
Systems | Fueling future disruptions

Research
Faculty Summit 2018

Hardware-Aware Security
Verification and Synthesis

Margaret Martonosi
H. T. Adams ‘35 Professor
Dept. of Computer Science
Princeton University

Joint work with Caroline Trippel, Princeton CS PhD student
and Dr. Daniel Lustig, NVIDIA

The Check Suite: An Ecosystem of Tools For Verifying
Memory Consistency Model Implementations

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

Our Approach
• Axiomatic specifications -> Happens-before graphs
• Check Happens-Before Graphs via Efficient SMT solvers
• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable

A

C

B

Check: Formal, Axiomatic Models and Interfaces

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch
Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), "PPO").

Microarchitecture Specification in
μSpec DSL

Microarchitectural happens-before (µhb) graphs

Exh
austiv

e co
nsid

erat
ion of

all p
ossi

ble ex
ecutio

ns

TriCheck Framework: Verifying Memory Event
Ordering from Languages to Hardware

HLL
Mem Model Sim

ISA
Mem Model

uArch
Mem Model

Obs. Not obs
Permit ok Over

strict
Forbid Bug ok

High-level Lang
Litmus tests

HLL->ISA
Compiler
Mappings

ISA-level
Litmus tests Observable/

Unobservable

Permitted/
Forbidden

Compare Outcomes

TriCheck Framework: Verifying Memory Event
Ordering from Languages to Hardware

HLL
Mem Model Sim

ISA
Mem Model

uArch
Mem Model

Obs. Not obs
Permit ok Over

strict
Forbid Bug ok

High-level Lang
Litmus tests

HLL->ISA
Compiler
Mappings

ISA-level
Litmus tests Observable/

Unobservable

Permitted/
Forbidden

Compare Outcomes

Iteratively
Refine
Design:
HLL, Compiler,
ISA, uArch

TriCheck Framework: RISC-V Case Study

HLL

Mem Model Sim

ISA

Mem Model

uArch

Mem Model

Obs. Not obs

Permit ok Over
strict

Forbid Bug ok

High-level Lang

Litmus tests

HLL->ISA

Compiler

Mappings

ISA-level

Litmus tests Observable/

Unobservable

Permitted/

Forbidden

Compare Outcomes

1701 C11

Programs

7 Distinct RISC-V Implementations (All abide by RISC-V

specifications, but vary in reordering / performance

Base RISC-V ISA:

144 buggy outcomes

Base+Atomics:

221 buggy outcomes

Conclusion: Draft RISC-V spec could not serve as a

legal C11 compiler target.

Status: RISC-V Memory Model Working Group

formed to address these issues. Just voted to

ratify new, improved RISC-V memory model.

CheckMate:
From Memory Consistency Models to Security

Flush+Reload

Speculation

Well-known cache
side-channel attack

Widely-used
hardware feature

2 new attacks

January 2018:
Spectre & Meltdown

New exploit

Attack Discovery & Synthesis:
What We Would Like

Formal interface and specification of
given system implementation

1. Specify
system to study

E.g. Subtle event sequences during
program’s execution

2. Specify attack
pattern

Either output synthesized attacks. Or
determine that none are possible3. Synthesis

Attack Discovery & Synthesis:
CheckMate TL;DR

Axiomatic specifications similar to
Check tools

1. Specify
system to study

Event sequences as graph snippets2. Specify attack
pattern

Relational Model Finding (RMF)
approaches3. Synthesis

• What we did: Developed a tool to
do this, based on the uHB graphs
from previous sections.

• Results: Automatically synthesized
Spectre and Meltdown, as well as
two new distinct exploits and many
variants.

[Trippel, Lustig, Martonosi. https://arxiv.org/abs/1802.03802]
[Trippel, Lustig, Martonosi. MICRO 2018. October, 2018] http://check.cs.princeton.edu/papers/ctrippel_MICRO51.pdf

In more
detail…

CheckMate Methodology

1. Frame classes of attacks as patterns of event
interleavings?
-> Essentially a snippet out of a happens-before graph

2. Specify hardware using uSpec axioms
-> Determine if attack is realizable on a given hardware
implementation

Microarchitecture-Aware Program Synthesis

Execute

Store Buffer

L1 ViCL Create

μrf

μrf

Lds.

Main MemoryCommit

Exec.

SB

L1
Fetch

Commit

Exec.

SB

L1
Fetch

Microarchitecture

μhb Pattern

Load being
sourced
from the

store buffer

Enum
er

at
e a

ll

poss
ible

ex
ec

utio
n

gr
ap

hs w
ith

 p
at

te
rn

#cores = 1
#threads = 1
#instr ≤ 2

Execution
Constraints

Fetch

Execute

Commit

Store Buffer

L1 ViCL Create

L1 ViCL Expire

Main Memory

Complete

W [x]à1 R [x]àr0

μrf

Core 0

μrf

μhb Graph

Check
Mate

Microarchitecture-Aware Program Synthesis

Microarchitecture Specification

Enum
er

at
e a

ll

poss
ible

ex
ec

utio
n

gr
ap

hs w
ith

 p
at

te
rn

Fetch

Execute

Commit

Store Buffer

L1 ViCL Create

L1 ViCL Expire

Main Memory

Complete

W [x]à1 R [x]àr0

μrf

Core 0

μrf

μhb Graph

Check
Mate

Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>

AddEdge ((i1, Execute), (i2, Execute), "PPO").

