
Systems | Fueling future disruptions

Research
Faculty Summit 2018

Confidential Computing

Peter Pietzuch
Massachusetts Institute of Technology

Designing Systems Support
for Trusted Execution using Intel SGX

Peter Pietzuch

Imperial College London

http://lsds.doc.ic.ac.uk
<prp@imperial.ac.uk>

Microsoft Research Faculty Summit – Redmond, WA, USA – August 2018

Large-Scale Data & Systems Group

Cloud Tenants Must Trust Cloud Providers

• Tenants expose
applications & data to
cloud providers

Peter Pietzuch - Imperial College London 2

Application + data

Tenants View Clouds as Untrusted Black Boxes

Peter Pietzuch - Imperial College London 3

OS kernel

Hypervisor

Firmware

Cloud platform

Staff

…

u
n

tr
u

s
te

d

Linux: ~20M LOC
KVM: ~13M LOC
OpenStack: ~2M LOC

• Cloud providers operate complex cloud
stacks

• Threats from privileged code attacks
– Security vulnerabilities exist:

Xen hypervisor: 184 (2012-16)
Linux kernel: 721 (2012-16)

– Many attacks exploit vulnerabilities
Control-flow hijacking, code injection
attacks, return-oriented programming

• Threats from insider attacks
– Administrators, staff with physical access

•

Existing Cloud Security Model Doesn’t Help…

• Cloud providers do not trust cloud tenants

• Cloud security mechanisms
focus on protecting privileged
system software (OS, hypervisor)
– e.g. tenant isolation using VMs

Peter Pietzuch - Imperial College London 4

OS kernel

Hypervisor

Firmware

Cloud platform

Staff

…

u
n

tr
u

s
te

d

☛ Trusted execution gives control

over security to cloud tenants

Trusted Execution with Intel SGX

• Introduces concept of userspace enclaves
– Isolated memory regions for code and data

• Enclave memory encrypted & integrity-protected
– Automatically performed by the hardware

• Enclave memory only accessible by enclave code
– Protected from privileged code (OS, hypervisor)

Peter Pietzuch - Imperial College London 5

✘

✔

User process

OS kernel

Untrusted

application

code

Untrusted

application

data

Enclave

Hypervisor

✘/✔

Promise: Protect Cloud Tenants using Enclaves

• Enclave retains flexibility to run
arbitrary cloud applications
– Unlike approaches based on

software encryption, homomorphic
encryption, secure multi-party
computation, …

Peter Pietzuch - Imperial College London 6

OS kernel

Hypervisor

Firmware

Cloud platform

Staff

…

☛ How to support cloud applications

inside SGX enclaves?

Design Space: Systems Support for SGX Enclaves

Application

Standard C library

Library OS

Host OS (Linux)

Runtime support

Loader/Starter

Hypercall
interface

internal system
call handling

Application

Standard C library

Host OS (Linux)

Shim layer

Loader/Starter

Syscall
interface

Host OS (Linux)

In-app
function calls

Trusted application
functions

Shim layer

Untrusted application
functions

(c) Partitioned

application:
Glamdring [USENIX ATC’17],
Intel SGX SDK

(b) System call

interface:
SCONE [OSDI’16]

(a) Library OS:
SGX-LKL, Haven

7Peter Pietzuch - Imperial College London

Challenge: Enclave Transitions are Expensive

• Entering/exiting an enclave comes with performance cost
– CPU performs checks and transparently saves/restores state

• Must exit enclave to perform system calls
– System calls invoke OS kernel, which is untrusted

Peter Pietzuch - Imperial College London 8

User process

Application

code

Enclave

OS kernel

Enclaves: Performance Cost of System Calls

Peter Pietzuch - Imperial College London 9

SGX

Native

• 10x reduction in
system call rate

Idea: Reduce Number of Enclave Transitions

• 1. Provide user-level threading inside enclaves
– Enclave threads can remain inside enclave
– Thread scheduler switches between user-level threads

• 2. Provide OS functionality inside enclaves to avoid
transitions for systems calls
– Thread synchronisation
– Memory management
– File systems
– Networking
– Signal handling

Peter Pietzuch - Imperial College London 10

User process

Application

code

Enclave

OS kernel

⚙️

🛠

SGX-LKL: System Support for Enclaves

• SGX-LKL runs unmodified Linux applications in SGX enclaves
– Applications and dependencies provided via encrypted disk image

