
Systems | Fueling future disruptions

Research Faculty 
Summit 2018



High Performance Data Center 
Communication with FlexNIC

Thomas Anderson
Warren Francis and Wilma Kolm Bradley Chair
Paul G. Allen School of Computer Science and Engineering
University of Washington



Data Center Application Trends

• Small, frequent remote procedure calls
• Median RPC ~ 300 bytes across entire Google DC [Montazeri, SIGCOMM 18]
• TCP semantics: reliable, in-order, congestion/flow control
• Many to many

• Key-value store, database, distributed analytics …
• Pushing performance limits

• More requests, larger data sets, real-time response, …
• Scale up to 1000s of machines

• Need predictable tail latency behavior over multiplexed resources
• With NVM persistence now almost entirely a networking issue



...but software packet processing is too slow

• Recv+send TCP stack processing time (2.2 GHz)
• Linux: 3.5µs
• Kernel bypass: ~1µs

• Single core performance has stalled
• Parallelize? Assuming 1µs over 100Gb/s, ignoring Amdahl‘s Law:

• 64B packets => 200 cores
• 1KB packets => 14 cores



What About?

• Kernel bypass? (ex: MTCP)
• Kernel overhead only part of the problem
• No policy enforcement

• SmartNICs/NIC CPU array? (Cavium, Netronome, …)
• Complex assignment of flows to CPU array
• Limited per-flow performance
• Relatively expensive

• RDMA?
• RDMA API fine for some apps, but message passing is a better fit for small RPCs
• Hardware bundles (poorly designed) flow/congestion control with API

• TCP Offload Engine?
• Need protocol agility



Hardware Assist, OS Feature Set

• Multi-tenant policy compliance
• VM/container security and access control
• Shared network resource management (flow and congestion control)

• Protocol agility (across lifetime of the hardware)
• API agnostic: both RDMA and message passing
• Reconfigurable protocols vs. fixed function hardware

• Connection scalability: 100K+ active flows/server
• CPU efficiency for common case packet handling

• From NIC through the application and back
• Performance predictability, esp tail latency with many flows
• Cost-efficient hardware: FPGA or micro-programmed VLSI



Hardware Assist Possible at Several Layers

• Virtual machine layer: Sambhrama
• Deliver packets directly to the guest OS
• With VM policy enforcement

• Container OS layer: TCP packet handling
• Deliver packets directly to the application
• With policy enforcement, flow/congestion control, …

• Application-specific processing: Simon Peter

• Network switches: congestion and SLA management

FlexNIC

Approx Fair Queueing



Overarching Lesson

Common case packet handling is systolic (can be pipelined in hardware)
On both NICs and switches



FlexNIC: Reconfigurable Multi-stage Pipelines

• Reconfigurable packet processing pipelines
• Protocol agnostic
• Tbps implementations for a single pipeline (Barefoot)
• Predictable performance

• Stages execute parallel

Pr
og

ra
m

m
ab

le
 

Pa
rs

er

Packet
Stream . . .

. .
 . . .
 .

. .
 .

Modified Packet
Stream



Match+Action Programs

Does not support
• Loops
• Complex arithmetic
• Arbitrary state
• Arbitrary # of stages

Supports: 
• Steer packets
• Initiate DMA 
• Trigger reply packet
• Modify/replicate packets
• Modest per-flow state

Match:
IF udp.port == kvs

Action:
core = HASH(kvs.key) % 2
DMA hash, kvs TO Cores[core]



FlexNIC Hardware Model

• Transform packets for efficient processing in SW
• DMA directly into and out of application data structures
• Send acknowledgements on NIC
• Queue manager implements rate limits
• Improve locality by steering to cores based on app criteria

RX Pipeline

DB Pipeline

TX Pipeline

DMA Pipeline PCIe 
DMA

From 
Network

To 
Network

From PCIe 
(Doorbells)

Q
Man



Complex connection state spread over multiple data 
structures, multiple queues, pointer chasing, …

Kernel
• Open/close connections

Per packet
• Socket API, locking
• IP routing, ARP
• Firewalling, traffic shaping
• Generate data segments
• Congestion control
• Flow control
• Process & send ACKs
• Re-transmission timeouts