Prior Check tools work
addresses many of these issues

• SW/OS/HW events and locations
• SW/OS/HW ordering details
• Hardware optimizations, e.g., speculation
• Processes and resource-sharing
• Memory hierarchies and cache coherence protocols

Relational Model Finding (RMF):
A Natural Fit for Security Litmus Test Synthesis

• A relational model is a set of constraints on an abstract system (for
CheckMate, a μhb graph) of:
• Set of abstract objects (for CheckMate, μhb graph nodes)
• Set of N-dimensional relations (for example., 2D μhb graph edges relation

connecting 2 nodes)

• For CheckMate, the constraints are a μhb pattern of interest
• RMF attempts to find and satisfying “instance” (or μhb graph)

• Implementation: Alloy DSL maps RMF problems onto Kodkod model-
finder, which in turn uses off-the-shelf SAT solvers
• CheckMate Tool maps μspec HW/OS spec to Alloy

Spectre (Exploits Speculation)

Fetch

Execute

Reorder Buffer

Permission Check

L1ViCLCreate

L1ViCLExpire

Main Memory

Complete

(Attacker.I0)
R VAa1 = 0

Commit

Store Buffer

(Attacker.I1)
CLFLUSH VAa1

(Attacker.I5)
R VAa1 = 0

uv
ic
l

uv
ic
l

uv
ic
l

(Attacker.I3)
R VAv0 = 0

(Attacker.I4)
R VAa1 = 0

dep

uv
ic
l

uv
ic
l

uv
ic
l

(Attacker.I2)
Branch
PT, NT

Core 0

Initial conditions: [x]=0, [y]=0

Attacker T0

R [VAa1]à0

CLFLUSH [VAa1]

Branch à PT,NT

R [VAv0]àr1

R [f(r1)=VAa1]à0

R [VAa1]à0

Flush

Reload

Flush+Reload Threat Pattern

Spectre Security Litmus Test

L1 ViCL Create

L1 ViCL Expire

Execute

flush

reload

Prime&Probe Attack Pattern:
Synthesizing MeltdownPrime & SpectrePrime

Attacker
observes a
cache hit

CheckMate
Is hardware

susceptible to
exploit?

Prime+Probe

Microarchitecture
feat. OOO execution &

speculation

Hardware-specific
exploit programs
(if susceptible)

prim
e

probe

L1 ViCL Create

L1 ViCL Expire

SpectrePrime uhb Graph

Fetch

Execute

Reorder Buffer

Permission Check

RWReq

RWResp

L1ViCLCreate

L1ViCLExpire

(Attacker.I0)
R VAa1 = 0

Commit

Store Buffer

(Attacker.I2)
R VAv0 = 0

(Attacker.I3)
W VAa1 = 0

dep

(Attacker.I5)
R VAa1 = 0

uv
ic
l

uv
ic
l

uv
ic
l

uv
ic
l

Main Memory

Complete

(Attacker.I4)
R VAa1 = 0

ucoh

ucoh
ucoh

(Attacker.I2)
Branch
PT, NT

uv
ic
l

uv
ic
l

Core 0 Core 1

Initial conditions: [x]=0, [y]=0
Attacker T0 Attacker T0
R [VAa1]à0 R [VAa1]à0

Branch à PT,NT

R [VAv0] à r1

W [f(r1)=VAa1] à 0

R [VAa1]à0

Prime

Probe

Prime+Probe Threat Pattern

Spectre Security Litmus Test

ViCLCreate

ViCLExpire

Overall Results: What exploits get synthesized?
And how long does it take?

Exploit
Pattern

#Instrs
(RMF

Bound)

Output
Attack

Minutes to
synthesize
1st exploit

Minutes to
synthesize
all exploits

#Exploits
Synthesized

Flush
+Reload

4 Traditional
Flush+Reload

6.7 9.7 70

5 Meltdown 27.8 59.2 572

6 Spectre 101.0 198.0 1144

Prime
+Probe

3 Traditional
Prime+Probe

5.4 6.7 12

4 MeltdownPrime 17.0 8.2 24

5 SpectrePrime 71.8 76.7 24

CheckMate: Takeaways

•New Variants reported: SpectrePrime and MeltdownPrime
• Speculative cacheline invalidations versus speculative cache pollution
• Software mitigation is the same as for Meltdown & Spectre

• Key overall philosophy:
• Event ordering in security exploit patterns aligns strongly with MCM analysis
• Move from ad hoc analysis to formal automated synthesis.
• Span software, OS, and hardware for holistic hardware-aware analysis

[Trippel, Lustig, Martonosi. https://arxiv.org/abs/1802.03802]
[Trippel, Lustig, Martonosi. MICRO-51. October, 2018. http://check.cs.princeton.edu/papers/ctrippel_MICRO51.pdf]

Acknowledgements
• CheckMate: Caroline Trippel (Princeton CS PhD student) and Dan Lustig (NVIDIA)

• Funding: NSF, NVIDIA Graduate Fellowship

• Check Tools, additional co-authors: Yatin Manerkar, Abhishek Bhattacharjee,
Michael Pellauer, Geet Sethi

Me: http://www.princeton.edu/~mrm
Group Papers: http://mrmgroup.cs.princeton.edu
Check and CheckMate Tools: http://check.cs.princeton.edu

Thank you!

	Research�Faculty Summit 2018
	Confidential Computing
	Slide palette info
	Text with bullet points—adjusting list levels
	Headline goes here
	Headline goes here
	Headline goes here
	Headline goes here
	Headline goes here
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