• Linux kernel functionality available inside enclaves
– Based on Linux Kernel Library (LKL): Architecture-specific port of Linux kernel

(github.com/lkl)
– Trusted file system and network stacks

• 1. User-level threading
– In-enclave synchronisation primitives (futex implementation)

• 2. Asynchronous system calls
– Similar to SCONE [OSDI’16]

• 3. Custom memory allocator
– Integration between kernel and enclave memory allocator

11Peter Pietzuch - Imperial College London

SGX-LKL Architecture

Enclave

Untrusted host

LKL

SGX-LKL loader

Unmodified

application

Runtime/interpreter Library

Library

Library

Creates

enclave

Ext4 disk image

Native operations

libsgxlkl.so

Network/block
device operations

System call
Interface

Standard C library

Loads

SGX-LKL

enclave library

Mounts disk image/

loads application &

dependencies

C wrappers for LKL syscalls

C wrappers for non-LKL syscalls (memory, threading, synchronisation, time)

Linux Kernel: Filesystem support/network stack/…

User-level lthread
scheduler

Memory
management

In-enclave
signal handler

Linker/

loader

Signal handler Initialisation/
loading

Asynchronous

system call

request/response

queues

Host system call
handler

12Peter Pietzuch - Imperial College London

SGX-LKL: File System & Networking Support

• SGX-LKL provides trusted Linux file system support
– Encryption/integrity protection performed at disk block level

• Uses standard Linux device mapper API for disks
– dm-crypt for encryption

– dm-verity for integrity protection

• SGX-LKL provides trusted network stack
– Enclave applications can use arbitrary network protocols (TCP, UDP, ...) securely

• Uses TUN/TAP interface to send/receive packets via host OS kernel
– Performs layer-2/3 encryption inside enclave (e.g. IPSec)

Peter Pietzuch - Imperial College London 13

Enclave

I/O data

SGX-LKL: Thin Interface to Host OS

• Host interface is side channel
– Workload-dependent host calls may leak

sensitive data

Peter Pietzuch - Imperial College London 14

read I/O
readv I/O
pread64 I/O
preadv I/O
write I/O
writev I/O
pwrite64 I/O
pwritev I/O
fdatasync I/O
mprotect Memory
msync Memory
sigaction Signal handling
sigpending Signal handling
sigprocmask Signal handling
sigsuspend Signal handling
sigtimedwait Signal handling
tkill Signal handling
clock_gettime Time
clock_getres Time
gettid Process

fcntl I/O
ioctl I/O
lseek I/O
close I/O
mmap Memory
mremap Memory
munmap Memory
exit Process
gettid Process
pipe Process

Workload-independent
host calls

Workload-dependent
host calls

☛ Ongoing work: Can we make the SGX-LKL host interface oblivious?

SGX-LKL: Supported Applications

• Launches Linux binaries from Alpine Linux inside enclaves
– Nginx
– Redis
– Memcached
– Python, Perl
– …

• Support for managed language runtimes
– Oracle Hotspot JVM (Java/Scala): OpenJDK
– V8 JavaScript Engine

15Peter Pietzuch - Imperial College London

☛ Try it on GitHub:

www.github.com/lsds/sgx-lkl

Design Space: Systems Support for SGX Enclaves

Application

Standard C library

Library OS

Host OS (Linux)

Runtime support

Loader/Starter

Hypercall
interface

internal system
call handling

Application

Standard C library

Host OS (Linux)

Shim layer

Loader/Starter

Syscall
interface

Host OS (Linux)

In-app
function calls

Trusted application
functions

Shim layer

Untrusted application
functions

(c) Partitioned

application:
Glamdring [USENIX ATC’17],
Intel SGX SDK

(b) System call

interface:
SCONE [OSDI’16]

(a) Library OS:
SGX-LKL, Haven

16Peter Pietzuch - Imperial College London

How to Protect Large Cloud Applications?

• Consider deploying Apache Spark inside an SGX enclave

17

def main(args: Array[String]) {

new SparkContext(new SparkConf())

.textFile(args(0))

.flatMap(line => {line.split(" ")})

.map(word => {(word, 1)})

.reduceByKey{case (x, y) => x + y}

.saveAsTextFile(args(1))

}

Peter Pietzuch - Imperial College London

OS TEE

JVM

Spark

..

.

OS

JVM

Spark
worker 1

Task 1 Task n

OS TEE

JVM

Spark

..

