

777\

"N AN

,«?\ i e N

I
)

)
=77 ‘ /

{l

TN

@)
C
4=
D)
Q.
-
O
W)
qn
=
C
),
O
g—
C
@,
W)

Massachusetts Institute of Technology

Peter Pietzuch

=m Microsoft

Imperial College
London

q;g, LSDS

Designing Systems Support
for Trusted Execution using Intel SGX

Peter Pietzuch

Imperial College London

http://Isds.doc.ic.ac.uk
<prp@imperial.ac.uk>

Microsoft Research Faculty Summit — Redmond, WA, USA — August 2018

Cloud Tenants Must Trust Cloud Providers

o | N N N N e |
I gl i
o icrosoft
Application + data amazon N Azure

f.’?rackspace@

vmware - O Joyent

H/heroku

Tenants expose
applications & data to
cloud providers

Ve

HUAWEI

Peter Pietzuch - Imperial College London

Tenants View Clouds as Untrusted Black Boxes

Cloud providers operate complex cloud
stacks

O

Threats from privileged code attacks

— Security vulnerabilities exist:
Xen hypervisor: 184 (2012-16)

Linux kernel: 721 (2012-16) SERCIME

— Many attacks exploit vulnerabilities Hypervisor
Control-flow hijacking, code injection) Linux: ~20M LOC

Firmware

attacks, return-oriented programming KVM: ~13M LOC

OpenStack: ~2M LOC

Cloud platform

untrusted

Threats from insider attacks Staff
— Administrators, staff with physical access

Peter Pietzuch - Imperial College London 3

Existing Cloud Security Model Doesn’t Help...
Cloud providers do not trust cloud tenants

Cloud security mechanisms

focus on protecting privileged

system software (OS, hypervisor)
— e.g. tenant isolation using VMs

untrusted

OS kernel

Hypervisor

Firmware

w Trusted execution gives control Cloud platform
over security to cloud tenants Staff

Peter Pietzuch - Imperial College London

Trusted Execution with Intel SGX

Introduces concept of userspace enclaves
— Isolated memory regions for code and data

User process

X/

Enclave memory encrypted & integrity-protected

Untrusted

— Automatically performed by the hardware appcliocda;ion
X Untrusted
application

Enclave memory only accessible by enclave code data

— Protected from privileged code (OS, hypervisor)

Peter Pietzuch - Imperial College London 5

Promise: Protect Cloud Tenants using Enclaves

Enclave retains flexibility to run
arbitrary cloud applications

— Unlike approaches based on
software encryption, homomorphic
encryption, secure multi-party

computation, ...
OS kernel
Hypervisor
Firmware
w How to support cloud applications Cloud platform

Inside SGX enclaves? Staff

Peter Pietzuch - Imperial College London 6

Design Space: Systems Support for SGX Enclaves

(a) Library OS: (b) System call (c) Partitioned
SGX-LKL, Haven Interface: application:
SCONE [osbr1e] Glamdring [usenix arc'17,
Intel SGX SDK
Application
| Standard C library | TrUStfed application
internal system Application unctions
call handling | Shim layer
Library OS | Standard C library | —
Shim layer function calls
Runtime support
Syscall .
interface Untrusted application
Hypercall functions
interface Loader/Starter
Loader/Starter Host OS (Linux) Host OS (Linux)

Host OS (Linux)

Peter Pietzuch - Imperial College London 7

Challenge: Enclave Transitions are Expensive

Entering/exiting an enclave comes with performance cost
— CPU performs checks and transparently saves/restores state User process

Must exit enclave to perform system calls
— System calls invoke OS kernel, which is untrusted

Application
code

Peter Pietzuch - Imperial College London 8

Enclaves: Performance Cost of System Calls

©
w
S 1000 SGX
O - N
Z 10x reduction In
(/)]
‘=<S‘ system call rate
c 100 4
()]
1)
>
(0p)

10 -

1 2 3 4 5 6 7 8
Threads

Peter Pietzuch - Imperial College London

ldea: Reduce Number of Enclave Transitions

1. Provide user-level threading inside enclaves
— Enclave threads can remain inside enclave
— Thread scheduler switches between user-level threads

