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Abstract
Feature-mapping with deep neural networks is commonly

used for single-channel speech enhancement, in which a
feature-mapping network directly transforms the noisy features
to the corresponding enhanced ones and is trained to minimize
the mean square errors between the enhanced and clean fea-
tures. In this paper, we propose an adversarial feature-mapping
(AFM) method for speech enhancement which advances the
feature-mapping approach with adversarial learning. An ad-
ditional discriminator network is introduced to distinguish the
enhanced features from the real clean ones. The two networks
are jointly optimized to minimize the feature-mapping loss and
simultaneously mini-maximize the discrimination loss. The dis-
tribution of the enhanced features is further pushed towards that
of the clean features through this adversarial multi-task train-
ing. To achieve better performance on ASR task, senone-aware
(SA) AFM is further proposed in which an acoustic model
network is jointly trained with the feature-mapping and dis-
criminator networks to optimize the senone classification loss
in addition to the AFM losses. Evaluated on the CHiME-3
dataset, the proposed AFM achieves 16.95% and 5.27% relative
word error rate (WER) improvements over the real noisy data
and the feature-mapping baseline respectively and the SA-AFM
achieves 9.85% relative WER improvement over the multi-
conditional acoustic model.
Index Terms: speech enhancement, paralleled data, adversarial
learning, speech recognition

1. Introduction
Single-channel speech enhancement aims at attenuating the
noise component of noisy speech to increase the intelligibil-
ity and perceived quality of the speech component [1]. It is
commonly used to improve the quality of mobile speech com-
munication in noisy environments and enhance the speech sig-
nal before amplification in hearing aids and cochlear implants.
More importantly, speech enhancement is widely applied as a
front-end pre-processing stage to improve the performance of
automatic speech recognition (ASR) [2, 3, 4, 5, 6] and speaker
recognition under noisy conditions [7, 8].

With the advance of deep learning, deep neural network
(DNN) based approaches have achieved great success in single-
channel speech enhancement. The mask learning approach
[9, 10, 11] is proposed to estimate the ideal ratio mask or ideal
binary mask based on noisy input features using a DNN. The
mask is used to filter out the noise from the noisy speech and
recover the clean speech. However, it has the presumption
that the scale of the masked signal is the same as the clean
target and the noise is strictly additive and removable by the
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masking procedure which is generally not true for real recorded
stereo data. To deal with this problem, the feature-mapping ap-
proach [12, 13, 14, 15, 16, 17] is proposed to train a feature-
mapping network that directly transforms the noisy features
to enhanced ones. The feature-mapping network serves as a
non-linear regression function trained to minimize the feature-
mapping loss, i.e., the mean square error (MSE) between the
enhanced features and the paralleled clean ones. The applica-
tion of MSE estimator is based on the homoscedasticity and no
auto-correlation assumption of the noise, i.e., the noise needs
to have the same variance for each noisy feature and the noise
needs to be uncorrelated between different noisy features [18].
This assumption is in general violated for real speech signal (a
kind of time series data) under non-stationary unknown noise.

Recently, adversarial training [19] has become a hot topic
in deep learning with its great success in estimating genera-
tive models. It was first applied to image generation [20, 21],
image-to-image translation [22, 23] and representation learning
[24]. In speech area, it has been applied to speech enhancement
[25, 26, 27, 28], voice conversion [29, 30], acoustic model adap-
tation [31, 32, 33], noise-robust [34, 35] and speaker-invariant
[36, 37] ASR using gradient reversal layer (GRL) [38]. In these
works, adversarial training is used to learn a feature or an in-
termediate representation in DNN that is invariant to the shift
among different domains (e.g., environments, speakers, image
styles, etc.). In other words, a generator network is trained to
map data from different domains to the features with similar
distributions via adversarial learning.

