
Netco: Cache and I/O Management for Analytics over
Disaggregated Stores

Virajith Jalaparti

Microsoft

Chris Douglas

Microsoft

Mainak Ghosh
∗

UIUC

Ashvin Agrawal

Microsoft

Avrilia Floratou

Microsoft

Srikanth Kandula

Microsoft

Ishai Menache

Microsoft

Joseph (Seffi) Naor

Microsoft

Sriram Rao
†

Facebook Inc.

ABSTRACT
We consider a common setting where storage is disaggregated

from the compute in data-parallel systems. Colocating caching tiers

with the compute machines can reduce load on the interconnect

but doing so leads to new resource management challenges. We

design a system Netco, which prefetches data into the cache (based

on workload predictability), and appropriately divides the cache

space and network bandwidth between the prefetches and serving

ongoing jobs. Netcomakes various decisions (what content to cache,

when to cache and how to apportion bandwidth) to support end-to-

end optimization goals such as maximizing the number of jobs that

meet their service-level objectives (e.g., deadlines). Our implemen-

tation of these ideas is available within the open-source Apache

HDFS project. Experiments on a public cloud, with production-trace

inspired workloads, show that Netco uses up to 5× less remote I/O

compared to existing techniques and increases the number of jobs

that meet their deadlines up to 80%.

CCS CONCEPTS
•Theory of computation→Caching andpaging algorithms;

• Computer systems organization→ Cloud computing;

KEYWORDS
Disaggregated architectures; data analytics; cloud computing;

caching

ACM Reference Format:
Virajith Jalaparti, Chris Douglas, Mainak Ghosh, Ashvin Agrawal, Avrilia

Floratou, Srikanth Kandula, Ishai Menache, Joseph (Seffi) Naor, and Sriram

Rao. 2018. Netco: Cache and I/O Management for Analytics over Disag-

gregated Stores. In Proceedings of SoCC ’18: ACM Symposium on Cloud
Computing, Carlsbad, CA, USA, October 11–13, 2018 (SoCC ’18), 13 pages.
https://doi.org/10.1145/3267809.3267827

∗
Work done during an internship at Microsoft.

†
Work done while at Microsoft.

Permission to make digital or hard copies of all or part of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00

https://doi.org/10.1145/3267809.3267827

1 INTRODUCTION
Public clouds physically separate compute resources from the

storage tiers [4, 6, 9, 19, 23]. A typical Spark deployment on Amazon

web services uses VMs from EC2 (the compute tier) but stores the

data in S3 (the storage layer) [11]. Since data-parallel analytics

frameworks have been built with the assumption that the storage is

colocated with the compute, the compute-storage disaggregation in

public clouds creates a bottleneck in the interconnection between

the store and compute. This bottleneck delays jobs and adds to their

performance variability.

Existing techniques to mitigate the storage–compute bottleneck

are reactive and do not consider job-level objectives. For exam-

ple, Alluxio [3] and Databricks IO Cache [13] maintain a cache on

compute-local memory, SSD or disks with cache replacement poli-

cies such as LRU-k [64]. These techniques do not optimize job-level

objectives such as meeting deadlines because they ignore the job

structure. For example, if a job joins two inputs, caching just one of

the inputs may not speed up the job. Furthermore, these techniques

have a poor cache hit rate because they ignore predictability in

workloads. Many prior works show that a large fraction of the

workload is recurring and predictable [24, 47, 53, 54]; prefetching

the inputs for these queries into the cache can substantially increase

the cache hit rate.

Motivated by these observations, we designNetcowhichmanages

one or more caching tiers that are colocated with compute resources

in the cloud. To this end, Netco uses as input information from

previous job executions, the limits on the cache size and the limits

on usable bandwidth on the compute–storage interconnect. Netco
generates a schedule that determines when and which datasets to

prefetch into or evict from the cache, the bandwidth allocated for

each prefetch and the bandwidth allocated for jobs to load data

that is not prefetched or cached. The key idea behind Netco is to
jointly optimize allocations of the various resources in order to

meet end-to-end objectives such as maximizing the number of jobs

that meet deadlines. Example outcomes of this optimization include

(i) to preferentially prefetch datasets that are used by multiple

contemporaneous jobs, (ii) to preferentially cache smaller datasets,

(iii) to preferentially cache datasets for jobs with tight deadlines

and (iv) to coordinate the cached fraction of datasets that are used

in joins.