2. Provide OS functionality inside enclaves to avoid
transitions for systems calls
— Thread synchronisation
— Memory management
— File systems
— Networking
— Signal handling

Peter Pietzuch - Imperial College London

User process

Enclave

&

v

Application
code

10

SGX-LKL: System Support for Enclaves

SGX-LKL runs unmodified Linux applications in SGX enclaves
— Applications and dependencies provided via encrypted disk image

Linux kernel functionality available inside enclaves

— Based on Linux Kernel Library (LKL): Architecture-specific port of Linux kernel
(github.com/1kl)

— Trusted file system and network stacks

1. User-level threading
— In-enclave synchronisation primitives (futex implementation)

2. Asynchronous system calls
— Similar to SCONE [0osDr16]

3. Custom memory allocator
— Integration between kernel and enclave memory allocator

Peter Pietzuch - Imperial College London

11

SGX-LKL Architecture

LKL Linux Kernel: Filesystem support/network stack/... Unmodified Library
application :
- : Network/block System call PP Library
Native operations .)
device operations Interface

Standard C library

\ 4 v
C wrappers for non-LKL syscalls (memory, threading, synchronisation, time)

Runtime/interpreter Library

i C wrappers for LKL syscalls

4 . 4 I Y
Memory User-level Ithread In-enclave Linker/
management scheduler signal Randler L Jq:a_cd_e_r ______ Mounts disk image/
N | |ibng| kl.so loads application &
------------------------------- e G e PN dependencies Enclave
- . 2
A] A 4 1 I I |
synchronous I I
system call I I gcg)((st KL Creates |
request/response ! | Rk enclave
queues I | enclave library I
yy I I !
: t 1
Untrusted host I I :
I I
SGX-LKL loader v — I'E - i
. nitialisation 1
HOSt SyStem Ca” Slgnal handler S R
handler loading

Peter Pietzuch - Imperial College London

SGX-LKL: File System & Networking Support

SGX-LKL provides trusted Linux file system support

— Encryption/integrity protection performed at disk block level

Uses standard Linux device mapper API for disks Enclave

— dm-crypt for encryption
— dm-verity for integrity protection

ﬁ
/O data

@

SGX-LKL provides trusted network stack

— Enclave applications can use arbitrary network protocols (TCP, UDP, ...) securely

Uses TUN/TAP interface to send/receive packets via host OS kernel
— Performs layer-2/3 encryption inside enclave (e.g. IPSec)

Peter Pietzuch - Imperial College London

SGX-LKL: Thin Interface to Host OS

Workload-independent Workload-dependent
host calls host calls
read I/0
readv I/0
Ifcntl I/O0 pread64 I/O0
ioctl 11O preadv 110
lseek I/0 write 1/O
close e writev I/O0
mmap Memory pwrite64 I/O0
mremap Memory pwritev 1/O
munmap Memory fdatasync I/O
eXltl Process mprotect Memory
pbipe Process sigaction Signal handling
sigpending Signal handling
sigprocmask Signal handling
sigsuspend Signal handling
. . . sigtimedwait Signal handling
Host interface Is side channel £kill Signal handling
clock gettime Time
— Workload-dependent host calls may leak clock getres Time
sensitive data gettid Frocess

w- Ongoing work: Can we make the SGX-LKL host interface oblivious?