Inspired by this, we advance the feature-mapping approach
with adversarial learning to further diminish the discrepancy be-
tween the distributions of the clean features and the enhanced
features generated by the feature-mapping network given non-
stationary and auto-correlated noise at the input. We call
this method adversarial feature-mapping (AFM) for speech en-
hancement. In AFM, an additional discriminator network is
introduced to distinguish the enhanced features from the real
clean ones. The feature-mapping network and the discrimina-
tor network are jointly trained to minimize the feature-mapping
loss and simultaneously mini-maximize the discrimination loss
with adversarial multi-task learning. With AFM, the feature-
mapping network can generate pseudo-clean features that the
discriminator can hardly tell whether they are real clean features
or not. To achieve better performance on ASR task, senone-
aware adversarial feature-mapping (SA-AFM) is proposed in
which an acoustic model network is introduced and is jointly
trained with the feature-mapping and discriminator networks to
optimize the senone classification loss in addition to the feature-
mapping and discrimination losses.

Note that AFM is different from [26] in that: (1) In AFM,
the inputs to the discriminator are enhanced and clean features
while in [26] the inputs to the discriminator are the concate-
nation of enhanced and noisy features and the concatenation



of clean and noisy features. (2) The primary task of AFM is
feature-mapping, i.e., to minimize the L2 distance (MSE) be-
tween enhanced and clean features and it is advanced with ad-
versarial learning to further reduce the discrepancy between the
distributions of the enhanced and clean features while in [26]
the primary task is to generate enhanced features that are simi-
lar to clean features with generative adversarial network (GAN)
and it is regularized with the minimization of L1 distance be-
tween noisy and enhanced features. (3) AFM performs adver-
sarial multi-task training using GRL method as in [38] while
[26] conducts conditional GAN iterative optimization as in [19].
(4) In this paper, AFM uses long short-term memory (LSTM)-
recurrent neural networks (RNNs) to generate the enhanced fea-
tures and a feed-forward DNN as the discriminator while [26]
uses convolutional neural networks for both.

We perform ASR experiments with features enhanced by
AFM on CHiME-3 dataset [39]. Evaluated on a clean acoustic
model, AFM achieves 16.95% and 5.27% relative word error
rate (WER) improvements respectively over the noisy features
and feature-mapping baseline and the SA-AFM achieves 9.85%
relative WER improvement over the multi-conditional acoustic
model.

2. Adversarial Feature-Mapping Speech
Enhancement

With feature-mapping approach for speech enhancement,
we are given a sequence of noisy speech features X =
{x1, . . . , xT } and a sequence of clean speech features Y =
{y1, . . . , yT } as the training data. X and Y are parallel to each
other, i.e., each pair of xi and yi is frame-by-frame synchro-
nized. The goal of speech enhancement is to learn a non-linear
feature-mapping network F with parameters θf that transforms
X to a sequence of enhanced features Ŷ = {ŷ1, . . . , ŷT } such
that the distribution of Ŷ is as close to that of Y as possible:

ŷi = F (xi), i = 1, . . . , T (1)
PŶ (ŷ)→ PY (y). (2)

To achieve that, we minimize the noisy-to-clean feature-
mapping loss LF (θf ), which is commonly defined as the MSE
between Ŷ and Y as follows:

LF (θf ) =
1

T

T∑
i=1

(ŷi − yi)2 =
1

T

T∑
i=1

[F (xi)− yi]2 . (3)

However, the MSE that feature-mapping approach mini-
mizes is based on the homoscedasticity and no auto-correlation
assumption of the noise, i.e., the noise has the same variance for
each noisy feature and the noise is uncorrelated between differ-
ent noisy features. This assumption is in general invalid for real
speech signal (time series data) under non-stationary unknown
noise. To address this problem, we further advance the feature-
mapping network with an additional discriminator network and
perform adversarial multi-task training to further reduce the dis-
crepancy between the distribution of enhanced features and the
clean ones given non-stationary and auto-correlated noise is at
the input.