.

OS

JVM

Spark

worker 2

Task 1 Task n

Distributed file system

...

Attackers can exploit vulnerabilities
inside enclave code

☛ Only data and processing

code is sensitive

Partition Cloud Applications to Minimise TCB

• Many examples of manual partitioning of applications by developers

18

☛ Can we automatically determine the minimum functionality

to run inside an enclave?

Glamdring: SGX Partitioning Framework

19

Static analysis

Forward
analysis

Backward
analysis

Partition

specification

Source-source
transformation

Runtime invariant
checks

Invariants

Application codeAnnotations

Enclave
boundary
relocation

1

2 4

[USENIX ATC’17]

Untrusted

application

code

Enclave

code

• Compiler-based framework for partitioning C applications

3

Spark
client

read(data)

process() update()

hdfs_read()
data

data

If (data ==“...”)

#pragma glamdring sensitive source(data)

void read(char* data) {

…

}

1. Developers Annotate Security-Sensitive Data

20

2. Static Analysis to Identify Sensitive Code

21

read(data)

process() update()

If (data ==“...”)write(data)

Program dependence graph

Format()

data = hdfs_read(..)…

format()

…

• To ensure data confidentiality: forward dataflow analysis

• To ensure data integrity: backward dataflow analysis

Must be protected by

enclave

3. Producing Partitioned SGX Application

22

Static analysis

Forward
analysis

Backward
analysis

Partition

specification

Source-source

transformation

Invariants

Application codeAnnotations

Enclave
boundary
relocation

Untrusted

application

code

Enclave

code

• Source-to-source compiler based on LLVM

3

4. Upholding Static Analysis Invariants

23

Static analysis

Forward
analysis

Backward
analysis

Partition

specification

Source-source

transformation

Runtime invariant
checks

Invariants

Application codeAnnotations

Enclave
boundary
relocation

Untrusted

application

code

Enclave

code

• Add runtime checks that enforce invariants on program state used by
static analysis

4

Evaluation: How Much Code Inside Enclave?

24

Application Total code size (LOCs) Enclave size (LOCs)

Memcached 31,000 12,000 (40%)

DigitalBitbox 23,000 8,000 (38%)

LibreSSL 176,000 38,000 (22%)

☛ Enclave contains less than 40% of application code

Summary: Securing Cloud Apps using Intel SGX

• Trusted execution promises to enhance security for cloud tenants
– But requires new systems support and developer tools

• Tenants want to run unmodified existing applications with SGX
– SGX-LKL provides user-level threading, file system and networking support

• Developers require automated tooling when using enclaves
– Glamdring semi-automatically partitions applications for Intel SGX

25

Peter Pietzuch
https://lsds.doc.ic.ac.uk — prp@imperial.ac.uk

Thank You — Any Questions?

Backup Slides

Peter Pietzuch - Imperial College London 26

What Can Cloud Tenants Do Today?

• Use encrypted communication channels (TLS)?
– Protects data in transit but not once in cloud environment

• Encrypt data before sending to cloud environment?
– Only works for some cloud services (e.g. storage)
– Limits functionality of cloud services

• Use homomorphic encryption?
– Large performance overhead and limited applicability

• What about integrity?
– Challenging to ensure that computation was executed faithfully

Peter Pietzuch - Imperial College London 27

Linux Kernel Library (LKL)

• Architecture-specific port of mainline Linux (github.com/lkl)
– Good maintainability
– Mature implementation

• LKL Architecture
– Follows Linux no MMU

architecture
– Full filesystem support
– Full network stack available

28Peter Pietzuch - Imperial College London

Memory Layout in SGX-LKL

• Need correct initialisation of LKL & libc
– Relocation/linking/loading

• Support for position dependent code
– Leaves gap for application load

address (0x400000+)
– Map enclave from 0x0 page

due to SGX restrictions

…
…

.text

.data

.bss

Shared
libraries

libsgxlkl.so
(LKL/musl)
TCS/SSA

…

sgx-lkl-run
(Loader)

…

Stack

0x0

0x400000 (4 MB)

0x40000000 (1 GiB)
(configurable enclave

size)

App

Enclave

Enclave

Heap

Rest of the

address space

(unprotected)

…

29Peter Pietzuch - Imperial College London

Support for Dynamic Linking

30Peter Pietzuch - Imperial College London

Support for Disk Encryption

• Initial enclave code and data measured by CPU
• But must ensure confidentiality/integrity of disk image