Peter Pietzuch - Imperial College London

GX-LKL: Supported Applications

Launches Linux binaries from Alpine Linux inside enclaves
— Nginx

Isds /[sgx-lkl @ Unwatch = 12 % Unstar 14 YFork 2
. —
—_— R ed IS ¢ Code Issues 0 Pull requests @ Projects 0 Wiki Insights Settings
SGX-LKL Library OS for Running Java Applications in Intel SGX Enclaves Edit
— M emcac h e d) () i) ()) () [Rai] suenon ovis
D 25 commits ¥ 1 branch T 0 releases 4% 2 contributors & GPL-3.0
— Python, Perl
y) Branch: master = New pull request Create new file Upload files Find file m
— Christian Priebe Reworked syscall tracing. = Latest commit 5228648 3 days ago
e s apps Initial commit 3 months ago
B gdb Add gdb wrapper (sgx-Iki-gdb) for SGX-LKL gdb support 5 days ago
S f d I - IS host-mus| @ 3949432 Initial commit 3 months ago
u p p O rt O r I I l an ag e a n g u ag e r u n t I I I l e S = kil @ a063e16 Initial commit 3 months ago
& sgx-lki-musl @ e766e2d Reworked syscall tracing. 3 days ago
— Oracle Hotspot JVM (Java/Scala): OpenJDK
p " p B tools Run java with -XX:+UseMembar by default. 2 months ago
. . gitignore Add gdb wrapper (sgx-Iki-gdb) for SGX-LKL gdb support 5 days ago
- V8 J aV aS C r I p t E n g I n e .gitmodules Remove OpenSSL dependency. 7 days ago
COPYING Initial commit 3 months ago
Makefile Remove OpenSSL dependency. 7 days ago
README.md Add gdb wrapper (sgx-Iki-gdb) for SGX-LKL gdb support 5 days ago
config.mak Remove OpenSSL dependency. 7 days ago

%ig) Java

—

EE README.md

SGX-LKL

SGX-LKL is a library OS designed to run unmodified Linux binaries inside SGX enclaves. It uses the Linux Kernel Library
(LKL) (https:/fgithub.com/lkl/linux) to provide mature system support for complex applications within the enclave. A
modified version of musl (https://www.musl-libc.org) is used as C standard library implementation. SGX-LKL has support

L] L] - for in-enclave user-level threading, signal handling, and paging. System calls are handled within the enclave by LKL when
Ir I o n I u possible, and asynchronous system call support is provided for the subset of system calls that require direct access to
- external resources and are therefore processed by the host OS. The goal of SGX-LKL is to provide system support for

complex applications and managed runtimes such as the JVM with minimal or ne modifications and minimal reliance on the

www.github.com/lsds/sgx-lki

Peter Pietzuch - Imperial College London

Design Space: Systems Support for SGX Enclaves

(a) Library OS: (b) System call (c) Partitioned
SGX-LKL, Haven Interface: application:
SCONE [osbr1e] Glamdring [usenix arc'17,
Intel SGX SDK
Application
| Standard C library | TrUStfed application
internal system Application unctions
call handling | Shim layer
Library OS | Standard C library | —
Shim layer function calls
Runtime support
Syscall .
interface Untrusted application
Hypercall functions
interface Loader/Starter
Loader/Starter Host OS (Linux) Host OS (Linux)

Host OS (Linux)

Peter Pietzuch - Imperial College London 16

How to Protect Large Cloud Applications?

Consider deploying Apache Spark inside an SGX enclave

Task 1 Task n

Spark
worker 1

Distributed file system

Attackers can exploit vulnerabilities
Inside enclave code

Peter Pietzuch - Imperial College London

def main(args: Array[String]) {
new SparkContext (new SparkConf ())
.textFile (args(0))
.flatMap (line => {line.split(" ")})
.map (word => {(word, 1)})
.reduceByKey{case (x, y) => x + y}
.saveAsTextFile (args (1))

w Only data and processing
code is sensitive

17

Partition Cloud Applications to Minimise TCB

Many examples of manual partitioning of applications by developers

SecureKeeper: Confidential ZooKeeper using Intel SGX

Stefan Brenner
TU Braunschweig, Germany
brenner@ibr.cs.tu-bs.de

Nico Weichbrodt
TU Braunschweig, Germany
weichbr@ibr.cs.tu-bs.de

Colin Wulf
TU Braunschweig, Germany
cwulf@ibr.cs.tu-bs.de

Matthias Lorenz
TU Braunschweig, Germany
mlorenz@ibr.cs.tu-bs.de

David Goltzsche
TU Braunschweig, Germany
goltzsche@ibr.cs.tu-bs.de

Christof Fetzer
TU Dresden, Germany
christof fetzer@tu-dresden.de

Peter Pietzuch
Imperial College London, UK
prp@imperial.ac.uk

ABSTRACT

Cloud computing, while ubiquitous, still suffers from trust
issues, especially for applications managing sensitive data.

