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Abstract
Distributed deep neural network (DDNN) training constitutes
an increasingly important workload that frequently runs in the
cloud. Larger DNN models and faster compute engines are
shifting DDNN training bottlenecks from computation to com-
munication. This paper characterizes DDNN training to pre-
cisely pinpoint these bottlenecks. We found that timely train-
ing requires high performance parameter servers (PSs) with
optimized network stacks and gradient processing pipelines,
as well as server and network hardware with balanced com-
putation and communication resources. We therefore propose
PHub, a high performance multi-tenant, rack-scale PS design.
PHub co-designs the PS software and hardware to accelerate
rack-level and hierarchical cross-rack parameter exchange,
with an API compatible with many DDNN training frame-
works. PHub provides a performance improvement of up
to 2.7x compared to state-of-the-art cloud-based distributed
training techniques for image classification workloads, with
25% better throughput per dollar.

1 Introduction
Most work in the systems and architecture community has
focused on improving the efficiency of evaluating trained
models. However, arriving at a trained model requires mul-
tiple lengthy experiments. Accelerating this training process
lets developers iterate faster and design better models.

As DNNs get computationally more expensive to train,
timely training requires exploiting parallelism with a dis-
tributed system, especially in the cloud [2, 6, 10]. The most
common way of exploiting parallelism, “data” parallelism,
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consists of a computation-heavy forward and backward phase
and a communication-heavy parameter exchange phase.

In this paper, we begin by performing a detailed bottleneck
analysis of DDNN training and observe that the emergence of
speedier accelerators shifts the performance bottleneck of dis-
tributed DNN training from computation to communication,
because of the following factors.

First, the throughput of GPUs on a recent DNN, ResNet,
has increased by 35x since 2012 on modern cloud-based
GPUs (Figure 1), effectively demanding a similar increase in
network bandwidth. Upgrading datacenter networks is expen-
sive: compute instance network bandwidth on major cloud
providers such as EC2 has improved little across generational
upgrades [8], so care must be taken when configuring racks
for DDNN training for optimal cost-efficiency.

Second, existing parameter exchange mechanisms such as
parameter servers (PS) do not scale up the total throughput on
a standard cloud network stack (Table 1) due to unoptimized
software and hardware configurations, and lack of awareness
of the underlying physical network topology.

The compound effect of these factors dramatically increases
communication overhead during distributed DNN training. To
illustrate this problem, Figure 2 shows a modest-scale DNN
training with 8 machines on EC2 with 10 Gbps links1: modern
DNN training frameworks can no longer hide the latency of
communication due to faster computation. Spending most of
the DDNN training time on model updates limits the benefit
of faster GPUs.

Scaling cloud-based DDNN training throughput demands
both a fast and a cost-effective solution. Our bottleneck find-
ings show that such a solution requires a more optimized
software stack, a specialized hardware design, and a more
effective cluster configuration.

We therefore propose PHub, a high performance, multi-
tenant, rack-scale PS design for cloud-based DDNN training.
By co-designing the PS software with the hardware and the
datacenter cluster rack configuration, PHub achieves up to
2.7x faster training throughput, with 25% better throughput
per dollar. Our contributions include:

1Batch size per GPU (4, 16, 32, 32, saturating GRID 520) for each network
is kept the same across all GPUs for easier comparison.
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Figure 1: Single-GPU training throughput for ResNet 269 measured with
MXNet on EC2 g2, p2, g3 and p3 instances, and a local GTX 1080 Ti ma-
chine, while maximizing GPU memory utilization. Per chip GPU throughput
on ResNet 269 in the cloud has increased 35x since 2012.
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Figure 2: The overhead of distributed training gets larger as GPUs get faster.
The framework can no longer hide communication latency, and faster GPUs
no longer improve training throughput. With today’s fast GPUs, distributed
cloud DNN training time is chiefly spent waiting for parameter exchanges.
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Figure 3: A few iterations in distributed training.

(1) A detailed bottleneck analysis of current state-of-the-art
cloud-based DDNN training (§2).

(2) Design and implementation of the PHub PS software,
supporting many DNN training frameworks (§3).

(3) A balanced central PS hardware architecture, PBox
(§3.3), to leverage PHub for rack-level and hierarchical
cross-rack gradient reduction.

(4) A comprehensive evaluation of PHub in terms of per-
formance, scalability, and deployment cost (§4).

2 Bottlenecks in Cloud-Based Training
Modern neural networks can have hundreds of layers mak-
ing up multi-megabyte-size models.The training process has
three phases. In the forward pass, a prediction is generated
for an input. In the backward pass, the prediction is com-
pared with a label to calculate prediction error; then, through
backpropagation [48], the gradient for each parameter is cal-
culated with respect to this error. The model is then updated
using these gradients, often using a variant of the gradient
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Figure 4: PS configurations in a DDNN training system, and minimum
network bandwidth to fully hide communication overhead.

descent optimization algorithm. Computation is often done
on GPUs or other accelerators suited to regular data-parallel
operations, processing tens to hundreds of samples at once
(minibatching).

The distributed training process (Figure 3) is different in
a few ways. First, a mean gradient is calculated across all
minibatches in all the GPUs in each machine. Then, the mean
of the gradients from each machine is calculated. Finally, the
model is updated based on that mean, new parameters are
broadcast to each machine and GPU, and the next batch is
trained. Gradient aggregation and optimization are element-
wise operations. Aggregation sums gradients from all workers.
Optimization updates the model using aggregated gradients
with an algorithm such as SGD. Our design goal is to overlap
aggregation and optimization of different keys with communi-
cation. This paper focuses on optimizing calculation of both
the mean gradient across machines and the subsequent model
update (or parameter exchange).

In a typical DDNN training setup, machines can take the
role of a worker and/or a parameter server (PS). PSs are
specialized key-values stores that collect the gradients and
update the model [40, 41, 53, 63]. In this paper, we use “key”
to refer to a layer, and “value” to refer to the set of parameters
for that layer.

The process described here is synchronous training, where
all machines and GPUs execute a new minibatch simultane-
ously and update the model based on the gradients in the cur-
rent iteration. It is also possible to train asynchronously [19,
21, 24, 26, 28, 46] or with relaxed consistency [25, 27, 32, 59],
sacrificing reproducibility for a potential throughput increase.
We focus on synchronous training due to its simplicity and
commonality in industry, but our techniques can also benefit
asynchronous training.