As shown in Fig. 1, the discriminator network D with pa-
rameters θd takes enhanced features Ŷ and clean features Y as
the input and outputs the posterior probability that an input fea-
ture belongs to the clean set, i.e.,

P (yi ∈ C) = D(yi) (4)
P (ŷi ∈ E) = 1−D(ŷi) (5)

Figure 1: The framework of AFM for speech enhancement.

where C and E denote the sets of clean and enhanced features
respectively. The discrimination losses LD(θf , θd) for the D is
formulated below using cross-entropy:

LD(θf , θd) =
1

T

T∑
i=1

[logP (yi ∈ C) + logP (ŷi ∈ E)]

=
1

T

T∑
i=1

logD(yi) + log [1−D(F (xi))] . (6)

To make the distribution of the enhanced features Ŷ similar
to that of the clean ones Y , we perform adversarial training of
F and D, i.e, we minimize LD(θf , θd) with respect to θd and
maximize LD(θf , θd) with respect to θf . This minimax com-
petition will first increase the generation capability of F and the
discrimination capability of D and will eventually converge to
the point where the F generates extremely confusing enhanced
features that D is unable to distinguish whether it is a clean
feature or not.

The total loss of AFM LAFM (θf , θd) is formulated as the
weighted sum of the feature-mapping loss and the discrimina-
tion loss below:

LAFM(θf , θd) = LF (θf )− λLD(θf , θd) (7)

where λ > 0 is the gradient reversal coefficient that controls the
trade-off between the feature-mapping loss and the discrimina-
tion loss in Eq. (3) and Eq. (6) respectively.

F and D are jointly trained to optimize the total loss
through adversarial multi-task learning as follows:

θ̂f = argmin
θf

LAFM(θf , θ̂d) (8)

θ̂d = argmax
θd

LAFM(θ̂f , θd) (9)

where θ̂f and θ̂d are optimal parameters for F and D respec-
tively and are updated as follows via back propagation through



time (BPTT) with stochastic gradient descent (SGD):

θf ← θf − µ
[
∂LF(θf )

∂θf
− λ∂LD(θf , θd)

∂θf

]
(10)

θd ← θd − µ
∂LD(θf , θd)

∂θd
(11)

where µ is the learning rate.
Note that the negative coefficient −λ in Eq. (10) induces

reversed gradient that maximizes LD(θf , θd) in Eq. (6) and
makes the enhanced features similar to the real clean ones.
Without the reversal gradient, SGD would make the enhanced
features different from the clean ones in order to minimize Eq.
(6). For easy implementation, gradient reversal layer is intro-
duced in [38], which acts as an identity transform in the forward
propagation and multiplies the gradient by−λ during the back-
ward propagation. During testing, only the optimized feature-
mapping network F is used to generate the enhanced features
given the noisy test features.

3. Senone-Aware Adversarial
Feature-Mapping Enhancement

For AFM speech enhancement, we only need parallel clean and
noisy speech for training and we do not need any information
about the content of the speech, i.e., the transcription. With
the goal of improving the intelligibility and perceived quality
of the speech, AFM can be widely used in a broad range of
applications including ASR, mobile communication, hearing
aids, cochlear implants, etc. However, for the most important
ASR task, AFM does not necessarily lead to the best WER per-
formance because its feature-mapping and discrimination ob-
jectives are not directly related to the speech units (i.e., word,
phoneme, senone, etc.) classification. In fact, with AFM, some
decision boundaries among speech units may be distorted in
searching for an optimal separation between speech and noise.

To compensate for this mismatch, we incorporate a
DNN acoustic model into the AFM framework and propose
the senone-aware adversarial feature-mapping (SA-AFM), in
which the acoustic model networkM , feature-mapping network
F and the discriminator network D are trained to jointly opti-
mize the primary task of feature-mapping, secondary task of the
third task of clean/enhanced data discrimination and the third
task of senone classification in an adversarial fashion. The tran-
scription of the parallel clean and noisy training utterances is
required for SA-AFM speech enhancement.

Specifically, as shown in Fig. 2, the acoustic model network
M with parameters θm takes in the enhanced features as the
input and predicts the senone posteriors P (q|ŷi; θy), q ∈ Q as
follows:

M(ŷi) = P (q|ŷi; θm) (12)

after the integration with feature-mapping network F , we have

M(F (xi)) = P (q|xi; θf , θm). (13)

We want to make the enhanced features senone-
discriminative by minimizing the cross-entropy loss between
the predicted senone posteriors and the senone labels as follows:

LM(θm, θf ) = −
T∑
i=1

logP (si|xi; θf , θm)

= −
T∑
i=1

logM(F (xi)) (14)

Figure 2: The framework of SA-AFM for speech enhancement.

where S is a sequence of senone labels S = {s1, . . . , sT }
aligned with the noisy data X and enhanced data Ŷ .