Riidiger Kapitza
TU Braimsrhwein Garmanwy
mhog 2015 IEEE Symposium on Security and Privacy
1. IN
ste 12l VC3: Trustworthy Data Analytics in the Cloud using SGX

Felix Schuster*, Manuel Costa, Cédric Fournet, Christos Gkantsidis
Marcus Peinado, Gloria Mainar-Ruiz, Mark Russinovich
Micresoft Research

Abstract—We present VO3, the first system that allows users data [22]. However, FHE is not efficient for most com-

to run distributed MapReduce computations in the cloud while putations [23], [65]. The computation can also be shared
keeping their code and data secret, and ensuring the correctness
and completeness of their results. VO3 runs on unmodified
Hadoeop, but crucially keeps Hadoop, the operating system and

between independent parties while guaranteeing confidential-
ity for individual inputs (using e.g., garbled circuits [29])

w- Can we automatically determine the minimum functionality

the hypervisor out of the TCB; thus, confidentiality and integrity and providing protection against corrupted parties (see e.g.,

to run inside an enclave?

Glamdring: SGX Partitioning Framework [usenixAatc17]

Annotations Application code

Static analysis

Forward Backward
analysis analysis

Compiler-based framework for partitioning C applications

Enclave
- @ == boundary
relocation

Partition

3

specification

' Runtime invariant
checks

Invariants

Source-source
transformation

Untrusted
application
code

19

1. Developers Annotate Security-Sensitive Data

Spark | data S

Qr
Cl|ent — hde_read() Sp

#pragma glamdring sensitive source (data)

void read(char* data) {

}

id ata @

\ 4

read(data)

If (data ==*

/\

process() update()

20

2. Static Analysis to Identify Sensitive Code

data = hdfs_read(..)

v

Must be protected by

read(data)
format() ¢ enclave
write(data) If (data ==“...")
Program dependence graph SHOEEEE) 91
To ensure data confidentiality: forward dataflow analysis

To ensure data integrity: backward dataflow analysis

21

3. Producing Partitioned SGX Application

Annotations Application code

Enclave
Static analysis = @ == boundary
relocation

Invariants

Partition
SOVEICEN EEWAVETGE | specification
analysis analysis
I

transformation

3

= » Source-source

Untrusted
application
code

Source-to-source compiler based on LLVM

22

4. Upholding Static Analysis Invariants

Annotations Application code

Enclave
Static analysis -@_boundary = » Source-source
relocation transformation
Partition
Forward =Lz Ie M | specification
analysis analysis S e e Unh:usifad
I ﬁ checks application
code

Invariants

Add runtime checks that enforce invariants on program state used by
static analysis .

Evaluation:

How Much Code Inside Enclave?

Application Total code size (LOCs) Enclave size (LOCs)
Memcached 31,000 12,000 (40%)
DigitalBitbox 23,000 8,000 (38%)
LibreSSL 176,000 38,000 (22%)

w- Enclave contains less than 40% of application code

24

Summary: Securing Cloud Apps using Intel SGX

Trusted execution promises to enhance security for cloud tenants
— But requires new systems support and developer tools

Tenants want to run unmodified existing applications with SGX
— SGX-LKL provides user-level threading, file system and networking support

Developers require automated tooling when using enclaves
— Glamdring semi-automatically partitions applications for Intel SGX

Bie0g

Thank You — Any Questions?

Peter Pietzuch
https://lsds.doc.ic.ac.uk — prp@imperial.ac.uk

25

Peter Pietzuch - Imperial College London

Backup Slides

26

What Can Cloud Tenants Do Today?

Use encrypted communication channels (TLS)?
— Protects data in transit but not once in cloud environment

Encrypt data before sending to cloud environment?
— Only works for some cloud services (e.g. storage)
— Limits functionality of cloud services

Use homomorphic encryption?
— Large performance overhead and limited applicability

What about integrity?
— Challenging to ensure that computation was executed faithfully

Peter Pietzuch - Imperial College London

27

Linux Kernel Library (LKL)

Architecture-specific port of mainline Linux (github.com/1k1)

— Good maintainability
— Mature implementation

LKL Architecture

- : Application
Unmodified Linux Kernel l

— Follows Linux no MMU
architecture

— Full filesystem support L A | ,; _____________

— Full network stack available

Peter Pietzuch - Imperial College London

Additional LKL virtual | Ikl_syscall()
Ikl_trigger_irq() | computer architecture

Memory Threading Common virtio backend
Semaphores Mutexes Block Network
Time Timers devices interfaces

Legend

Core LKL API

LKL to Host API

* Synchronous call
% Asynchronous call

__Environment-indendent
port of Linux

Environment-specific
~native operations

(Linux, MacOS,

Windows, etc.)