– Loaded binary and dependent libraries must be trustworthy

• Idea: Support encryption/integrity protection at block level

• Uses standard Linux device mapper API
– dm-crypt for encryption
– dm-verity for integrity protection

– Merkle tree for disk block verification
– Leaf nodes contain hashes of disk blocks

31Peter Pietzuch - Imperial College London

Support for Linux Networking

• Use in-enclave trusted Linux network stack

• TUN/TAP interface to send/receive packets via
host kernel
– Layer-2/3 encryption possible in-enclave

(e.g. IPSec, VPNs)
– Support arbitrary network protocols with encryption

• Used by Google in production for
app-level proxies:

32Peter Pietzuch - Imperial College London

SGX-LKL: Debugging Support

• GDB plugin
– Breakpoints, watchpoints, stack traces
– Dynamically loads required symbols
– Supports software simulation and hardware SGX mode

• Perf support
– Passes required enclave symbols to perf

33Peter Pietzuch - Imperial College London

Comparison: SGX-LKL vs Graphene-SGX

SGX-LKL Graphene-SGX

Library OS implementation Linux Kernel Library (LKL) (github.com/lkl)
Arch-specific fork of Linux kernel

Custom implementation

Process model Single process Multi-process (fork(), IPC support)

Standard C library support musl libc (www.musl-libc.org) glibc

Support for unmodified binaries ✓ (from Alpine Linux) ✓

Application packaging Encrypted block device image Encrypted files on host FS + manifest file

File I/O support Complete Linux VFS impl. in enclave
Support for arbitrary Linux FSs (Ext4, btrfs, xfs)

Relies on host OS FS impl.
Support for host FS only

Networking I/O support Complete Linux network stack in enclave
Support for arbitrary network protocols
Layer 2/3 encryption

Relies on host OS network stack
UNIX socket support only
Layer 7/4 encryption

Threading model User-level (N:M) threading Kernel-level (1:1) threading

Synchronisation support Enclave futex implementation Relies on host OS futex impl.

System call support Asynchronous system call invocations
(No enclave transitions)

Synchronous system call invocations
(Requires enclave transitions)

Enclave shielding Relies on Linux kernel impl. for shielding
(e.g. block device encryption, IPSec etc)

Custom shield implementation

Support for enclave signal handling ✓ (partial) ✓

Other enclave system support Anything provided by Linux kernel (!) ✗

34Peter Pietzuch - Imperial College London

SGX-LKL Performance: Java

• DaCapo benchmark
results for JVM with
SGX-LKL vs. non-SGX
execution
– Intel Xeon E3-1280 v5 at

3.70 GHz with 64 GB RAM

• Performance overhead for large enclaves due to SGX memory paging

• Few enclave transitions due to asynchronous system call interface

Peter Pietzuch - Imperial College London 35

SGX-LKL Performance: JavaScript

• Competitive overhead for JavaScript
• Workloads mostly compute-heavy

Octane benchmark
results for node.js
with SGX-LKL vs.
non-SGX execution

36Peter Pietzuch - Imperial College London

Security Threats in Data Science

37Peter Pietzuch - Imperial College London

Secure Machine Learning

• Secure machine learning (ML) killer application
– Resource-intensive thus good use case for cloud usage
– Raw training data comes with security implications

• Complex implementations of ML algorithms cannot be adapted for SGX
– Consider Spark MLlib with 100s of algorithms

• Challenges
– Extremely data-intensive domain
– Must support existing frameworks (Spark, TensorFlow, MXNet, CNTK, …)
– ML requires accelerators support (GPUs, TPUs, …)
– Prevention of side-channel attacks

38Peter Pietzuch - Imperial College London

State of the Art

• Protect confidentiality and integrity of tasks and input/output data

• VC3 [Schuster, S&P 2015]
– Protects MapReduce Hadoop jobs

– Confidentiality/integrity of code/data; correctness/completeness of results

– No support for existing jobs → Re-implement for VC3

• Opaque [Zheng, NSDI 2017]
– Hide access patterns of distributed data analytics (Spark SQL)

– Introduces new oblivious relational operators

– Does not support arbitrary/existing Scala Spark jobs

•

39Peter Pietzuch - Imperial College London

Minimising Enclave Code for Spark

• Reduces trusted computing base (TCB)

40

Task code/data

(sensitive)

Untrusted
code

Spark

Worker

Untrusted

Spark

code

Task

code/

data

☛ How should developers identify the sensitive code?