Simultaneously, we minimize feature-mapping loss
LF (θf ) defined in Eq. (3) with respect to F and perform
adversarial training of F and D, i.e, we minimize LD(θf , θd)
defined in Eq. (6) with respect to θd and maximize LD(θf , θd)
with respect to θf , to make the distribution of the enhanced
features Ŷ similar to that of the clean ones Y .

The total loss of SA-AFM LSAAFM (θm, θf , θd) is for-
mulated as the weighted sum of LF (θf ), LD(θf , θd) and the
senone classification loss LM(θm, θf ) as follows:

LSA-AFM(θf , θd, θm) =LF (θf )− λ1LD(θf , θd)
+ λ2LM (θf , θm) (15)

where λ1 > 0 is the gradient reversal coefficient that controls
the trade-off between LF (θf ) and LD(θf , θd), and λ2 > 0 is
the weight for LM (θf , θm).

F , D and M are jointly trained to optimize the total loss
through adversarial multi-task learning as follows:

(θ̂f , θ̂m) = argmin
θf ,θm

LSA-AFM(θf , θ̂d, θm) (16)

θ̂d = argmax
θd

LSA-AFM(θ̂f , θd, θ̂m) (17)

where θ̂f , θ̂d and θ̂m are optimal parameters for F , D and M
respectively and are updated as follows via BPTT with SGD as
in Eq. (10), Eq. (11) and Eq. (18) below:

θm ← θm − µ
∂LM(θf , θm)

∂θm
. (18)

During decoding, only the optimized feature-mapping network
F and acoustic model network M are used to take in the noisy
test features and generate the acoustic scores.



4. Experiments
In the experiments, we train the feature-mapping network F
with the parallel clean and noisy training utterances in CHiME-
3 dataset [39] using different methods. The real far-field noisy
speech from the 5th microphone channel in CHiME-3 develop-
ment data set is used for testing. We use a pre-trained clean
DNN acoustic model to evaluate the ASR WER performance of
the test features enhanced by F . The standard WSJ 3-gram lan-
guage model with 5K-word lexicon is used in our experiments.

4.1. Feedforward DNN Acoustic Model

To evaluate the ASR performance of the features enhanced by
AFM, we first train a feedforward DNN-hidden Markov model
(HMM) acoustic model using 8738 clean training utterances in
CHiME-3 with cross-entropy criterion. The 29-dimensional log
Mel filterbank (LFB) features together with 1st and 2nd order
delta features (totally 87-dimensional) are extracted. Each fea-
ture frame is spliced together with 5 left and 5 right context
frames to form a 957-dimensional feature. The spliced fea-
tures are fed as the input of the feed-forward DNN after global
mean and variance normalization. The DNN has 7 hidden lay-
ers with 2048 hidden units for each layer. The output layer of
the DNN has 3012 output units corresponding to 3012 senone
labels. Senone-level forced alignment of the clean data is gen-
erated using a Gaussian mixture model-HMM system. A WER
of 29.44% is achieved when evaluating the clean DNN acoustic
model on the test data.

4.2. Adversarial Feature-Mapping Speech Enhancement

We use parallel data consisting of 8738 pairs of noisy and
clean utterances in CHiME-3 as the training data. The 29-
dimensional LFB features are extracted for the training data.
For the noisy data, the 29-dimensional LFB features are ap-
pended with 1st and 2nd order delta features to form 87-
dimensional feature vectors. F is an LSTM-RNN with 2 hidden
layers and 512 units for each hidden layer. A 256-dimensional
projection layer is inserted on top of each hidden layer to reduce
the number of parameters. F has 87 input units and 29 output
units. The features are globally mean and variance normalized
before fed into F . The discriminator D is a feedforward DNN
with 2 hidden layers and 512 units in each hidden layer. D has
29 input units and one output unit.