Application
• Socket API, locking

Slow Path: Kernel
• Open/close connections
• IP routing, ARP
• Firewalling, traffic shaping
• Compute rate
• Re-transmission timeouts

Fast Path: FlexNIC
Per packet: constant time operations
• Generate data segments
• Apply rate-limit
• Congestion statistics
• Flow control
• Process & send ACKs

Minimal Connection State: 100 bytes



Periodic Congestion Control

• Linux TCP: per-packet congestion window calculation
• Ack clocking triggers packet queuing for transmission
• Liable to starvation as # of flows increases

• FlexTCP: per-RTT rate limit
• FlexNIC: enforce rate-limit, collect CC statistics
• Kernel software: Fetch CC statistics, update rate-limit
• Congestion statistics: # ACKs, # ECN marks, # drops, RTT estimation

• Not specific to congestion algorithm
• Implemented DCTCP, TIMELY, and Reno



FlexTCP Performance

• Latency: 7.8x better vs Linux
• FlexNIC per-flow isolation vs. Linux per-flow starvation

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Th
ro

ug
hp

ut
 [m

O
p/

s]

Cores

Linux SoftTCP mTCP FlexTCP

10.7x vs Linux
4.1x vs mTCP 7.2x vs Linux

2.2x vs mTCP



Fair Queueing: in-network enforcement

Enforce fair allocation and isolation at switches
• Provide an illusion that every flow has its own queue
• Proven to have perfect isolation and fairness

+ Simplifies congestion control at the end-host
+ Protects against misbehaving traffic
+ Enables bounded delay guarantees

However, challenging to realize in high-speed switches.



Sorted packet buffer

D

B

A

Fair Queueing without per-flow queues

• Simulates an ideal round-robin scheme where each active flow transmits a 
single bit of data every round.

10 9 8 7 6 5 4 3 2 1 0

Flow 1

Flow 2

Flow 3

Flow 4

Ideal fair-queueing

C

Sorted packet buffer

A, 3B, 5 C, 4

E

2

5

3

4

D,2E, 7

“Simulated” fair-queueing (Demers et.al.)

7

0

0

0
Store and update per-flow counters

Track global round number
Round Number

Flow
Counters



“Simulated” fair-
queueing

7

5

4

2

9 8 7 6 5 4 3 2 1 0

A, 3B, 5 C, 4 D,2E, 7

Our approach: Approximate Fair Queueing

Simulate a bit-by-bit round robin scheme with key approximations

Flow 1

Flow 2

Flow 3

Flow 4

Ideal fair-queueing

A

B

C

D

E 7

2

5

4

ACD

BE
Sorted packet buffer

3 2 1 0

Coarse round numbers Limited # of FIFO queues with rotating 
priorities to approximate a sorted buffer

Store approximate per-flow counters using a 
variation of the count-min sketch



Testbed Results

• Compared to TCP, 4x better average FCT, 10x better tail latency

• Compared to DCTCP, 2x better average FCT, 4x better tail latency

1

10

100

Normalized
Flow

Completion
Time

Flow size
(in bytes)

TCP DCTCP AFQ

Average

99%tile



Summary

• FlexNIC
• Configurable, efficient, policy-compliant NIC packet handling
• For VM, container, application
• Key idea: common case behavior as match-action, kernel for exception handling

• Approximate fair queueing with switch match-action tables
• Configurable, efficient, policy-compliant switch packet handling
• Fair queueing provides performance isolation, network SLAs, QoS
• Approximate with rotating priority queues, coarse-grained rounds, approx. per-flow counters



Thank you




	Research Faculty Summit 2018
	High Performance Data Center Communication with FlexNIC
	Data Center Application Trends
	...but software packet processing is too slow
	What About?
	Hardware Assist, OS Feature Set
	Hardware Assist Possible at Several Layers
	Overarching Lesson
	FlexNIC: Reconfigurable Multi-stage Pipelines
	Match+Action Programs
	FlexNIC Hardware Model
	Slide Number 12
	Slide Number 13
	Periodic Congestion Control
	FlexTCP Performance
	Fair Queueing: in-network enforcement
	Fair Queueing without per-flow queues
	Our approach: Approximate Fair Queueing
	Testbed Results
	Summary
	Slide Number 21
	Slide Number 22