SGX-Spark Design

• Protects data processing from cloud provider
• Ensures confidentiality & integrity of existing big data jobs
• No modifications for end users

– Different from Microsoft's VC3

• Low performance overhead

• Code outside of enclave only
accesses encrypted data

• Only SparkExecutor inside SGX enclave
• Requires two collaborating JVMs

Spark

OS

Spark
Framework

Taskn

OS

JVM

Spark

Task 1

Task n

JVM

41Peter Pietzuch - Imperial College London

SGX-Spark Architecture

RDD transformations
(map, filter, union, join, …)

RDD actions

(reduce, collect, count, …)

Data en-/decryptionInput / Output

Scheduling

Task placement

Coordination

Spark interface

Task description
(including control flow)

42Peter Pietzuch - Imperial College London

Spark Executor for SGX

HadoopRDD A

ItProvider i

<outfile>

<infile>

MapPartitions
RDD B

MapPartitions
RDD C

ResultTask

I

Encrypted
Shared
Memory

ItConsumer k

j=SgxTask(B,i) SGXTask B

Encrypted
Shared
Memory

shm-enc-to-out

shm-out-to-enc

ItConsumer i

SGXTask C
k=SgxTask(C,j)

i’

j’ j

k’

k

i

k

i

ItProvider k

k

SGX JVMOutside JVM

Dataflow graph inside

SGX enclave

Iterators
used for
data
access

43Peter Pietzuch - Imperial College London

Example: Smart Grid Data Processing

O
ut

pu
t

- Number of faults per
consumer with respective
service interruption times

Pr
e-

Pr
oc

es
si

ng
M

yS
Q

L

- Measurements every 15 min

- MySQL prefilters invalid data

- Generation of 3 CSV files:
- Faults
- Customer
- DSM (Service and

Maintenance Department)

Sc
al

a/
Sp

ar
k

- Reads 3 CSV files
- Filters invalid locations
- Joins Customers with DSMs
- Joins (Customer, DSM) with

Faults
- Computes total number of
faults and total fault duration for
each customer

Customer

_id

Customer

Name

Latitude Longitude Contract

number

Medidor

Serial

Service

area

abrreviation

Service

area

name

Number of

faults

Total fault

duration in

seconds

5467 USICAP -23.27197 -51.05277 39633896 31606197 LNA Londrina 2 1800

44Peter Pietzuch - Imperial College London

Example: Smart Grid Data Processing

worker

Enclave

client (unmodified) master (unmodified)

Encrypt Decrypt

Outside

worker

EnclaveOutside

in1 in2 in3

Job

in1 in2 in3

out

out

45Peter Pietzuch - Imperial College London

Summary: SGX-LKL and SGX-Spark

• SGX-LKL: Library OS for complex complex Linux applications
– Based on the standard Linux Kernel
– Trusted file system and network stack
– User-level threading and asynchronous system calls
– Lean host OS interface

• SGX-Spark: Transparent SGX enclave support for Spark
– Uses SGX-LKL to run Oracle HotSpot JVM
– Designed around SGXSparkExecutor
– Transparent encryption for RDDs

46Peter Pietzuch - Imperial College London

Enclave Transitions

Peter Pietzuch - Imperial College London 47

Intel Software Guard Extensions (SGX)

• SGX adds new enclave execution mode
– New CPU instructions to manipulate enclaves

• Memory encryption engine (MEE) protects enclave memory
– Current enclave sizes restricted to 128 MB

• Support for remote attestation
– Permits clients to verify that they are interacting with genuine SGX enclave

• Intel SGX SDK for Windows & Linux

Peter Pietzuch - Imperial College London 48

☛ SGX will become widely available on commodity CPUs

• SGX support available in recent Intel CPUs
– Skylake (2015), Kaby lake (2016)

Trade-Offs When Using Trusted Execution

Peter Pietzuch - Imperial College London 49

SGX Enclaves

• SGX introduces notion of enclave
– Isolated memory region for code & data
– New CPU instructions to manipulate enclaves

and new enclave execution mode

• Enclave memory encrypted and integrity-
protected by hardware
– Memory encryption engine (MEE)
– No plaintext secrets in main memory

• Enclave memory can be accessed only by enclave code
– Protection from privileged code (OS, hypervisor)