28

Memory Layout in SGX-LKL

Need correct initialisation of LKL & libc
— Relocation/linking/loading

Support for position dependent code

— Leaves gap for application load -
address (0x400000+) nclave

— Map enclave from 0x0 page
due to SGX restrictions

Rest of the
address space
(unprotected)

Peter Pietzuch - Imperial College London

Enclave
Heap

App

fext

.data

.bss

Shared
libraries

libsgxlkl.so
(LKL/musl)

TCS/SSA

Stack

sgx-Ikl-run
(Loader)

0x0

0x400000 (4 MB)

0x40000000 (1 GiB)

(configurable enclave
size)

29

Support for Dynamic Linking

Dynamic
Linker-Enabled
Control Flow

Peter Pietzuch - Imperial College London

Starter

(initialise SGX, allocate
memory, load enclave
code and start system call
threads)

-

stage 1 & 2

dynamic linker
(perform linker-internal
relocations, to allow
function calls to work
correctly)

LKL boot process
(initialises device drivers
and internal process table,
system calls possible after
this point)

Application code

(dynamically linked against

musl-libc)

[

stage 3 dynamic

linker

(load application binary &
necessary libraries from
disk image and perform
relocations)

musl-libc starter
(initialise enclave memory
& libc, and host-ocall
buffer)

30

Support for Disk Encryption

Initial enclave code and data measured by CPU

But must ensure confidentiality/integrity of disk image
— Loaded binary and dependent libraries must be trustworthy

ldea: Support encryption/integrity protection at block level

Uses standard Linux device mapper API
— dm-crypt for encryption

— dm-verity for integrity protection
— Merkle tree for disk block verification
— Leaf nodes contain hashes of disk blocks

Peter Pietzuch - Imperial College London

31

Support for Linux Networking

Use in-enclave trusted Linux network stack

TUN/TAP interface to send/receive packets via
host kernel

— Layer-2/3 encryption possible in-enclave
(e.g. IPSec, VPNSs)

— Support arbitrary network protocols with encryption

Used by Google in production for
app-level proxies:

Enclave

Application

libc

LKL

asynchronous

LKL virtio device
driver

Enclave ocall
code

User Space TCP - Getting LKL Ready for the Prime Time

H.K. Jerry Chu, Yuan Liu
Google Inc.
i Mountain View, CA 94043, USA

Peter Pietzuch - Imperial College London

Syscall thread

Host kernel

calls recv

invokes 1kl_syscall

wraps data in TCP packet
and Ethernet frame, adds
to queue

device driver invokes LKL
host operation for read
from TAP interface

ocall code puts syscall on
gqueue

syscall thread pops
syscall off queue and
invokes read

kernel reads packet from
TAP interface buffer

32

SGX-LKL: Debugging Support

GDB plugin
— Breakpoints, watchpoints, stack traces
— Dynamically loads required symbols

— Supports software simulation and hardware SGX mode

Perf support
— Passes required enclave symbols to perf

Peter Pietzuch - Imperial College London

o

GDB

GDE inserts
breakpoint on
enclave setup

GDB launches
starter

Enclave

Enclave is set up

SGX-MUSL-LKL
loaded into
enclave

Enclave patched
into debug made

SGX-MUSL-LKL
symbals loaded

Application
symbols loaded

Library symbols
loadad

Breakpaoint(s)
hit...

