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The Check Suite: An Ecosystem of Tools For Verifying 
Memory Consistency Model Implementations

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

OS

RTL (e.g. Verilog)

PipeCheck [Micro ‘14] [IEEE MICRO Top Picks]

TriCheck [ASPLOS ‘17] [IEEE MICRO Top Picks]

CCICheck [Micro ‘15] [Nominated for Best Paper Award]

COATCheck [ASPLOS ‘16] [IEEE MICRO Top Picks]

RTLCheck [Micro ‘17] [IEEE MICRO Top Picks Honorable Mention]

Our Approach
• Axiomatic specifications -> Happens-before graphs
• Check Happens-Before Graphs via Efficient SMT solvers 
• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable
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Check: Formal, Axiomatic Models and Interfaces

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch
Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), "PPO").

Microarchitecture Specification in 
μSpec DSL

Microarchitectural happens-before (µhb) graphs
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TriCheck Framework: Verifying Memory Event 
Ordering from Languages to Hardware
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TriCheck Framework: Verifying Memory Event 
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TriCheck Framework: RISC-V Case Study

HLL 
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1701 C11 

Programs

7 Distinct RISC-V Implementations (All abide by RISC-V 

specifications, but vary in reordering / performance

Base RISC-V ISA: 

144 buggy outcomes

Base+Atomics: 

221 buggy outcomes

Conclusion: Draft RISC-V spec could not serve as a 

legal C11 compiler target.

Status: RISC-V Memory Model Working Group 

formed to address these issues. Just voted to 

ratify new, improved RISC-V memory model.



CheckMate:
From Memory Consistency Models to Security

Flush+Reload

Speculation

Well-known cache 
side-channel attack

Widely-used
hardware feature

2 new attacks

January 2018: 
Spectre & Meltdown

New exploit



Attack Discovery & Synthesis:
What We Would Like

Formal interface and specification of 
given system implementation

1. Specify 
system to study

E.g. Subtle event sequences during 
program’s execution

2. Specify attack 
pattern

Either output synthesized attacks.  Or 
determine that none are possible3. Synthesis



Attack Discovery & Synthesis:
CheckMate TL;DR

Axiomatic specifications similar to 
Check tools

1. Specify 
system to study

Event sequences as graph snippets2. Specify attack 
pattern

Relational Model Finding (RMF) 
approaches3. Synthesis

• What we did: Developed a tool to 
do this, based on the uHB graphs 
from previous sections. 

• Results: Automatically synthesized 
Spectre and Meltdown, as well as 
two new distinct exploits and many 
variants.

[Trippel, Lustig, Martonosi. https://arxiv.org/abs/1802.03802]
[Trippel, Lustig, Martonosi. MICRO 2018. October, 2018] http://check.cs.princeton.edu/papers/ctrippel_MICRO51.pdf



In more 
detail…



CheckMate Methodology

1. Frame classes of attacks as patterns of event 
interleavings?
-> Essentially a snippet out of a happens-before graph

2. Specify hardware using uSpec axioms
-> Determine if attack is realizable on a given hardware 
implementation



Microarchitecture-Aware Program Synthesis
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Microarchitecture-Aware Program Synthesis

Microarchitecture Specification
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Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>

AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>

AddEdge ((i1, Execute), (i2, Execute), "PPO").

Prior Check tools work 
addresses many of these issues

• SW/OS/HW events and locations
• SW/OS/HW ordering details
• Hardware optimizations, e.g., speculation
• Processes and resource-sharing
• Memory hierarchies and cache coherence protocols



Relational Model Finding (RMF): 
A Natural Fit for Security Litmus Test Synthesis

• A relational model is a set of constraints on an abstract system (for 
CheckMate, a μhb graph) of:
• Set of abstract objects (for CheckMate, μhb graph nodes)
• Set of N-dimensional relations (for example., 2D μhb graph edges relation 

connecting 2 nodes)

• For CheckMate, the constraints are a μhb pattern of interest
• RMF attempts to find and satisfying “instance” (or μhb graph)

• Implementation: Alloy DSL maps RMF problems onto Kodkod model-
finder, which in turn uses off-the-shelf SAT solvers
• CheckMate Tool maps μspec HW/OS spec to Alloy



Spectre (Exploits Speculation)
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Prime&Probe Attack Pattern:
Synthesizing MeltdownPrime & SpectrePrime
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SpectrePrime uhb Graph
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Overall Results: What exploits get synthesized?
And how long does it take?

Exploit 
Pattern

#Instrs
(RMF 

Bound)

Output 
Attack

Minutes to 
synthesize 
1st exploit

Minutes to 
synthesize 
all exploits

#Exploits 
Synthesized

Flush
+Reload

4 Traditional 
Flush+Reload

6.7 9.7 70

5 Meltdown 27.8 59.2 572

6 Spectre 101.0 198.0 1144

Prime
+Probe

3 Traditional 
Prime+Probe

5.4 6.7 12

4 MeltdownPrime 17.0 8.2 24

5 SpectrePrime 71.8 76.7 24



CheckMate: Takeaways

•New Variants reported: SpectrePrime and MeltdownPrime
• Speculative  cacheline invalidations versus speculative cache pollution
• Software mitigation is the same as for Meltdown & Spectre

• Key overall philosophy: 
• Event ordering in security exploit patterns aligns strongly with MCM analysis
• Move from ad hoc analysis to formal automated synthesis.
• Span software, OS, and hardware for holistic hardware-aware analysis

[Trippel, Lustig, Martonosi. https://arxiv.org/abs/1802.03802]
[Trippel, Lustig, Martonosi. MICRO-51. October, 2018. http://check.cs.princeton.edu/papers/ctrippel_MICRO51.pdf]
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