2.1 Common PS Configurations

PS configurations primarily differ along two axes: colocated
(C) versus non-colocated (NC), and centralized (C) versus
sharded (S). A PS setup is colocated if a worker and a server
process share the same physical machine. A PS setup is cen-
tralized if a single PS process handles all keys; and a sharded

42



Parameter Hub SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

setup load-balances keys across multiple PS processes. Dur-
ing synchronization, each worker sends and receives model
updates from each PS process. Figure 4 illustrates the four
combinations of choices from these two axes: Colocated Cen-
tralized (CC), Colocated Sharded (CS), Non-colocated Cen-
tralized (NC) and Non-colocated Sharded (NCS).

In general, sharded PSs scale better at higher hardware
costs. Colocated PSs reduce total data movement on the net-
work by 1

N with N workers participating: the update for the
partition of the model assigned to a colocated PS need not go
through the network. While many frameworks default to CS
configurations [7, 13], in a colocated setup the PS process in-
terferes with the training process, because both are contending
for network and processing resources. Specifically, compared
to NC PSs, each network interface must process roughly 2x
the network traffic, because both the colocated worker and PS
processes must send and receive model updates from remote
hosts, creating a major bottleneck in network-bound DDNN
training.

2.2 The MXNet Framework

MXNet [22] is a state-of-the-art DDNN training framework
that supports many new optimizations in the literature [23,
26, 64]. It is widely used on AWS [2], and natively supports
distributed training: its PS implementation relies on TCP, and
is built on top of the ZMQ [18] distributed messaging library.

All modern DNN training frameworks can fully utilize
GPU resources by taking advantage of primitives, such as
CuDNN. These frameworks offer comparable throughput
when training DNNs. For distributed training, many frame-
works such as MXNet provide eager scheduling of parame-
ter exchanges, overlapping backward computation with pa-
rameter synchronization, hiding communication latency. We
measured distributed training performance and scalability for
Caffe2, TensorFlow, and MXNet2 with up to 8 worker nodes.
We found comparable throughput when training ResNet 50 on
a 56 Gbps network using SGD, with MXNet slightly leading
the pack (Table 1). These results align well with other obser-
vations [15, 51, 65]. Therefore, we use MXNet as the basis
for our implementations and optimizations, but the techniques
are generalizable.

2.3 Bottleneck Findings

Ideally, communication latency is fully hidden by compu-
tation, i.e., compute engines never wait for data. In reality,
since computation speed exceeds communication speed in
cloud-based DDNN training, time is wasted waiting for model

2Caffe2: Gloo Halving and doubling enabled. TensorFlow and MXNet: CS
PSs with a 1:1 worker-to-PS ratio. Network: 56 Gbps IPoIB. GPU: GTX
1080 Ti. Neural Network: ResNet 50 with batch size of 32. Poseidon hangs
when more than 5 workers are training this network in our cluster. 8-worker
throughput is overestimated as per worker throughput (at 5 workers) * 8.

Local 2 nodes 4 nodes 8 nodes
TensorFlow 152 213 410 634

Caffe2 195 266 343 513
TF+Poseidon[64] 209 229 364 <648

MXNet 190 187 375 688
Table 1: Throughput (samples/s) of training ResNet 50 on major DNN train-
ing frameworks with a 56 Gbps network.

updates (Figure 2). Workers run much faster locally (Table
1), so the bottlenecks must lie in the PS, the network stack,
and/or the physical network itself. Our study finds three major
bottlenecks in cloud-based DDNN training: insufficient net-
work bandwidth, framework inefficiencies, and suboptimal
deployment in the cluster. We elaborate on each below.

2.3.1 Insufficient Bandwidth We profiled the training of
multiple DNNs of different model sizes and computation-
to-communication ratios. Our setup used 8 workers and 8
CS PSs. We observed it was nearly impossible to eliminate
communication latency in cloud-based training due to limited
network bandwidth. We estimated the minimum bandwidth
requirement to fully hide communication latency in the net-
work as follows: given a model size of M , andT time for each
iteration, with N workers participating, the network should
at least be able to send and receive model updates within the
computation time (assuming infinitely fast PSs and that send-
ing/receiving could fully overlap). Figure 4 gives an analytical
lower bound of per host bandwidth, and Table 2 shows the
required bandwidth for various DNNs: DNNs demand more
bandwidth than mainstream cloud providers offer (typically
10-25 Gbps) in the VMs. A similar observation was made in
prior work [20, 65]. Furthermore, bandwidth requirements
increase with worker count.

2.3.2 Framework Bottlenecks However, even with ample
communication resources, existing PSs failed to hide commu-
nication latency and struggled to scale. Table 1 shows that all
major DNN training frameworks do not scale well with a 56
Gbps IPoIB network. We investigated the cause for MXNet
by breaking down the overhead for each major component of
a training iteration (legends of Figure 5). Since all stages over-
lap one another, and since ideally we would like early stages
to fully hide the latency of later stages, we show progressive
overhead in Figure 5: we gradually turned on different com-
ponents in the MXNet DDNN training pipeline, and each
segment shows the additional overhead that previous stages
could not hide. Specifically, the compute segment shows how
long the GPU is active; the data copy segment shows the
additional overhead of turning on distributed training without
aggregation and optimization; the aggregation and optimiza-
tion segments show additional overheads of enabling them
in that order; and the “other” overheads segment includes
synchronization and overheads that are not specific to a single
component. We explain the overhead for some components:
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Network CC CS NCC NCS
ResNet 269 122 31 140 17
Inception 44 11 50 6

GoogleNet 40 10 46 6
AlexNet 1232 308 1408 176

Table 2: Estimated bisection bandwidth (Gbps) lower bound on the PS side
for hiding communication latency. Same setup as Table 1.
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Figure 5: Progressive overhead breakdown of different stages during the
distributed training pipeline for MXNet DDNN training on a 56Gbps network.
Link capacity accounts for a small fraction of the copy and communication
overhead in this setting.
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Figure 6: When workers/servers span multiple racks in cloud-based training,
large delay occurs due to gradient update traffic going through an oversub-
scribed network core.

Data copy: each layer’s parameters were copied to and from
OS buffers 4 times during parameter exchange.
Aggregation and optimization: MXNet’s approach to achiev-
ing parallelism in these operations did not achieve high through-
put in our measurements (see §3.2.2).
Synchronization: MXNet’s dispatcher thread needs to syn-
chronize access with ZMQ threads, aggregation threads and
an optimization thread via shared queues, leading to bad lo-
cality and increased synchronization overhead.