• Application has ability to defend secrets
– Attack surface reduced to just enclaves and CPU
– Compromised software cannot steal application secrets

Process

OS

Enclave

Hypervisor

✘✘
✘
✔

Peter Pietzuch - Imperial College London 50

Enclave Page Cache (EPC)

• Physical memory region protected by MEE
– EPC holds enclave contents

• Shared resource between all enclaves running on platform
– Currently only 128 MB

– ~96 MB available to user, rest for metadata

• Content encrypted while in DRAM, decrypted when brought to CPU
– Plaintext in CPU caches

Peter Pietzuch - Imperial College London 51

SGX Multithreading Support

• SGX allows multiple threads to enter same enclave simultaneously
– One thread control structure (TCS) per thread
– Part of enclave, reflected in measurement

• TCS limits number of enclave threads
– Upon thread entry TCS is blocked and cannot be used by another thread

• Each TCS contains address of entry point
– Prevents jumps into random locations inside of enclave

Peter Pietzuch - Imperial College London 52

SGX Paging

• SGX provides mechanism to evict EPC page to unprotected memory
– EPC limited in size

• Paging performed by OS
– Validated by HW to prevent attacks on address translations

– Metadata (MAC, version) kept within EPC

• Accessing evicted page results in page fault
– Page is brought back into EPC by OS

– Hardware verifies integrity of page

– Another page might be evicted if EPC is full

Peter Pietzuch - Imperial College London 53

SGX Enclave Measurement

• CPU calculates enclave measurement hash during enclave construction
– Each new page extends hash with page content and attributes (read/write/execute)
– Hash computed with SHA-256

• Measurement can be used
to attest enclave to local or
remote entity

CPU calculates enclave measurement hash during
enclave construction
Different measurement if enclave modified

EPC

DRAM CPU

c0 94 7d bc 35 52 ba

9a 16 a6 63 0b 72 09

0d 0f 15 0b d0 2d ae

1a 55 f9 2f a8 20 98

Peter Pietzuch - Imperial College London 54

SGX Enclave Attestation

• Is my code running on remote machine intact?

• Is code really running inside an SGX enclave?

• Local attestation
– Prove enclave’s identity (= measurement) to another enclave on same CPU

• Remote attestation
– Prove enclave’s identity to remote party

• Once attested, enclave can be trusted with secrets

Peter Pietzuch - Imperial College London 55

Local Attestation

• Prove identity of A to local enclave B

1. Target enclave B measurement required for key generation
2. Report contains information about target enclave B, including its measurement
3. CPU fills in report and creates MAC using report key, which depends on random CPU fuses and target

enclave B measurement
4. Report sent back to target enclave B
5. Verify report by CPU to check that generated on same platform, i.e. MAC created with same report key

(available only on same CPU)
6. Check MAC received with report and do not trust A upon mismatch

CPU

Enclave A Enclave B

1. Hi! I’m 5f904ba8910bff! Who are you?

0d 0f 15 0b d0 2d ae

Measurement (enclave A)

5f 90 4b a8 91 0b ff

Measurement (enclave B)2. Please create a report for
5f904ba8910bff

0d 0f 15 0b d0 2d ae

3. Here you go!

4. Here is my report

0d 0f 15 0b d0 2d ae

5. Please give me my report
verification key

6. Here you go!

Peter Pietzuch - Imperial College London 56

Remote Attestation I

• Transform local report to remotely verifiable “quote”

• Based on provisioning enclave (PE) and quoting enclave (QE)
– Architectural enclaves provided by Intel

– Execute locally on user platform

• Each SGX-enabled CPU has unique key fused during manufacturing
– Intel maintains database of keys

Peter Pietzuch - Imperial College London 57

Remote Attestation II

• PE communicates with Intel attestation service
– Proves it has key installed by Intel
– Receives asymmetric attestation key

• QE performs local attestation for enclave
– QE verifies report and signs it using attestation key
– Creates quote that can be verified outside platform

• Quote and signature sent to remote attester, which communicates with
Intel attestation service to verify quote validity

Peter Pietzuch - Imperial College London 58

Summary of SGX Architecture

Peter Pietzuch - Imperial College London 59

Thank you!

	Research�Faculty Summit 2018
	Confidential Computing
	Slide palette info
	Text with bullet points—adjusting list levels
	Headline goes here
	Headline goes here
	Headline goes here
	Headline goes here
	Headline goes here
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