Determining such a caching schedule requires Netco to solve

a novel joint bandwidth and cache allocation problem. We make

careful design choices when formulating this problem to obtain a

https://doi.org/10.1145/3267809.3267827
https://doi.org/10.1145/3267809.3267827

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA V. Jalaparti et. al.

scalable solution (§3). In particular, we adopt a hierarchical opti-
mization approach, in which we perform the high-level planning at

the granularity of files, and use a separate (lower-level) algorithm to

assign resources (network bandwidth between storage and compute

tiers, cache capacity) to blocks within each file
1
. The higher-level op-

timization problem uses a unified Linear-Programming (LP) formu-

lation which allows operators to flexibly choose between different

end-to-end objectives for different operational regimes: (i) maximize

the number of deadline SLOs satisfied when all SLOs cannot be met

and otherwise (ii) minimize bandwidth used on the interconnect to

the primary store. While (ii) follows from the LP-formulation, (i) is

NP-hard and hard-to-approximate (§4.2). Accordingly, we develop

efficient heuristics using LP-rounding techniques. The lower-level

algorithm then translates the solution of the LP to an actual re-

source assignment (§4.3), which can be implemented in practice.

Such decoupling helps us significantly reduce the complexity of

the underlying optimization problems.

We have implemented Netco on top of Apache

Hadoop/HDFS [16], a widely-used store for data analytics.

We added to HDFS the capability to mount and cache data present

in other remote filesystems. The caching plan determined by Netco
is enforced by a separate standalone component, where custom

caching policies can be implemented. Such separation helped limit

the amount of changes to HDFS. Our changes to HDFS are released

as part of Apache Hadoop 3.1.0 [2]. While our implementation

of Netco is aimed at data-analytics clusters that use HDFS on

public clouds, the core ideas apply in other, similar, disaggregated

scenarios including on-premise clusters.

We evaluate our implementation of Netco on a 50-node cluster

on Microsoft Azure and on a 280-node in-house cluster that dis-

aggregates compute and storage. Using workloads derived from

production traces, we show that Netco improves SLO attainment

by up to 80% while using up to 5× less remote I/O bandwidth,

compared to workload-agnostic caching schemes such as LRU and

PACMAN-LIFE [28], and simple prefetching techniques. These sav-

ings translate to Netco reducing the I/O cost per SLO attained by

1.5×–7× on Azure.

While Netco offers direct benefit to jobs that are known in ad-

vance, ad hoc jobs also benefit because (a) more resources are avail-

able to them due toNetco’s efficient execution of the predictable jobs

and (b) Netco offers reactive caching policies (e.g., PACMan [28]).

In fact, our experiments show that the median runtime of ad hoc

jobs reduces by up to 68%.

Ideally, if the interconnect bandwidth is sufficiently large, then

caching tiers are not essential. However, public clouds do not allow

independent control of the interconnect bandwidth. The primary

method to increase the interconnect bandwidth today, is to pay

for an even larger compute tier and/or storage tier [1, 10]. In this

context, Netco can be seen as a cost-saving measure; Netco’s caching
tiers increase utilization on the compute tier and finish more jobs

faster on fewer VMs.

In summary, our contributions are:

• A new architecture that computes and enforces a cache

schedule that is aware of limits on both store–compute I/O

1
Distributed file systems such as Apache HDFS [16] partition files into one or more blocks, each
representing a contiguous portion of the file.

 0.1

 1

 10

 100

D16sv3

E16sv3

F16s
m

5.2xl

c4.8xl

r4.8xl

i2.8xl

%
 c

o
e
ff

.
o
f

v
a
ri

a
ti

o
n

LocalRead
LocalWrite
BlobRead
BlobWrite

AWSAzure
(a) Coefficient of variation

 0

 150

 300

 450

 600

D16sv3

E16sv3

F16s
m

5.2xl

c4.8xl

r4.8xl

i2.8xl

T
h
ro

u
g
h
p
u
t

(M
B

p
s) LocalRead

LocalWrite
BlobRead
BlobWrite

AWSAzure
(b) Average I/O throughput

Figure 1: Benchmark of local and remote stores on Azure and AWS.
The graphs show (a) the coefficient of variation of time to read or
write 512MB to local and remote stores, and (b) the average I/O
throughput achieved, over 100 trials. The x-axis shows different VM
types onAzure and AWS. Coefficient of variation is the ratio of stan-
dard deviation to mean and is a widely-used measure of variability.

bandwidth and cache size (§3). We implement this architec-

ture on top of Apache Hadoop/HDFS (§5).