2.3.3 Deployment-related Overhead VMs associated with
a training job can be far away from each other when launched
in the cloud. Existing frameworks assume homogeneous inter-
VM bandwidths, which results in excessive communications
between distant VMs, in turn leading to bottlenecks. We
conducted an experiment to probe pair-wise bandwidth of
8 P2.8xLarge 10 Gbps instances on EC2 and found that band-
widths can vary by a factor of 2—even between send and
receive streams of the same instance pair. Some cloud environ-
ments support co-scheduling constraints (e.g., EC2 placement
groups), but for large jobs on busy clusters the scheduler may
take a long time to satisfy these constraints.

One possible reason is a congested or oversubscribed net-
work topology in the data center [43, 44, 47], providing full bi-
section bandwidth within each rack but not across racks when
the core is busy. Thus, gradient update streams that go through

a potentially oversubscribed network core [30, 52] can be de-
layed. Network topology awareness is crucial for DDNN
workloads [54, 58]. In our work, we pursue a rack-scale PS
that takes advantage of intra-rack full bisection bandwidth
and minimizes inter-rack traffic via hierarchical reduction
algorithms (see Section 3.4).

3 PHub Design
Based on §2.3 findings, we propose a rack-scale PS, PHub,
that reduces framework overhead with software optimizations,
mitigates bandwidth insufficiency with a re-architected, bal-
anced server configuration, and lowers network environment-
induced overhead with topology-aware reduction algorithms.
With PHub, we aim to:

(1) Minimize gradient/model communication overhead.
(2) Enable efficient gradient processing and overlap with

communication.
(3) Balance communication and computation capabilities,

both within and PS and between workers and the PS.
(4) Allow low interference of co-running jobs and mini-

mized cross-rack traffic.

3.1 The PHub Service API and Interoperability with
other Frameworks

PHub’s API is designed for compatibility with multiple DNN
training frameworks. Workers use PHub by first calling PHub::
CreateService on the connection manager. This sets up ac-
cess control and a namespace for the training job and returns
a handle. The client side uses the handle to finish setup. PHub
uses the namespace and an associated nonce for isolation and
access control.

Jobs call PHub::ConnectService to rendezvous servers
and workers, exchanging addresses for communication. This
call replaces Van::Connect in MXNet, Context::connect
FullMesh in Caffe2 and GrpcServer::Init in Tensor-
Flow. PHub::InitService causes the current PHub in-
stance to allocate and register receive and merge buffers.
PHub also authenticates each worker’s identity using the
nonce. Authentication is a one-time overhead and once a
connection is established, PHub assumes the remote iden-
tity associated with that address/port/queue number does not
change during training.

PHub’s functional APIs include standard synchronous or
asynchronous PHub::Push/Pull operations that are used
in TensorFlow (GraphMgr::SendInputs/RecvOutputs)
and MXNet (KVStoreDist::PushImpl/PullImpl). PHub
also includes a fused PHub::PushPull operation that per-
form a push, waits until all pushes are complete, and pulls
the latest model. The fused operation often saves a network
round-trip as push and pulls are frequently issued consecu-
tively. This operator can serve as a drop-in replacement for
Caffe2’s Algorithm::Run.
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3.2 PHub Software Optimizations

This section describes software optimizations that benefit
different stages in DDNN training across all common PS
configurations.

3.2.1 Network Stack Optimizations We sought to miti-
gate data movement latency with zero-copy and kernel by-
pass. We chose InfiniBand (IB) since we were already fa-
miliar with the Verbs API, and it is available in major cloud
providers [4]. Note that similar results could be achieved over
Ethernet using RoCE, DPDK or other frameworks. We fol-
lowed the guidelines from [36]; we tried two and one-sided
RDMA, and two-sided send/receive operations and found
similar performance in our workload. We briefly highlight
some implementation details:
Minimal Copy: Leveraging InfiniBand’s zero-copy capabil-
ity, the only required data copy is between the GPU and main
memory. When one GPU is used, this can be eliminated with
GPU-Direct RDMA on supported devices.
NUMA-Aware, One-shot Memory Region Registration:
Since a worker can operate on only one model update at
a time, it is sufficient to allocate one read buffer (for the cur-
rent model) and one write buffer (for update reception) for the
model. To minimize InfiniBand cache misses, PHub preallo-
cates all buffers in the NUMA domain where the card resides
as a contiguous block.
Minimal Metadata: To maximize bandwidth utilization and
minimize parsing overhead, PHub encodes metadata (such
as callback ID and message opcode) into InfiniBand’s queue
pair number and immediate field. This saves PHub an addi-
tional PCIe round trip (from IB send scatter/gather) to gather
metadata when sending messages.

3.2.2 Gradient Aggregation and Optimization Gradient
aggregation could occur in the CPU or GPU [26]. Here, we
posit that the CPU is sufficient for this job. Aggregation is
simply vector addition: we read two floats and write one
back. With our typical modern dual socket server, if we
keep our processors’ AVX ALUs fed, we can perform 470
single-precision giga-adds per second, requiring 5.6 TB/s of
load/store bandwidth. But the processors can sustain only
120 GB/s of DRAM bandwidth, making aggregation inher-
ently memory bound. Thus, copying gradients to a GPU for
aggregation is not helpful.

There are many ways to organize threads to perform aggre-
gation. Figure 7 shows four options we prototyped, assuming
gradient arrays are available at once. We found that the best
performance was achieved using the two discussed below;
other schemes suffered from too much synchronization over-
head, poor locality and/or high latency.

Wide aggregation is typical to systems like MXNet that call
BLAS routines for linear algebra. In these systems, a group

Figure 7: Ways of gradient aggregation. A thread (arrow) aggregates over the
array (gray rectangle) of gradients from a worker.

of aggregation threads process one gradient array at a time;
each thread works on a partition of that array.

A variation of wide aggregation is tall aggregation, which
chunks a gradient array into mini-chunks of predefined sizes;
each thread works independently to process the same chunk
across all gradient arrays for a given key. This is the prefer-
able way to organize threads for many reasons. First, gradient
arrays do not arrive instantly. For a large key (e.g., a fully
connected layer), aggregation and optimization cannot start
for wide aggregation until the key is fully received; for tall
aggregation, the process can start as soon as the first chunk
is received. Second, in wide aggregation, it is challenging to
balance the number of threads dedicated to aggregation and to
optimization, let alone partitioning threads to work on differ-
ent keys since they can arrive at the same time; thread assign-
ment for tall aggregation is natural. Third, wide aggregation
induces queuing delays: it effectively processes one key at a
time versus tall aggregation’s many “mini-queues.” Fourth,
wide aggregation puts many threads to work in lock-step on
pieces of data, which incurs non-trivial synchronization over-
head; tall aggregation requires no coordination of threads as
aggregation is an element-wise operation.

