exploit —

Reading privileged memory with a side-channel

. . Posted by Jann Horn, Project Zero
2 n e W a tt a C kS < S 2 MIGEE Triple Meltdown: How So Many Researchers Found a 20-Year-Old Ct

== TRIPLE MELTDOWN: HOW 80

. ML \ANY RESEARCHERS FOUND A
@ 90 YEAR-OLD CHIP FLAW AT
IR SAME TIVE

Attack Discovery & Synthesis:
What We Would Like

1. SpECify Formal interface and specification of given
system to Study system implementation

2. Specify attack E.g. Subtle event sequences during program’s

patte rn execution

Either output synthesized attacks. Or
determine that none are possible

3. Synthesis

Attack Discovery & Synthesis:
CheckMate TL;DR

1. Specify
system to study

2. Specify attack
pattern

3. Synthesis

[Trippel, Lustig, Martonosi. https://arxiv.org/abs/1802.03802]
[Trippel, Lustig, Martonosi. MICRO-51. October, 2018]

In more
detail...

CheckMate Methodology

1. Frame classes of attacks as patterns of event
interleavings?

-> Essentially a snippet out of a happens-before graph

2. Specify hardware using uSpec axioms

-> Determine if attack is realizable on a given hardware
implementation

Exploit Programs: phb Graphs featuring Exploit Patterns

G e @ader) 1. Model subtle hardware-

W-x=1 Ry-=0 Ry-=0 s . .
Li$ind:=0 L1$ind:0 L1$ind:0 specific event orderings/inter-
Fetch - - leavings: phb graphs
Excoute - - 2. Determine if an exploit is

possible for a given
implementation: cycle checks

Commit -

Store Buffer

execution pattern”
L1 ViCL Expire

[“ [
L1 ViCL Create B | Prime+Probe “exploit

7
Q‘K\((\ (60

Main Memory 3() L1 ViCL Create
Complete : i
L1 ViCL Expire

Microarchitecture-Aware Program Synthesis

Microarchitecture

Lds.
, SB SB || . :
~ Fetch | _ Fetch
- ‘ ‘ -
CExec. A L1 | [L1 Y Exec.
- L - . ' —
" Commit | [Main Memory] - Commit |
uhb Pattern Execution

Execute

Store Buffer

I.1 ViCL Create

Load being
sourced from

the store
buffer

+

Constraints

Hcores = 1

Hthreads = 1
Hinstr < 2

\

\&
R\

Fetch

Execute

Commit

Store Buffer

L1 ViCL Create

L1 ViCL Expire

Main Memory

Complete

%" uhb Graph

Core 0
W [x]=>1 R [x]2>10

Microarchitecture-Aware Program Synthesis

\&
R\

Microarchitecture Specification) o2

Axiom "PO_Fetch":

forall microops "il",

forall microops "i2",

SameCore il i2 /\ ProgramOrder il i2 =>
AddEdge ((il, Fetch), (i2, Fetch), "P0O"). Fetch

Axiom "Execute stage is in_order":

forall microops "il",

forall microops "i2",

SameCore il i2 /\
EdgeExists ((il1, Fetch), (i2, Fetch)) =>

AddEdge ((il, Execute), (i2, Execute), "PPO").

Execute

Commit

Prior work addresses the Store Buffer

problem of proving this correct 1 ViCL Cronte
with respect to RTL

e SW/OS/HW events and locations L1 VICL Expire

e SW/OS/HW ordering details Main Memory

e Hardware optimizations, e.g., speculation
 Processes and resource-sharing
* Memory hierarchies and cache coherence protocols

Complete

S\Q,’Z’r\” uhb Graph
%

Core 0
W [x]=>1 R [x]2>10

Relational Model Finding (RMF):
A Natural Fit for Security Litmus Test Synthesis

A relational model is wﬁconstrai@ an abstract system (for
CheckMate, a phb graph)of:

e Set of abstract objects (for CheckMate, phb graph nodes)

* Set of N-dimensional relations (for example., 2D phb graph edges relation
connecting 2 nodes)

~or CheckMate, the constraints are a phb pattern of interest

e RMF attempts to find and satisfying “instance” (or phb graph)

 Implementation: Alloy DSL maps RMF problems onto Kodkod model-
finder, which in turn uses off-the-shelf SAT solvers

e CheckMate Tool maps pspec HW/OS spec to Alloy

Spectre (Exploits Speculation)

Flush+Reload Threat Patterlg

Core 0
(Attacker.10) (Attacker.I1) (Attacker.I2) (Attacker.I3) (Attacker.I4) (Attacker.I5) éo
R VA, =0CLFLUSHVA, Branch RVA,,=0 RVA,;;=0 RVA,;=0 b
PT,NT Execute

