
Systems | Fueling future disruptions

Research
Faculty Summit 2018

BlockchainDB—Towards a
Shared Database on Blockchains

Carsten Binnig
Data Management Lab, TU Darmstadt

Blockchains: A Shared Database?

Blockchains are not only used for
crypto-currencies today

More and more application to use
Blockchains as shared database

Main reasons why Blockchains are
being used for data sharing:
• Keeps history of all transactions

(Even counts as evidence in court)
• No tampering after-the-fact

(once data is written)
• Needs no trusted authority

Blockchain Network

Peer B

Client

Client

Client

Client

Peer A

Peer C

Peer D

Full
Replication

Potential Use Cases

Sharing Health Records (https://medicalchain.com)

Tracing Goods in Supply Chains
(https://www.ibm.com/blockchain/industries/supply-chain)

Decentralized Copyright Management (e.g., https://binded.com/ for images)

Decentralized Domain-Name-Service (https://namecoin.org/)

…

https://medicalchain.com/en/
https://www.ibm.com/blockchain/industries/supply-chain
https://binded.com/
https://namecoin.org/

Are existing Blockchains good enough
to be used as a shared database?

Outline

Blockchain Background

Challenges of using Blockchains

BlockchainDB – A Shared Database on Blockchains

Summary and Next Steps

The Technology behind Blockchains
(from 10000 feet)

Blockchains peers use a tamper-proof
ledger to store shared data
• Ledger is an append-only list of all tx’s

(e.g., tx = transfers between accounts)
• Tx’s are appended in blocks to ledger
• Ledger is fully-replicated across peers

Consensus ensures that every peer
agrees on new tx’s appended to ledger

Smart contracts are “trusted” procedures
in the BC triggered by tx’s to modify data

Peer A
Ledger

Peer B
Ledger

Peer B
Ledger

Procedure

Read
State

Modify
State

Blockchain Network

Consensus?

ProcedureProcedure

Categories of Blockchain Networks

Public (aka permission-less)

• Anyone can participate in the BC network
as a participant

• Uses expensive computation-based
consensus protocols (e.g., proof of work)

• Example: Bitcoin, Ethereum (public)

Private (aka permissioned)

• Limited to a small set of known
participants

• Uses less expensive voting-based
consensus protocols (e.g., PBFT, …)

• Example: Hyperledger, Ethereum (private)

Outline

Blockchain Background

Challenges of using Blockchains

BlockchainDB – A Shared Database on Blockchains

Summary and Next Steps

Challenge 1: Performance of Blockchains

Low throughput (<100’s tx/s on average)
and high latency

AND bad scalability with # of peers

Not sufficient for many use-cases (e.g.,
Visa processes on avg. 2000 tx/s)

From: BLOCKBENCH: A Framework for Analyzing Private Blockchains. SIGMOD Conference 2017: 1085-1100

Max. Throughput (Avg. much lower)!

Very limited performance even for private blockchains

Challenge 2: “Zoo” of Blockchains

…
From: Untangling Blockchain: A Data Processing View of Blockchain Systems. IEEE Trans. Knowl. Data Eng. 30(7) 2018

Many different programming and execution models!

Unclear which one is best for your workload?

Hard to predict which platforms will “survive”!

Challenge 3: Missing Guarantees and Functions

Guarantees desired for shared databases
• Verifiability of execution of DB transactions (sequence of reads & writes)
• Recovery to valid checkpoints (before violation was detected)

Many other desired functions for data sharing missing in BC’s:
privacy (e.g., by encryption) of data, fine-grained authorization, ….

Blockchains provide only limited guarantees for data access
(e.g., no guarantees for reads -> executed by only ONE peer!!!)

Outline

Blockchain Background

Challenges of using Blockchains

BlockchainDB – A Shared Database on Blockchains

Summary and Next Steps

Vision of BlockchainDB

Unified API & Pluggable Backends
(i.e., be the MySQL for Blockchains)

Apply typical DB optimizations in Middleware
(e.g., sharding, batching, …)

Support for verifiable DB transactions
(i.e., sequences of reads/writes to BC)

1

2

3

BlockchainDB = Middleware on top of Blockchains

First Step: BlockchainKV (Goal)

BlockchainKV: Middleware which provides a unified put/get interface for different
BC backends (later: full transaction support on top)

BlockchainKV

put(k, v) get(k)->v

Pluggable Backends

Unified API

…

1

BlockchainKV: Performance Optimizations (Goal)

Performance Optimizations in BlockchainKV
• Sharding of data in BC
• Reduced # of Replicas per shard
• Lower Consistency Levels -> higher performance
• Batching of put’s to lower the BC overhead per put
• Caching data for get’s but still enabling verification
• …

2

• Lower Consistency Levels -> higher performance
• Batching of put’s to lower the BC overhead per put

BlockchainKV: Consistency

Provide different client-side consistency
levels: lower cons. -> higher perf.