PHub tracks the number of currently aggregated mini-
chunks for a given key. When a chunk is received from all
workers, it can be optimized. This step is natural in PHub:
the thread that aggregates a particular chunk also optimizes
that chunk. As a result, PHub’s aggregation and optimization
scheme effectively maps a particular chunk to a single core
(since PHub pins threads to cores). On the other hand, MXNet
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Figure 8: The process of mapping a chunk to a core in PHub using fine
grained key chunking. Keys are chunked into virtual keys. The highlighted
key is delivered to a highlighted (fixed) core through a highlighted (fixed)
queue pair and completion queue.

uses wide optimization: when a key is fully aggregated, an-
other set of threads is launched to perform aggregation. No
overlap occurs between key aggregation and optimization.

We explored the benefits of caching by implementing two
variants of each aggregator and optimizer: one using nor-
mal cached loads and stores, and one with non-temporal
prefetches and stores. We found it beneficial to cache both the
model and gradients. PHub’s aggregators and optimizers are
fully extensible: implementations that comply with PHub’s
API can be used during runtime.

3.2.3 Fine-grained Key Chunking Chunking in PHub dif-
fers from other systems in key ways. Initially, our goal is to
balance load at a fine-grained level across cores and interfaces
rather than across server shards: chunking is turned on even
when a centralized PS is used. Next, we would expect our
optimal chunk size to be the smallest message size that can
saturate network bandwidth, whereas systems like MXNet
prefer larger key chunk sizes to avoid excessive thread syn-
chronization overhead. In fact, PHub’s default is 32KB, while
MXNet’s is 4MB. Finally, key chunking enables another im-
portant optimization: the overlapping of gradient transmission
with aggregation and optimization. Aggregation starts only
after a key’s entire gradient array is received; and for large
layers, this adds significant delay. With small key chunks,
PHub enables “streaming” aggregation and optimization.

3.2.4 Mapping a Chunk to a Core PHub’s assignment of
chunks to cores is computed during initialization. At that time,
the set of all keys is sharded across the cores and interfaces
available on PS nodes. A specific chunk is always directed to
a particular queue pair, which is associated with a shared com-
pletion queue on the chunk’s core. All message transmission,
reception, and processing for that chunk is done on that core.
Cores do not synchronize with each other. Once processed,
a chunk is transmitted back to the workers on its originating
path. The worker side of PHub assembles and disassembles a
key, a process that is transparent to the framework.

PHub’s chunk assignment scheme provides significant lo-
cality benefits. The same key likely arrives around the same
time from multiple workers; the associated aggregation buffer
is reused during this period. The scheme also encourages
locality in the InfiniBand interface in the queue pair and mem-
ory registration caches.

This scheme imposes challenges in balancing load across
cores, queue pairs and completion queues. PHub uses a 4/3
approximation set partition algorithm to balance each com-
ponent’s workload at each level, which produces practically
balanced assignments in our experiments. PHub’s chunk map-
ping mechanism is summarized in Figure 8.

3.3 A Balanced Hardware Design for Rack-Scale PSs

Centralized PSs have lower cost than NCS PSs, and half of
the bandwidth stress compared to CS PSs on each interface
card. Thus it is desirable to have a centralized reduction entity
at rack level. However, scaling a centralized PS to rack scale
is challenging [35], despite the optimizations in §3.2. The root
cause is hardware imbalance in the allocation of computation
and communication resources in the host: centralized PSs
usually run on the same hardware configuration as a worker,
which have only one or two network interfaces. This implies
incast congestion from their high bandwidth usage (Table 2)
when serving multiple workers, starving the compute units.

One trivial solution would be to simply use interfaces with
higher bandwidth. However, even in the best case, a single
network interface is not capable of saturating memory or PCIe
bandwidth. A single network interface also causes serializa-
tion delay and further imbalance across NUMA domains in a
typical server.

This section describes PBox, our balanced parameter ex-
change system. We maintain that a centralized system, when
architected properly, can provide high throughput, low latency,
sufficient scalability for a rack, and low cost.

We prototyped PBox using an off-the-shelf server platform
that was configured to our requirements. Our goal was to
balance IO and memory bandwidth; our prototype system
had memory bandwidth of 120 GB/s and theoretical overall
bidirectional IO bandwidth of 140 GB/s. To fully utilize re-
sources, PBox needed a matching network capability, which
we provided by using multiple network interfaces. Figure 9
shows the resulting PBox design. The system includes 10
network interfaces, each of 56 Gbps link speed, connected
to a switch. This uses all PCIe bandwidth on our dual socket
prototype and provides roughly 136 GB/s bandwidth once IB
and PCIe framing overheads are taken into account, balancing
IO and memory bandwidth.

Hardware alone solves only part of the problem. Existing
frameworks cannot efficiently use the full hardware capa-
bility even if multiple interfaces are present (for example,
TensorFlow and MXNet support multiple interfaces only by
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Figure 10: PBox deployment scheme

spawning multiple PS processes). Thus, software that under-
stands both the hardware topology and balance is required
to complete the solution. PHub takes full advantage of PBox
by extending the chunk-to-core mapping scheme (§3.2.4), en-
suring balance across interfaces and NUMA domains. PHub
further guarantees no inter-processor traffic on PBox, and
completion queues and queue pairs in an interface card are
used by only one core in the same NUMA domain to promote
locality and avoid coherence traffic. In essence, PBox forms
micro-shards inside a box.

3.4 Rack Deployment and Topology-Aware Reduction

We associate a PBox with a ToR during deployment for two
reasons. First, full bisection bandwidth is achievable for ma-
chines in the same rack, making it ideal for a central reduction
entity as PBox, while oversubscription occurs between the
ToR and the cluster network. Second, as we show in §4.7,
a single PBox has enough scalability for a typical rack of
worker machines.

When provisioned in each rack (Figure 10), PBoxes can
form an array of sharded PSs, or run a hierarchical reduction
algorithm for a training task that spans multiple racks through
the coordination of a connection manager. Hierarchical reduc-
tion works in three steps: first, each PBox centrally aggregates
gradient updates from workers in the same rack; then, the
PBox nodes start cross-rack aggregation and compute glob-
ally aggregated gradients; finally, each per-rack PBox runs
an optimizer on this gradient and broadcasts the new weights
back to local workers.