musl initialises &
LKL boots

musl loads
application

musl loads
libraries

Application runs

Application exits

33

Comparison: SGX-LKL vs Graphene-SGX

Library OS implementation

Process model

Standard C library support

Support for unmodified binaries
Application packaging

File I/O support

Networking 1/0 support

Threading model
Synchronisation support

System call support

Enclave shielding

Support for enclave signal handling

Other enclave system support

Peter Pietzuch - Imperial College London

Linux Kernel Library (LKL) (github.com/1k1)
Arch-specific fork of Linux kernel

Single process

musl libc (www.musl-1libc.org)

v (from Alpine Linux)
Encrypted block device image

Complete Linux VFS impl. in enclave
Support for arbitrary Linux FSs (Ext4, btrfs, xfs)

Complete Linux network stack in enclave
Support for arbitrary network protocols
Layer 2/3 encryption

User-level (N:M) threading
Enclave futex implementation

Asynchronous system call invocations
(No enclave transitions)

Relies on Linux kernel impl. for shielding
(e.g. block device encryption, IPSec etc)

v (partial)
Anything provided by Linux kernel (1)

Custom implementation

Multi-process (fork(), IPC support)

glibc
v

Encrypted files on host FS + manifest file

Relies on host OS FS impl.
Support for host FS only

Relies on host OS network stack
UNIX socket support only
Layer 7/4 encryption

Kernel-level (1:1) threading
Relies on host OS futex impl.

Synchronous system call invocations
(Requires enclave transitions)

Custom shield implementation

v

34

SGX-LKL Performance: Java

DaCapo benchmark
results for JVM with
SGX-LKL vs. non-SGX
execution

— Intel Xeon E3-1280 v5 at
3.70 GHz with 64 GB RAM

6000 T T

| |
JVM
SGX-LKL + JVM

4000

2000 e

Time (in milliseconds)

Performance overhead for large enclaves due to SGX memory paging
Few enclave transitions due to asynchronous system call interface

Peter Pietzuch - Imperial College London

SGX-LKL Performance: JavaScript

Octane benchmark 3 | |
results for node.js SGX-LKL + nade o M
with SGX-LKL vs.
non-SGX execution

Time (normalized)

Competitive overhead for JavaScript
Workloads mostly compute-heavy

Peter Pietzuch - Imperial College London

Security Threats in Data Science

Peter Pietzuch - Imperial College London

External attacker

il ' | OtherVM !
108 L :

Malicious | ' [Datascience| | 4 Malicious
insider _’E_’i" job E i i tenant i
| o)
L_:IIIIIIITIIIIIIII_J e ___ |

—N'L Hypervisor E
—h'L Hardware E

37

Secure Machine Learning

Secure machine learning (ML) killer application
— Resource-intensive thus good use case for cloud usage
— Raw training data comes with security implications

Complex implementations of ML algorithms cannot be adapted for SGX
— Consider Spark MLIib with 100s of algorithms

Challenges
— Extremely data-intensive domain
— Must support existing frameworks (Spark, TensorFlow, MXNet, CNTK, ...)
— ML requires accelerators support (GPUs, TPUs, ...)
— Prevention of side-channel attacks

Peter Pietzuch - Imperial College London

38

State of the Art

Protect confidentiality and integrity of tasks and input/output data

VC3 [Schuster, S&P 2015]
— Protects MapReduce Hadoop jobs
— Confidentiality/integrity of code/data; correctness/completeness of results
— No support for existing jobs — Re-implement for VC3

Opaque [Zheng, NSDI 2017]

— Hide access patterns of distributed data analytics (Spark SQL)
— Introduces new oblivious relational operators
— Does not support arbitrary/existing Scala Spark jobs

Peter Pietzuch - Imperial College London

39

Minimising Enclave Code for Spark

Spark

Worker
SAPACHE<K% h -
Untrusted
code
Untrusted

Spark
code

Reduces trusted computing base (TCB)

w- How should developers identify the sensitive code?