We first train F with 87-dimensional LFB features as the
input and 29-dimensional LFB features as the target to mini-
mize the feature-mapping loss L(θf ) in Eq. (3). This serves as
the feature-mapping baseline. Evaluated on clean DNN acous-
tic model trained in Section 4.1, the feature-mapping enhanced
features achieve 25.81% WER which is 12.33% relative im-
provement over the noisy features. Then we jointly train F and
D to optimize LAFM(θf , θd) as in Eq. (7) using the same input
features and targets. The gradient reversal coefficient λ is fixed
at 60 and the learning rate is 5×10−7 with a momentum of 0.5
in the experiments. As shown in Table 1, AFM enhanced fea-
tures achieve 24.45% WER which is 16.95 % and 5.27% rela-
tive improvements over the noisy features and feature-mapping
baseline.

4.3. Senone-Aware Adversarial Feature-Mapping Speech
Enhancement

The SA-AFM experiment is conducted on top of the AFM sys-
tem described in Section 4.2. In addition to the LSTM F
and feedforward DNN D, we train a multi-conditional LSTM

Test Data BUS CAF PED STR Avg.
Noisy 36.25 31.78 22.76 27.18 29.44
FM 31.35 28.64 19.80 23.61 25.81

AFM 30.97 26.09 18.40 22.53 24.45

Table 1: The ASR WER (%) performance of real noisy dev set in
CHiME-3 enhanced by different methods evaluated on a clean
DNN acoustic model. FM represents feature-mapping.

acoustic model M using both the 8738 clean and 8738 noisy
training utterances in CHiME-3 dataset. The LSTM M has 4
hidden layers with 1024 units in each layer. A 512-dimensional
projection layer is inserted on top each hidden layer to reduce
the number of parameters. The output layer has 3012 out-
put units predicting senone posteriors. The senone-level forced
alignment of the training data is generated using a GMM-HMM
system. As shown in Table 2, the multi-conditional acoustic
model achieves 19.28% WER on CHiME-3 simulated dev set.

Test Data BUS CAF PED STR Avg.
Multi-Condition 18.44 23.37 16.81 18.50 19.28

SA-FM 18.19 22.29 15.31 18.26 18.51
SA-AFM 17.02 21.01 14.41 17.13 17.38

Table 2: The ASR WER (%) performance of simulated noisy dev
set in CHiME-3 by using multi-conditional acoustic model and
different enhancement methods.

Then we perform senone-aware feature-mapping (SA-FM)
by jointly training F and M to optimize the feature-mapping
loss and the senone classification loss in which M takes the en-
hanced LFB features generated by F as the input to predict the
senone posteriors. The SA-FM achieves 18.51% WER on the
same testing data. Finally, SA-AFM is performed as described
in Section 3 and it achieves 17.38% WER which is 9.85% and
6.10% relative improvements over the multi-conditional acous-
tic model and SA-FM baseline.

5. Conclusions
In this paper, we advance feature-mapping approach with ad-
versarial learning by proposing AFM method for speech en-
hancement. In AFM, we have a feature-mapping network F
that transforms the noisy speech features to clean ones with
parallel noisy and clean training data and a discriminator D
that distinguishes the enhanced features from the clean ones.
F and D are jointly trained to minimize the feature-mapping
loss (i.e., MSE) and simultaneously mini-maximize the discrim-
ination loss. On top of feature-mapping, AFM pushes the dis-
tribution of the enhanced features further towards that of the
clean features with adversarial multi-task learning.To achieve
better performance on ASR task, SA-AFM is further proposed
to optimize the senone classification loss in addition to the AFM
losses.

We perform ASR experiments with features enhanced by
AFM on CHiME-3 dataset. AFM achieves 16.95% and 5.27%
relative WER improvements over the noisy features and feature-
mapping baseline when evaluated on a clean DNN acoustic
model. Furthermore, the proposed SA-AFM achieves 9.85%
relative WER improvement over the multi-conditional acoustic
model. As we show in [40], teacher-student (T/S) learning [41]
is better for robust model adaptation without the need of tran-
scription. We are now working on the combination of AFM
with T/S learning to further improve the ASR model perfor-
mance.
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