• A novel problem formulation which jointly optimizes I/O

bandwidth and local storage capacity in disaggregated archi-

tectures to meet job SLOs, and practical algorithms to solve

it (§4).

• An evaluation of Netco using real deployments and produc-

tion workloads, demonstrating that Netco improves SLO at-

tainment while significantly reducing bandwidth used on

the storage–compute interconnect (§6).

2 MOTIVATION
In this section, we provide empirical evidence that motivates and

guides the design of Netco (§2.1–§2.2). We also illustrate through a

simple example (§2.3) the merits of jointly scheduling network and

caching resources.

2.1 Storage in public clouds
Cloud storage offerings can be categorized into two types: (i)

primary, remote storage such as Amazon S3 [6] and Azure Blob

Storage [23], which can hold petabytes of data “at rest” in a globally

addressable namespace, and (ii) local storage volumes which are

only addressable by individual compute instances and can hold

at most few tens of terabytes of data; examples include Amazon

EBS [5], Azure Premium Storage [18] and local VM storage.

We measure the I/O throughput as well as the variability of both

local and remote storage for two major cloud providers: Azure

and AWS. We consider Azure Blob Store and S3 as remote stores,

Netco: Cache and I/O Management for Analytics over Disaggregated Stores SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2-10 11-20 21-50 >50
Number of jobs

Fraction of files
Fraction of bytes

(a) Histograms of files and total size, bin-
ned by the number of jobs accessing them.

 1

 10

 100

 1000

 1 10 100 1000

Fi
le

 p
ro

ce
ss

in
g

 r
a
te

 (

N
o
rm

a
liz

e
d

)

Number of jobs
(b) Scatter plot of avg. processing rate of a file
vs. the number of jobs that read it.

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

(o
v
e
r
fi
le

s)

Prefetch Slackness

1Gbps
480Mbps

(c) CDF of prefetch slackness of files.

Figure 2: Characteristics of workloads from production data analytics cluster at Microsoft.

and SSD volumes which are attached to VMs as local storage. We

repeatedly write and read 512MB of data from different types of

VMs (compute-optimized, memory-optimized, storage-optimized).
2

Figure 1a shows that local reads/writes have low variance (although

the variance depends on the type of VM used). Reads/writes to

primary remote stores have a much larger variance (5×–30× larger).

Similar observations have been made in prior work [50, 57]. We

also observe that the throughput of the remote storage is 1.1× to

5× lower on AWS and 3.9× to 6.6× lower on Azure compared to

the local storage (Figure 1b).

Thus, remote cloud storage has limited and variable I/O through-

put. As a result, without significant over-provisioning, remote stor-

age cannot meet the needs of big data frameworks that require strict

SLOs. Local storage, on the other hand, has higher throughput and

lower variability. This motivates Netco’s use of local storage to build
cache tiers and help jobs meet their deadline SLOs.

2.2 Analysis of production workloads
We next analyze the characteristics of typical big data workloads

and provide insights that motivate the design of Netco. As customer

telemetry data is hard to obtain from public clouds due to privacy

concerns, we analyze a private production data analytics cluster at

Microsoft along with few publicly available workloads. The cluster

being analyzed consists of thousands of machines; we use logs

collected over one week which contain tens of thousands of jobs

and hundreds of thousands of input files.

Job characteristics can be predictable. As noted in several prior

works, various characteristics of analytics jobs can be inferred from

prior execution logs [24, 47, 54]. In particular, prior work shows

that nearly 40–75% jobs are recurring (i.e., the same code or script is

run on different/changing input datasets), and that their submission

times, deadlines, and input reuse times can be inferred with high

accuracy [54].