40

SGX-Spark Design

Protects data processing from cloud provider

Ensures confidentiality & integrity of existing big data jobs

No modifications for end users
— Different from Microsoft's VC3

Low performance overhead

Code outside of enclave only
accesses encrypted data

Only SparkExecutor inside SGX enclave
Requires two collaborating JVMs

Peter Pietzuch - Imperial College London

Spark
Framework

|}

Task 1

Task n

Spark

g]VM

JVM

|}

(ON)

41

SGX-Spark Architecture

Peter Pietzuch - Imperial College London

Spa

Spark interface

Task placement

Scheduling

Coordination

Input / Output

42

Spark Executor for SGX

Outside JVM SGX JVM

$ shm-enc-to-out

ResultTask K
[tConsumer k >
N\
k!
MapPartitions k=SgxTask(C,))
RDD C -
A Encrypted
) Shared
MapPartitions J=SgxTask(B,i) Memory
RDD B -
N\
lterators i
used for HadoopRDD A _
i
data ItProvider i f —>
/
acCess ? |9 shm-out-to-enc
<infile>

Dataflow graph inside
SGX enclave

Peter Pietzuch - Imperial College London

Example: Smart Grid Data Processing

- Reads 3 CSV files

-M rements every 15 min : : : :
easurements every 15 - Filters invalid locations

- MySQL prefilters invalid data _ Joins Customers with DSMs Nurber of faults ber
- Generation of 3 CSV files: Joi C DSM) with : per.
- Faults - Joins (Customer,) wit consumer with respective
- Customer Faults service interruption times

- DSM (Service and - Computes total number of
Maintenance Department) faults and total fault duration for

each customer

Customer Customer Latitude Longitude | Contract Medidor Service Service Number of | Total fault
_id INETlE number Serial area area faults duration in
abrreviation | name seconds

5467 USICAP -23.27197 -51.05277 39633896 31606197 LNA Londrina 2 1800

Scala/Spark

—
o
N
>
=
o)
=
)
7
@
O
O
LS
°r
D
S
al

Peter Pietzuch - Imperial College London 44

Example: Smart Grid Data Processing

I
RS
1S
g

T
=g =
‘%1

'l

I

| D)

Peter Pietzuch - Imperial College London

Summary:. SGX-LKL and SGX-Spark

SGX-LKL: Library OS for complex complex Linux applications
— Based on the standard Linux Kernel
— Trusted file system and network stack
— User-level threading and asynchronous system calls
— Lean host OS interface

SGX-Spark: Transparent SGX enclave support for Spark
— Uses SGX-LKL to run Oracle HotSpot JVM
— Designed around SGXSparkExecutor
— Transparent encryption for RDDs

Peter Pietzuch - Imperial College London

46

Enclave Transitions

Peter Pietzuch - Imperial College London

(
qgff’:’:?_tﬁq_gﬂq_e_

:’ 3 Trusted code

i é | Call

|] a

i i J Trusted function n

E Create enclave i . Ererae :

|] | |

: ; /7 ¢ |

E Call trusted function | ' l

: 5 M e /

| | T e O \

i " 4 ! '

i i ¢ O

| [T Vemm——

L) g Enclave y
\

a7

Intel Software Guard Extensions (SGX)

SGX adds new enclave execution mode
— New CPU instructions to manipulate enclaves

Memory encryption engine (MEE) protects enclave memory
— Current enclave sizes restricted to 128 MB

Support for remote attestation
— Permits clients to verify that they are interacting with genuine SGX enclave

Intel SGX SDK for Windows & Linux

SGX support available in recent Intel CPUs
— Skylake (2015), Kaby lake (2016)

(intel' 3

SKYLAKE KB

w SGX will become widely available on commodity CPUs

Peter Pietzuch - Imperial College London

48

Trade-Offs When Using Trusted Execution

Untrusted
component

Peter Pietzuch - Imperial College London

Attack
surface

<>

Performance
overhead

Sensitive

code
and data

TCB size

49

SGX Enclaves

SGX introduces notion of enclave
— Isolated memory region for code & data

— New CPU instructions to manipulate enclaves
and new enclave execution mode

Enclave memory encrypted and integrity- T o8

protected by hardware Hypervivor

— Memory encryption engine (MEE)
— No plaintext secrets in main memory

Enclave memory can be accessed only by enclave code
— Protection from privileged code (OS, hypervisor)

Application has ability to defend secrets
— Attack surface reduced to just enclaves and CPU
— Compromised software cannot steal application secrets

Peter Pietzuch - Imperial College London

Enclave Page Cache (EPC)

Physical memory region protected by MEE

— EPC holds enclave contents

Shared resource between all enclaves running on platform
— Currently only 128 MB
— ~96 MB available to user, rest for metadata