Feich .’.-.* ,\\&
Execute L1 ViCL Create

= N
Reorder Buffer § . . (} / 7 . . L1 ViCL Expire
Permission Cheek | () | [() _ () i} Spectre Security Litmus Test
=] S S
Commf 5) > Initial conditions: [x]=0, [y]=0
= X Attacker TO
Store Buffer i
R [VA,,]>0
L1ViCLCreate CLFLUSH [VA,;] <«—Flush
L1ViCLExpire U —] Q Branch - PT,NT
R [VA,]>rl
Main M
i iemory R [f(r1)=VA,,]>0
Complete © @ @ R[VA,]>0 +«—Reload

Prime&Probe Attack Pattern:
Synthesizing MeltdownPrime & SpectrePrime

| CheckMate
Is hardware

Hardware-specific
exploit programs

Microarchitecture susceptible to (if susceptible)

feat. OO0 execution &
speculation

< <
N °
Q Q' Attacker

L1 VICL Create observes a
cache hit
L1 ViCL Expire

SpectrePrime uhb Graph

(Attacker.10) (Attacker.I2) (Attacker.12) (Attacker.I3)
RVA,=0 WVA, =0

Fetch

Execute

Reorder Bufler|

Permission Check

Commit

Store Buffer

RWReq

RWResp

L1ViCLCreate

L1ViCLExpmre

Main Memory

Complete

RVA, =0

Branch

PT,NT

Core 0

Q)

Core 1

(Attacker.14) (Attacker.I5)
RVA,; =0

R VA, =0

ucch

ucoh

b, ;

Prime+Probe Threat Pattern

Q‘@e

ViCLCreate

ViCLExpire

Spectre Security Litmus Test

e
NS
o
Q

Initial conditions: [x]=0, [y]=0

Attacker TO Attacker TO
R [VA,]0 R[VA,?0 <«—Prime
Branch - PT,NT
R[VA,] > rl
W [f(r1)=VA_] 2> 0
R[VA,;]20 <«—Probe

Overall Results: What exploits get synthesized?
And how long does it take?

Exploit #Instrs Output Minutes to Minutes to #Exploits
Pattern (RMF Attack synthesize synthesize Synthesized
Bound) 15t exploit all exploits
Flush 4 Traditional 6.7 9.7 70
Flush+Reload
+Reload
5 Meltdown 27.8 59.2 572
6 Spectre 101.0 198.0 1144
Prime 3 Traditional 54 6.7 12
Prime+Probe
+Probe
4 MeltdownPrime 17.0 8.2 24

5 SpectrePrime /1.8 76.7 24

CheckMate: Takeaways

* New Variants reported: SpectrePrime and MeltdownPrime

e Speculative cacheline invalidations versus speculative cache pollution
e Software mitigation is the same as for Meltdown & Spectre

* Key overall philosophy:
 Move from ad hoc analysis to formal automated synthesis.
e Span software, OS, and hardware for holistic hardware-aware analysis

[Trippel, Lustig, Martonosi. https://arxiv.org/abs/1802.03802]
[Trippel, Lustig, Martonosi. MICRO-51. October, 2018]

Acknowledgements

 CheckMate Co-Authors: Caroline Trippel, Princeton CS PhD student and
Daniel Lustig, NVIDIA

 Funding: NSF, NVIDIA Graduate Fellowship

e Check Tools, additional co-authors: Yatin Manerkar, Abhishek
Bhattacharjee, Michael Pellauer, Geet Sethi

Me: http://www.princeton.edu/~mrm
Group Papers: http://mrmgroup.cs.princeton.edu
Verification Tools: http://check.cs.princeton.edu

Thank you!

=& Microsoft

© Copyright Microsoft Corporation. All rights reserved.

	Research�Faculty Summit 2018
	Hardware-Aware Security Verification and Synthesis�
	The Check Suite: An Ecosystem of Tools For Verifying Memory Consistency Model Implementations
	Check: Formal, Axiomatic Models and Interfaces
	Example: ARM Read-Read Hazard
	TriCheck Framework: Verifying Memory Event Ordering from Languages to Hardware
	TriCheck Framework: Verifying Memory Event Ordering from Languages to Hardware
	TriCheck Framework: RISC-V Case Study
	CheckMate:�From Memory Consistency Models to Security
	Attack Discovery & Synthesis:�What We Would Like
	Attack Discovery & Synthesis:�CheckMate TL;DR
	In more detail…
	CheckMate Methodology
	Exploit Programs: μhb Graphs featuring Exploit Patterns
	Microarchitecture-Aware Program Synthesis
	Microarchitecture-Aware Program Synthesis
	Relational Model Finding (RMF): �A Natural Fit for Security Litmus Test Synthesis
	Spectre (Exploits Speculation)
	Prime&Probe Attack Pattern:�Synthesizing MeltdownPrime & SpectrePrime
	SpectrePrime uhb Graph
	Overall Results: What exploits get synthesized?�And how long does it take?
	CheckMate: Takeaways
	Acknowledgements
	Slide Number 24
	Slide Number 25