Hierarchical reduction trades off more rounds of communi-
cation for lower cross-rack traffic (1/N with N-worker racks).

PHub determines when hierarchical reduction is potentially
beneficial with the simple model below:

N (R − 1)
RBCore

> max(
N

BPBox
,

1
BWkr

) +C

where BPBox ,BCore and BWkr are the bandwidths of a
PBox, the network core, and a worker, and R is the num-
ber of racks. When the condition is true, this means the time
to perform cross-rack transfer is larger than the added latency
of a two-level reduction, which consists of a per-rack local
aggregation that happens in parallel and an inter-rack commu-
nication (with costC) done with either sharded PSs (C = r−1

r Bbn
,

where Bbn = min(BPBox ,BCore )) or a collectives operation
(e.g., C ≈ r−1

r Bbn
with racks forming a ring). §4.8 estimates

the overhead of C, and BCore can be effectively probed by
using [33, 34].

4 Evaluation
We added support for PHub’s API to MXNet, replacing its
PS. We evaluated PHub by comparing it to MXNet’s un-
modified PS. We had five goals in our evaluation: (1) to as-
sess the impact of PHub software and the PBox hardware on
training throughput, (2) to identify the importance of each
optimization, (3) to determine the limits of PBox, (4) to eval-
uate effectiveness of PBox as a rack-scale service. and (5) to
demonstrate the cost-effectiveness of the PHub.

4.1 Experimental Setup

We evaluated our system with 8 worker nodes and one spe-
cially configured PBox node. The workers were dual socket
Broadwell Xeon E5-2680 v4 systems and 64 GB of memory
using 8 dual-rank DDR-2400 DIMMs. Each worker had a
GTX 1080 Ti GPU and one Mellanox ConnectX-3 Infini-
Band card with 56 Gbps bandwidth in the same NUMA do-
main. The PBox machine was a dual socket Broadwell Xeon
E5-2690 v4 system with 28 cores and 128 GBs of memory
using 8 dual-rank DDR-2400 DIMMs. PBox had 10 Mel-
lanox ConnectX-3 InfiniBand cards, with 5 connected to each
socket. Hyperthreading was disabled. Machines were con-
nected with a Mellanox SX6025 56 Gbps 36-port switch.

The machines ran CentOS 7.3 with CUDA 8 and CuDNN
7 installed. Our modifications to MXNet and its PS (PS-Lite)
were based on commit 2ce8b9a of the master branch in the PS-
Lite repo. We built MXNet with GCC 4.8 and configured it to
use OpenBLAS and enable SSE, the Distributed Key Value
Store, the MXNet Profiler, and OpenMP. We used Jemalloc,
as suggested by MXNet.

4.2 DNNs Used in the Evaluation

We evaluated PHub’s performance by training state-of-the-
art deep neural networks using reference code provided with
MXNet. We implemented a cache-enabled optimizer using
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Name (Abbr) Model Size Time/batch Batch
AlexNet (AN) 194MB 16ms 32
VGG 11 (V11) 505MB 121ms 32
VGG 19 (V19) 548MB 268ms 32

GoogleNet (GN) 38MB 100ms 32
Inception V3 (I3) 91MB 225ms 32

ResNet 18 (RN18) 45MB 54ms 32
ResNet 50 (RN50) 97MB 161ms 32

ResNet 269 (RN269) 390MB 350ms 16
ResNext 269 (RX269) 390MB 386ms 8

Table 3: Neural networks used in our evaluation. Time/batch refers to the
forward and backward compute times for a batch.
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Figure 11: Speedup from a faster data plane that supports zero copy.

SGD with Nesterov’s accelerated gradient method [45] and
a cache-enabled aggregator for PHub. We chose a per GPU
batch size of 32 when possible; for ResNet 269 and ResNext
269, we used 16 and 8, respectively, since 32 did not fit in
the GPU. We did not use MXNet’s GPU memory optimiza-
tions [23] because they slow down training.

Table 3 summarizes the neural networks used in our evalu-
ation, which include both winners of the ImageNet challenge
and other recent, popular networks. We used the reported
model size from MXNet and measured the forward and back-
ward passes time on a single GPU.

We report only training throughput in our evaluation since
our modifications did not change accuracy: they did not
change the computations that were performed. We trained
multiple DNNs to convergence to verify this.

4.3 Training Performance Evaluation

We include multiple results to highlight the effects of different
software and hardware optimizations on PHub’s training per-
formance. We measured training performance by comparing
the total time of 200 iterations. We used two IB network con-
figurations. This lets us compare training performance for two
different compute/bandwidth ratios: (1) where GPUs were
much faster than the network, and (2) with ample network
bandwidth resources. In both setups, we used 8 workers.

4.3.1 Benefit of a Faster Data Plane Figure 11 shows the
performance of replacing the communication stack of the
MXNet PS with a native InfiniBand implementation (MXNet
IB) that had all optimizations noted in §3.2.1. This lets us
see the benefit of switching to an optimized network stack
without changing the PS architecture. We used our enhanced
baseline MXNet IB in all the following evaluation.

4.3.2 Other Software and Hardware Optimizations We
now quantify further benefits from PHub’s software and hard-
ware optimizations. We used CS MXNet IB in this compari-
son. PShard results were obtained by running PHub software
on each worker as CS PSs. PBox results represent running
PHub software on our single PBox machine as a NCC PS. We
omit results for NCS and CC PSs for clarity. They performed
similarly to PBox results.

Figure 12 shows training performance on a cloud-like 10
Gbps network, obtained by down-clocking our IB links. In
this configuration, the ratio of GPU batch execution time to
network serialization delays is such that the reduced commu-
nication and faster aggregation of PBox significantly affects
runtime. In addition, we provide speedup when training with
only 7 workers and PBox, so that the total machine count in
the system is equal to the baseline.

Figure 13 shows training performance on 56 Gbps Infini-
Band. In this setup, for networks such as GoogleNet, Incep-
tion, ResNet, and ResNext, forward and backward pass exe-
cution time limits training throughput; thus, raising network
bandwidth only marginally affects the total throughput of
PBox versus MXNet IB. Since PHub never slows down train-
ing, we omit results of these networks (1x speedup) for clarity.
We expect larger speedups with newer, faster GPUs such as
the NVidia V100, for these networks. Significant speedup is
still achieved with models that have large communication-to-
computation ratios, such as AlexNet and VGG; these models
remained network-bound even on 56 Gbps links.