Content encrypted while in DRAM, decrypted when brought to CPU

— Plaintext in CPU caches

Peter Pietzuch - Imperial College London

51

SGX Multithreading Support

SGX allows multiple threads to enter same enclave simultaneously
— One thread control structure (TCS) per thread
— Part of enclave, reflected in measurement

TCS limits number of enclave threads
— Upon thread entry TCS is blocked and cannot be used by another thread

Each TCS contains address of entry point
— Prevents jumps into random locations inside of enclave

Peter Pietzuch - Imperial College London

52

SGX Paging

SGX provides mechanism to evict EPC page to unprotected memory
— EPC limited in size

Paging performed by OS

— Validated by HW to prevent attacks on address translations
— Metadata (MAC, version) kept within EPC

Accessing evicted page results in page fault
— Page is brought back into EPC by OS
— Hardware verifies integrity of page
— Another page might be evicted if EPC is full

Peter Pietzuch - Imperial College London

53

SGX Enclave Measurement

CPU calculates enclave measurement hash during enclave construction
— Each new page extends hash with page content and attributes (read/write/execute)
— Hash computed with SHA-256 DRAM CPU

\

-~

Measurement can be used J sateascsonrzos |
to attest enclave to local or _
remote entity

_ /

CPU calculates enclave measurement hash during
enclave construction
Different measurement if enclave modified

Peter Pietzuch - Imperial College London 54

SGX Enclave Attestation

Is my code running on remote machine intact?
Is code really running inside an SGX enclave?

Local attestation
— Prove enclave’s identity (= measurement) to another enclave on same CPU

Remote attestation
— Prove enclave’s identity to remote party

Once attested, enclave can be trusted with secrets

Peter Pietzuch - Imperial College London

55

Local Attestation

Prove identity of Ato local enclave B

Enclave A Enclave B

[) 1. Hi! 'm 5f904ba8910bff! Who are you? (
Y,
A

A
A 4

4. Here is my report _

A

o

/ Measurement (enclave A) \
3. Here you gO' _ 6. Here you gO'

2. Please create a report for 5. Please give me my report

Measurement (enclave B)

5f904ba8910bff R _ verification key
_ CPU @f J

=

. Target enclave B measurement required for key generation

. Report contains information about target enclave B, including its measurement

3. CPU fills in report and creates MAC using report key, which depends on random CPU fuses and target
enclave B measurement

. Report sent back to target enclave B

. Verify report by CPU to check that generated on same platform, i.e. MAC created with same report key
(available only on same CPU)

6. Check MAC received with report and do not trust A upon mismatch
Peter Pietzuch - Imperial College London

N

o b~

Remote Attestation |

Transform local report to remotely verifiable “quote”

Based on provisioning enclave (PE) and quoting enclave (QE)
— Architectural enclaves provided by Intel
— Execute locally on user platform

Each SGX-enabled CPU has unique key fused during manufacturing

— Intel maintains database of keys

Peter Pietzuch - Imperial College London

57

Remote Attestation I

PE communicates with Intel attestation service
— Proves it has key installed by Intel
— Receives asymmetric attestation key

QE performs local attestation for enclave
— QE verifies report and signs it using attestation key
— Creates guote that can be verified outside platform

Quote and signature sent to remote attester, which communicates with
Intel attestation service to verify quote validity

Peter Pietzuch - Imperial College London

58

Summary of SGX Architecture

Peter Pietzuch - Imperial College London

Application
environment

environment

HW

Exposed Privileged

" (Eome) @_@f-

App//cat/on

! Runtime !

Page tables

OS structure Hardware

Instructions

EEXIT
EGETKEY
| EREPORT

| EENTER
| ERESUME

ECREATE
EADD
EEXTEND
EINIT
EBLOCK
ETRACK
EWB

ELD

EPA

EREMOVE

59

Thank you!

=@ Microsoft

© Copyright Microsoft Corporation. All rights reserved.

	Research�Faculty Summit 2018
	Confidential Computing
	Slide palette info
	Text with bullet points—adjusting list levels
	Headline goes here
	Headline goes here
	Headline goes here
	Headline goes here
	Headline goes here
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

