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Data Center Application Trends

• Small, frequent remote procedure calls
• Median RPC ~ 300 bytes across entire Google DC [Montazeri, SIGCOMM 18]
• TCP semantics: reliable, in-order, congestion/flow control
• Many to many

• Key-value store, database, distributed analytics …
• Pushing performance limits

• More requests, larger data sets, real-time response, …
• Scale up to 1000s of machines

• Need predictable tail latency behavior over multiplexed resources
• With NVM persistence now almost entirely a networking issue



...but software packet processing is too slow

• Recv+send TCP stack processing time (2.2 GHz)
• Linux: 3.5µs
• Kernel bypass: ~1µs

• Single core performance has stalled
• Parallelize? Assuming 1µs over 100Gb/s, ignoring Amdahl‘s Law:

• 64B packets => 200 cores
• 1KB packets => 14 cores



What About?

• Kernel bypass? (ex: MTCP)
• Kernel overhead only part of the problem
• No policy enforcement

• SmartNICs/NIC CPU array? (Cavium, Netronome, …)
• Complex assignment of flows to CPU array
• Limited per-flow performance
• Relatively expensive

• RDMA?
• RDMA API fine for some apps, but message passing is a better fit for small RPCs
• Hardware bundles (poorly designed) flow/congestion control with API

• TCP Offload Engine?
• Need protocol agility



Hardware Assist, OS Feature Set

• Multi-tenant policy compliance
• VM/container security and access control
• Shared network resource management (flow and congestion control)

• Protocol agility (across lifetime of the hardware)
• API agnostic: both RDMA and message passing
• Reconfigurable protocols vs. fixed function hardware

• Connection scalability: 100K+ active flows/server
• CPU efficiency for common case packet handling

• From NIC through the application and back
• Performance predictability, esp tail latency with many flows
• Cost-efficient hardware: FPGA or micro-programmed VLSI



Hardware Assist Possible at Several Layers

• Virtual machine layer: Sambhrama
• Deliver packets directly to the guest OS
• With VM policy enforcement

• Container OS layer: TCP packet handling
• Deliver packets directly to the application
• With policy enforcement, flow/congestion control, …

• Application-specific processing: Simon Peter

• Network switches: congestion and SLA management

FlexNIC

Approx Fair Queueing



Overarching Lesson

Common case packet handling is systolic (can be pipelined in hardware)
On both NICs and switches



FlexNIC: Reconfigurable Multi-stage Pipelines

• Reconfigurable packet processing pipelines
• Protocol agnostic
• Tbps implementations for a single pipeline (Barefoot)
• Predictable performance

• Stages execute parallel
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Match+Action Programs

Does not support
• Loops
• Complex arithmetic
• Arbitrary state
• Arbitrary # of stages

Supports: 
• Steer packets
• Initiate DMA 
• Trigger reply packet
• Modify/replicate packets
• Modest per-flow state

Match:
IF udp.port == kvs

Action:
core = HASH(kvs.key) % 2
DMA hash, kvs TO Cores[core]



FlexNIC Hardware Model

• Transform packets for efficient processing in SW
• DMA directly into and out of application data structures
• Send acknowledgements on NIC
• Queue manager implements rate limits
• Improve locality by steering to cores based on app criteria
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Complex connection state spread over multiple data 
structures, multiple queues, pointer chasing, …

Kernel
• Open/close connections

Per packet
• Socket API, locking
• IP routing, ARP
• Firewalling, traffic shaping
• Generate data segments
• Congestion control
• Flow control
• Process & send ACKs
• Re-transmission timeouts



Application
• Socket API, locking

Slow Path: Kernel
• Open/close connections
• IP routing, ARP
• Firewalling, traffic shaping
• Compute rate
• Re-transmission timeouts

Fast Path: FlexNIC
Per packet: constant time operations
• Generate data segments
• Apply rate-limit
• Congestion statistics
• Flow control
• Process & send ACKs

Minimal Connection State: 100 bytes



Periodic Congestion Control

• Linux TCP: per-packet congestion window calculation
• Ack clocking triggers packet queuing for transmission
• Liable to starvation as # of flows increases

• FlexTCP: per-RTT rate limit
• FlexNIC: enforce rate-limit, collect CC statistics
• Kernel software: Fetch CC statistics, update rate-limit
• Congestion statistics: # ACKs, # ECN marks, # drops, RTT estimation

• Not specific to congestion algorithm
• Implemented DCTCP, TIMELY, and Reno



FlexTCP Performance

• Latency: 7.8x better vs Linux
• FlexNIC per-flow isolation vs. Linux per-flow starvation
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Fair Queueing: in-network enforcement

Enforce fair allocation and isolation at switches
• Provide an illusion that every flow has its own queue
• Proven to have perfect isolation and fairness

+ Simplifies congestion control at the end-host
+ Protects against misbehaving traffic
+ Enables bounded delay guarantees

However, challenging to realize in high-speed switches.



Sorted packet buffer
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Fair Queueing without per-flow queues

• Simulates an ideal round-robin scheme where each active flow transmits a 
single bit of data every round.
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“Simulated” fair-
queueing
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Our approach: Approximate Fair Queueing

Simulate a bit-by-bit round robin scheme with key approximations
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Testbed Results

• Compared to TCP, 4x better average FCT, 10x better tail latency

• Compared to DCTCP, 2x better average FCT, 4x better tail latency
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Summary

• FlexNIC
• Configurable, efficient, policy-compliant NIC packet handling
• For VM, container, application
• Key idea: common case behavior as match-action, kernel for exception handling

• Approximate fair queueing with switch match-action tables
• Configurable, efficient, policy-compliant switch packet handling
• Fair queueing provides performance isolation, network SLAs, QoS
• Approximate with rotating priority queues, coarse-grained rounds, approx. per-flow counters



Thank you
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