The gap between PShard and MXNet IB signifies the ben-
efit of software optimizations in §3.2.2-§3.3. The gap be-
tween PShard and PBox highlights both the benefit of a non-
colocated server that halves the per link bandwidth usage,
yielding a significant performance difference, and the benefit
of the optimizations in §3.3.

Figure 14 breaks down the overhead in different distributed
training stages when running PHub in the same setup as Fig-
ure 5. Compared to Figure 5, PHub reduces overheads from
data copy, aggregation, optimization, and synchronization,
and fully overlaps these stages, shifting the training back to a
compute-bound workload.

4.4 Performance with Infinitely Fast Compute

We used a benchmark to assess the efficiency of PHub’s
gradient processing pipeline to avoid being bottlenecked by
our workers’ GPUs. We implemented a special MXNet en-
gine, called ZeroComputeEngine, based on the original
ThreadedEnginePerDevice, which replaces training oper-
ators (such as convolution) with an empty routine. Only the
synchronization operators (WaitForVar, KVStoreDistPush
and KVStoreDistPull) are actually executed. This engine
effectively simulates arbitrarily fast forward and backward
passes on the worker side, pushing the limits of PHub.
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Figure 12: Training performance on a cloud-like 10 Gbps network. Results are normalized to sharded MXNet IB (enhanced baseline).
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Figure 13: Training performance on a 56 Gbps network compared to MXNet
IB (enhanced baseline). Computation speed bottlenecked training throughput
for all but AlexNet and VGG.
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Figure 15: PBox provides linear scaling of throughput for 8 worker nodes
with infinitely fast compute, training ResNet 18.

We used ResNet 18 as the test network. We measured how
fast each worker can run in this setup individually with the
PBox, then gradually added more workers to plot total system
throughput.

Figure 15 shows the results of running the benchmark with
PBox, PShard and multiple baseline configurations. PBox
provided linear scaling with 8 workers and outperformed
the baseline by a large margin (up to 40x). PBox had 2x
the speedup of PShard because each of its interfaces needed
to move only about half the amount of data compared to
colocated servers.

4.5 Exploiting Locality

To postpone hitting the memory bandwidth limit, it is crucial
to exploit locality in network interfaces and processor caches.
This section evaluates the effectiveness of PHub’s key assign-
ment scheme and tall aggregation/optimization in leveraging
locality.

Key Affinity in PBox: We evaluate two schemes for connect-
ing workers to PBox to exploit locality and load balancing.

Mem BW Throughput
Opt/Agg Off 77.5 72.08

Caching Opt/Agg 83.5 71.6
Cache-bypassed Opt/Agg 119.7 40.48

Table 4: Bidirectional memory bandwidth (GB/s) utilization in PHub when
training VGG with 8 workers. The maximum memory bandwidth for the
machine is 137 GB/s for read-only workloads and 120 GB/s for 1:1 read:write
workloads as measured by LikWid and Intel MLC.

In Key by Interface/Core mode, workers partition their keys
equally across different interfaces on the PBox. This mode
better utilizes cache by binding a key to a particular interface,
core and a NUMA node. This mode also exploits locality in
time as workers are likely to generate the same key close to
each other in synchronous training.

In Worker by Interface mode, each worker communicates
with the server through a single interface. This lets PHub ex-
ploit locality within a single worker. It also provides naturally
perfect load balancing across interfaces and cores at the cost
of additional communication and synchronization for each
key within the server because keys are scattered across all
interfaces and sockets.

We found that Key by Interface/Core provided 1.43x (790
vs 552 exchanges/s) better performance than Worker by Inter-
face mode with ZeroComputeEngine. The locality within
each worker could not compensate for synchronization and
memory movement costs.

Tall vs. Wide Parallelism: We evaluated tall aggregation
vs MXNet’s wide approach with ResNet 50. Tall outper-
formed wide by 20x in terms of performance and provides
near-perfect scaling to multiple cores. Tall aggregation bene-
fited from increased overlap compared to wide, and wide was
further hurt by the cost of synchronization.

Caching Effectiveness in PHub: Caching benefits many
PHub operations. For example, models can be sent directly
from cache after being updated, and aggregation buffers can
reside in cache near the cores doing aggregation for those
keys. We now evaluate the effectiveness of caching in PHub
by measuring memory bandwidth usage.

Table 4 shows the memory bandwidth costs of communica-
tion, aggregation, and optimization on PBox. We used 8 work-
ers running a communication-only benchmark based on the
VGG network, chosen because it had the largest model size.
We first ran the benchmark with no aggregation or optimiza-
tion, and we then added our two aggregation and optimization
implementations.

49



SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
Liang Luo∗, Jacob Nelson†, Luis Ceze∗,

Amar Phanishayee†, Arvind Krishnamurthy∗

0
200
400
600
800

1000

S
a
m

p
le

s
/s

Key Chunk Size, QP=10

0
200
400
600
800

1000

QP Size, Key Chunk Size=32KB

Figure 16: Effect of chunk size and queue pair count on throughput.

Without aggregation and optimization, PBox’s bidirec-
tional memory bandwidth usage was stable at 77.5 GB/s.
No cache was used in this case because PBox did not touch
the data (only the network interface did).

We found that the caching version of the aggregator and op-
timizer performed significantly better than the cache-bypassing
version, which hit the maximum memory bandwidth available
on the PHub machine when combined with the memory band-
width of worker sends and receives. The caching version, on
the other hand, added only 8% to total memory bandwidth us-
age; aggregation and optimization added only 1% of overhead
to the overall throughput in this benchmark, fully overlapping
gradient transfer.

4.6 Tradeoffs in Fine-Grained Key Chunking

We now examine tradeoffs in the communication layer con-
cerning the size of key chunks and queue pair counts.

Size of key chunks: PHub leverages fine-grained key chunk-
ing to better balance load and overlap gradient reception and
aggregation. Figure 16 (left) evaluates the effect of chunk
size with ZeroComputeEngine on PBox. Larger chunk sizes
improved network utilization, while smaller sizes improved
overlapping. We found 32KB chunk size to be optimum: this
is likely due to our interfaces’ maximum injection rate and
aggregation pipeline latency.