Read-Your-Writes:
• Put: submit tx to BC and add it into pending

tx-queue in middleware (if tx is valid)
• Get: wait for pending put tx’s

Eventual consistency:
• Put: same as before
• Get: can be executed without waiting for

pending put’s!

Th
ro

ug
hp

ut
 (o

ps
/s

)

Consistency Levels

Workload: 50% reads / 50% writes
(Ethereum as backend)

Eventual Read-Your-Writes

BlockchainKV: Batching

Blockchain has a high per-tx overhead
(e.g., validation of tx)

Batching in BlockchainKV merges multiple
put’s into on BC tx

Trivial for Eventual Consistency but more
complex for Sequential Consistency

Th
ro

ug
hp

ut
 (o

ps
/s

)

Workload: 100% writes
(Ethereum as backend)

BlockchainKV: Verifiable Consistency (Goal)

Main Idea:
• Clients can verify correctness of all KV

operations (put’s and get’s)
• I.e., verify that puts’ and get’s adhere

to selected consistency level

Example: Eventual Consistency
• Read-set (RS) ⊆ write-set (WS)

of all clients (i.e., no “fake” reads)
• Liveliness (i.e., no dropped writes)

BlockchainKV

put(k, v) get(k)->v

Blockchain
Peer A

Peer B

Peer C

Client:

3

Correct w.r.t
consistency?

Blockchain

BlockchainKV: Violation of Consistency?

Untrusted components can be
compromised (i.e., “misbehave”)

Example: Violation of Eventual Consistency
• BlockchainKV (or even a BC Peer) can

“misbehave” if compromised:
• Get’s returns “fake”-values

for a key OR
• Put’s are dropped

BlockchainKV
Untrusted

Trusted
(Majority)

put(k, v) get(k)->v

Peer A

Peer B

Peer C

Client: Correct w.r.t
consistency?

BlockchainKV: Verification Procedure

BlockchainKV uses deferred verification to
detect violations of consistency guarantees

Idea: Epoch-based verification for Eventual
Consistency (simplified)
• Blockchain keeps updated WSKV of

BlockchainKV (ALL put’s)
• Clients logs RS/WSClients of current epoch

(bypasses BlockchainKV!)
• Check at end of epoch (non-blocking)

• WSClients ⊆ WSKV (no dropped writes)
• RSClients ⊆ WSKV (no “fake” reads)

recordPut(k1,v1, prn1) sent to majority

KV-StoreClient
put(k1,v1, prn1)

BC Peer

Update WSClients
(non-blocking)

verifyEpoch()

Check correctness
(non-blocking)

Store data +
Update WSDB

…

tx-id

checkResult(tx-id)

Deferred Verification:

get(k1)
v1, prn1

recordGet(k1,v1, prn1) sent to majority
Update RSClients
(non-blocking)

Outline

Blockchain Background

Challenges of using Blockchains

BlockchainDB – A Shared Database on Blockchains

Summary and Next Steps

What’s next?

BlockchainKV only a first step towards a Shared Database System on
Blockchains

Next Steps:
• Add further optimizations (e.g., caching) to middleware
• Add support for verifiable DB Transactions on top
• Hardware supported verifiable DB Transactions

Long term: Integration into existing DBMSs (e.g., as a “shared” column/table)?

Collaborators

See also https://distributedledger.center/

Muhammad
El-Hindi

Sumith
Kulal

Arvind
Arasu

Ravi
Ramamurthi

Donald
Kossmann

https://distributedledger.center/

Thank you!

	Research�Faculty Summit 2018
	BlockchainDB—Towards a �Shared Database on Blockchains
	Blockchains: A Shared Database?
	Potential Use Cases
	Slide Number 5
	Outline
	The Technology behind Blockchains�(from 10000 feet)
	Categories of Blockchain Networks
	Outline
	Challenge 1: Performance of Blockchains
	Challenge 2: “Zoo” of Blockchains
	Challenge 3: Missing Guarantees and Functions
	Outline
	Vision of BlockchainDB
	First Step: BlockchainKV (Goal)
	BlockchainKV: Performance Optimizations (Goal)
	BlockchainKV: Consistency
	BlockchainKV: Batching
	BlockchainKV: Verifiable Consistency (Goal)
	BlockchainKV: Violation of Consistency?
	BlockchainKV: Verification Procedure
	Outline
	What’s next?
	Collaborators
	Slide Number 25
	Slide Number 26