Queue Pair Count: A worker needs at least one queue pair
per interface with which it communicates. Queue pairs have
state, which is cached on the card. When that cache misses
frequently, communication slows. For PBox to use 10 inter-
faces, we need a minimum of 10 queue pairs per worker. More
queue pairs could enable concurrent transmission from the
same worker and reduce head of line blocking, but it increases
the queue pair cache miss rate. Figure 16 (right) evaluates the
tradeoff, showing that fewer queue pairs was optimal.

4.7 Limits on Scalability

The scalability of PHub is inherently limited by available total
memory, network or PCIe bandwidth. This section explores
how close PHub gets to these limits. We use PBox to answer
these questions. PBox achieves a 1:1 read:write memory band-
width of 120 GB/s and a bidirectional network bandwidth of
140 GB/s. To determine how much bandwidth can be utilized,
we added an additional IB interface to each of our 8 machines
to emulate 16 workers and configured varying numbers of
emulated workers running ib_write_bw, each with 10 QP
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Figure 17: PBox scalability is limited by the throughput of the PCIe to the
on-chip network bridge of the PBox processors. PHub can utilize 97% of the
measured peak PCIe bandwidth.

connections to the ib_write_bw process on PBox. These
pairs of processes did repeated RDMA-writes to two 1 MB
buffers on the other side. We set the PCIe read request size to
512 bytes. This configuration was chosen to mirror the setup
of an actual training system while maximizing total system
throughput.

To our surprise, we found that the peak memory bandwidth
usage never exceeded more than 90 GB/s, far from the limit of
both the aggregate network card and memory. This suggests
that the bottleneck lies somewhere else.

We then built a loopback microbenchmark that used the
IB cards to copy data locally between RDMA buffers. This
isolated the system from network bottlenecks and involved
only the NIC’s DMA controllers and the processor’s PCIe-to-
memory-system bridge. This microbenchmark also achieved
only 90 GB/s. Based on this experiment, we believe that the
limit of throughput in our current PHub system is the PCIe-
to-memory-system bridge.

Figure 17 summarizes this experiment. The InfiniBand/PCIe
limit line shows an ideal case where unlimited cache line trans-
fers can be performed. However, this rate was not achievable
even with a microbenchmark, which poses a hard upper bound
on how fast PHub can run during training. We also see that,
when training VGG with ZeroComputeEngine, as more
workers are added, PBox’s performance approached the mi-
crobenchmarks (97%), demonstrating PHub’s ability to fully
utilize system resources. The gap in the plot between PBox
and the microbenchmark is due to the overhead of scheduling
operations in MXNet and straggler effects in workers. PBox
hit the limit at a sustained 80GB/s memory bandwidth.

In real training, however, PBox’s scalability limit was diffi-
cult to reach. Recent work ([37, 39]) describes the difficulty of
generalization with large batch sizes; it is not advantageous to
blindly scale deep learning to a large number of workers with-
out considering statistical efficiency [38, 62]. One example
[29] reports that ResNet 50’s statistical efficiency drops with
aggregate batch sizes larger than 8192 on a system with 256
GPUs on 32 machines (with a mini-batch size of 32 per GPU).
To assess whether PBox could reach this scale, we measured
the memory bandwidth usage for ResNet 50 with 8 workers
using the same batch size. We found that PBox required only
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Figure 18: Overhead of multiple parallel training jobs sharing the same PBox
instance.
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Figure 19: Emulated overhead of hierarchical reduction with PBox.

6GB/s memory bandwidth and an aggregated 4GB/s network
bandwidth. This suggests that our PBox prototype could scale
to rack-level and support up to 120 worker machines training
this network. In other words, our prototype could support
sufficient scalability to handle cutting-edge training tasks.

On the other hand, the scalability bottleneck (PCIe con-
troller) in our current prototype is specific to this particular
platform, but it can change. For example, recently released
AMD Epyc [1] processors provide nearly triple the Stream
Triad performance (290 GB/s) [9] and 40% more PCIe band-
width than our PBox machine. We would expect Epyc to
support 40% more throughput.

4.8 Effectiveness of PBox as a Rack-Scale Service

We now evaluate effectiveness of PBox as a rack-scale service
with two typical scenarios in a 10 Gbps cloud-like environ-
ment: (1) when multiple jobs are training in parallel in a rack,
sharing the same PBox instance with different key names-
paces and (2) when a training job crosses rack boundaries,
and PHub performs hierarchical reduction.

Figure 18 shows the overhead of running multiple indepen-
dent training jobs sharing a single PBox. AlexNet saw a 5%
drop in per-job throughput when running 8 jobs, likely due to
frequent invocation of optimizer and less effective caching;
ResNet 50 saw a smaller impact as it is compute bound.

Figure 19 emulates a single cloud-based training job whose
VMs span N racks, and each rack contains 8 workers and
1 PBox. The PBox uses a widely used ring reduction algo-
rithm [5, 50] for inter-rack aggregation.

Since we have only one PBox machine, we model this ring
reduction by sending and receiving N chunk-size messages
sequentially, each performing one additional aggregation, for
each of the keys, after local rack has finished aggregation.
We assume each rack would finish its local aggregation at
roughly the same time, as stragglers can exist regardless of
rack assignment. Therefore, this faithfully estimates overhead
of PHub’s hierarchical reduction.

AlexNet’s throughput loss comes from added latency of
multiple rounds of communication, but is compensated by

drastically reduced cross-rack traffic, and thus we would ex-
pect speedup in real deployment. On the other hand, we again
observed virtually no loss of throughput in ResNet 50.

4.9 Rack-scale cost model

Is a cluster built with PHubs and a slow network more cost
effective than one with sharded PSs and a fast network? This
section explores this question using a simple cost model. We
consider the cost of three cluster components: worker nodes,
PHub nodes, and network gear. We use advertised prices
from the Internet; while a datacenter operator might pay less,
the ratios between component prices should still be similar.
The baseline is a cluster running MXNet IB with colocated
sharded PSs; we compare this to a PHub deployment in terms
of throughput per dollar.

The model works by computing the cost of a worker node,
and adding to it the amortized cost of its network usage; for
the PHub deployment, it also includes the amortized cost
of the worker’s PHub usage. This allows us to compare the
cost of worker nodes in deployments with different numbers
of workers per rack, switch, or PHub. We capture only the
most significant cost, and include only capital cost, since
operational costs are dominated by GPU power usage and
thus differences would be small.

We model a standard three-layer datacenter network with
some simplifying assumptions: racks hold as many machines
as may be connected to a single switch, all switches and ca-
bles are identical, and oversubscription happens only at ToR
switches. We model network costs by charging each worker
the NIC per-port cost N , the amortized cost of one ToR switch
port S and cableC, and fractional costs of ToR/aggregation/core
switch ports and cables depending on the oversubscription
factor F . Thus, the amortized cost of the network per machine
isA = (N+S+C)+F (4S+2C). Since our goal is to model costs
for future deployments, we make two changes from our ex-
perimental setup. Instead of 10Gb IB, we use 25 Gb Ethernet.
Instead of NVIDIA 1080 Ti’s, we assume a future GPU with
similar cost G, but that performs like today’s V100, based on
the data in Figure 1. This keeps the compute/communication
ratio similar to that of our experiments. We use ResNet-50
for comparison; we use our 10Gb IB results for the PHub
setting and downclocked 40Gb IB for the MXNet IB baseline.
We include 2% overhead in the PHub numbers to account for
aggregation between racks.

Workers are the same as in our evaluation, but with 4
GPUs. The cost W is $4117 [17] without GPUs; the GPU
price G is ($699 [14]). The 100Gb baseline uses Mellanox
ConnectX-4 EN cards ($795 [12]) and 2m cables ($94 [11]).
The 25Gb PHub workers use Mellanox ConnectX-4 Lx EN
cards ($260 [12]) and 4-to-1 breakout cables ($31.25 per
port [11]). The PHub node (also same as evaluation) cost H
is $8407 [16], plus 10 dual-port 25Gb Mellanox ConnectX-4
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Throughput/$1000
Future GPUs Spendy Cheap

100Gb Sharded 1:1 46.11 14.57 60.41
25Gb PHub 1:1 55.19 15.30 77.21
25Gb PHub 2:1 57.71 15.49 82.24
25Gb PHub 3:1 59.03 15.58 84.95

Table 5: Datacenter cost model comparing 25GbE PHub deployments with
100GbE MXNet IB on ResNet-50. Higher is better. The Future GPU PHub
deployment with 2:1 oversubscription provides 25% better throughput per
dollar.
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Figure 20: Left: Comparing Caffe2 + Gloo and MXNet + PBox on an 10Gbps
InfiniBand network. Right: Comparing MXNet + Gloo and MXNet + PBox
on a 56Gbps InfiniBand network with ZeroComputeEngine.

Lx EN cards ($162.5 per port [12]). The cost of each baseline
worker isW + N + 4G +A, and the cost of a PHub worker is
W +N + 4G +A+KP , where KP is the amortized PHub cost
(P =W + 20N + 20A; K is the worker to PHub ratio).

We use the Arista 7060CX-32S 32-port 100Gb Ethernet
switch ($21077 [3]) in both configurations, with breakout
cables to connect 25Gb hosts. With no oversubscription, each
switch supports 16 100Gb baseline workers, or a PHub and 44
25Gb workers. With 2:1 oversubscription each switch could
support a PHub and 65 25Gb workers; with 3:1, 76.

Table 5 compares a full-bisection-bandwidth 100GbE sharded
MXNet IB deployment with 25GbE PHub deployments with
varying oversubscription. With 2:1 oversubscription, the PHub
deployment provides 26% better throughput per dollar. We
consider two other configurations: a “lower bound” using
today’s expensive V100’s, where the 2:1 PHub deployment
provides only 6% improvement; and a “GPU-focused” one
using cheap CPUs (E5-2603 v4) in workers, providing 36%
improvement.

5 Related Work

Other Communication Schemes: Parameter servers are not
the only way to perform model updates. Frameworks such
as CNTK and Caffe2 can use HPC-like approaches, such as
collective communication operations [35, 57].

To understand how PHub compares to other communica-
tion schemes, we first ran Caffe2 and MXNet with PBox. We
used InfiniBand for both systems. We evaluated the fastest
algorithm in Gloo: recursive halving and doubling, used in
[29]. Figure 20 (left) shows PBox was nearly 2x faster.

We ported Gloo to MXNet to better assess both systems.
Gloo implements blocking collective operations, but MXNet
expects non-blocking operations. Therefore, we measured
an optimistic upper bound by letting Gloo start aggregating
the entire model as soon as the backward pass started, as if

all gradients were available instantaneously. Since Gloo only
does reduction, we ran our SGD/Nesterov optimizer on all
nodes after reduction was complete. We used 56 Gbps IB
and ZeroComputeEngine to compute bottlenecks. Figure
20 (right) shows PBox sustained higher throughput and pro-
vided better scaling up to its limit. Two reasons account for
this difference. First, collectives suffer from the same prob-
lem as colocated PSs: the interface on each participating node
must process nearly 2x the data (Gloo’s allreduce starts
with a reduce-scatter followed by an allgather [57]).
Second, collectives frequently use multi-round communica-
tion schemes whereas PBox uses only 1 round.

Compression, Quantization, Sparse Vector Communica-
tion, and Other Mechanism for Traffic Reduction: Or-
thogonal to our work are techniques to reduce gradient traffic.
These techniques trade higher overhead in preparing and pro-
cessing network data for lower network bandwidth usage. For
example, MXNet supports a 2-bit compression scheme, simi-
lar to [49]. We compared PHub running on PBox to MXNet
IB with 2-bit compression: PBox without compression still
beat MXNet IB by 2x.

Other examples include Sufficient Factor Broadcast (SFB)
[60, 64], which decomposes the gradient of a fully connected
layer (FCL) into the outer product of two vectors. SFB uses a
P2P broadcast scheme whose overhead scales quadratically
with the number of machines, making it suboptimal for large
scale training. Project Adam [24] sends activation and error
gradient vectors for reconstruction on server. Both techniques
have limited applicability as they only apply to FCLs, which
are small or unused in recent neural networks [31, 55, 56, 61].

PHub can also work with gradient compression [42] to gain
further benefits from its low latency communication stack,
fast aggregation and optimization.

6 Conclusion
We found that inefficient PS software architecture and net-
work environment-induced overhead were the major bot-
tlenecks of distributed training with modern GPUs in the
cloud, making DDNN training a communication-bound work-
load. To eliminate these bottlenecks, we proposed PHub, a
high performance multi-tenant, rack-scale PS design, with
co-designed software and hardware to accelerate rack-level
and hierarchical cross-rack parameter exchange. Our evalua-
tion showed that PHub provides up to 2.7x higher throughput,
with 25% better throughput per dollar.
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