Caching files saves network bandwidth. Figure 2a shows a his-
togram of the fraction of files (and bytes) that are accessed by a cer-

tain number of jobs (x-axis). We find that about 25% of the files are

accessed by more than 10 jobs. These files contribute to more than

50% of the bytes accessed from the store. Similar observations have

been made for other workloads (e.g., Scarlett [26], PACMan [28]).

2
We observe similar results for data sizes of 64MB, 128MB, and 256MB; HDFS-like filesystems typi-

cally use such block sizes.

Caching such frequently accessed files can significantly reduce the

data read from remote storage.

File access recency or frequency is insufficient to determine
which files to cache. Different analytics workloads can process

data at very different rates, e.g., reading a compressed file vs. un-

compressed, JSON parsing vs. structured data. Jobs that are capable

of processing data at higher rates or I/O bound jobs can be sped-up

more by caching (or prefetching) their input files as they can take

advantage of the higher I/O throughput local storage offers. How-

ever, standard caching policies (e.g., LRU, LFU) depend on file access

recency and/or frequency, and do not take the data processing rates

into account. Thus, such policies are insufficient to determine which

files to cache. Indeed, as shown in Figure 2b, we observe in practice

a low correlation (pearson correlation coefficient = 0.018) between

the number of jobs that read a file (x-axis) and the rate at which it

is processed (y-axis).

Data can be prefetched before job execution. We find that the

period between data creation and the earliest job execution using

the data varies from a few minutes to several hours. If the data is

prefetched to local storage before the dependent jobs start, these

jobs will benefit from the higher throughput and lower variability

of local storage.

To quantify such opportunities, we define the notion of “prefetch

slackness” of a file as the ratio between (a) the time elapsed since file

creation towhen it is first accessed, and (b) the time required to fetch

the file from remote storage. While the former is a characteristic of

the workload, the latter depends on bandwidth available to transfer

the file. We measure the prefetch slackness of files in the examined

workload (Figure 2c) using bandwidth values of 480Mbps and 1Gbps

per VM, based on the measured average throughputs for Azure Blob

Store and Amazon S3, respectively (see §2.1). We observe that 95%

of the files have a prefetch slackness greater than one, i.e., they can

be fully prefetched before being read by a job.
3

2.3 An illustrative example
In this section, we illustrate how Netco differs from caching poli-

cies such as LRU; by considering job characteristics and prefetching

inputs into the cache, Netco can perform much better.

Consider a workload with six jobs, J1, . . . , J6 which process three
files f1, f2, f3 (Table 1). The jobs run on a compute cluster separated

3
Note that this under-estimates prefetching opportunities as job start can also be delayed till input

is prefetched; once input is in the cache the job can execute more quickly and finish within its

deadline.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA V. Jalaparti et. al.

𝑓1 𝑓1
𝑓2

𝑓1
𝑓2

𝑓1
𝑓2

𝑓1
𝑓2

𝑓1
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝐽2 {𝑓2}

𝐽1 {𝑓1}

𝐽4 {𝑓2}

𝐽6 {𝑓1}

𝐽5 {𝑓3}

𝐽3 {𝑓2, 𝑓3}

1 2 3 4 5 6 7 time (𝑡)
(a) Using LRU; deadlines met = 2; avg. job latency = 1.875.

𝑓1 𝑓1 𝑓1 𝑓1
𝑓2

𝑓1
𝑓2

𝑓1
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝑓3
𝑓2

𝐽2 {𝑓2}

𝐽1 {𝑓1}

𝐽4 {𝑓2}

𝐽6 {𝑓1}

𝐽5 {𝑓3}

𝐽3 {𝑓2, 𝑓3}

1 2 3 4 5 60 time (𝑡)
(b) Using Netco; deadlines met = 6; avg. job latency = 1.

Figure 3: Execution time-lapse of workload in Table 1. A running job is shown using solid (black) lines and job deadlines are indicated by
green arrows. If a job misses its deadline, the execution after the deadline is shown by dashed (red) lines. The tables indicate which files are
present in the cache; full files are shown in black and partial files are shown in grey. A (red) cross indicates files being evicted from the cache.
Files not in the cache on job start are read from the remote store and can be cached.

Jobs Start Deadline Inputs, max. I/O rate

J1 1 2 {f1, 2.0}

J2 1.5 3 {f2, 1.0}

J3 4 6 {{f2, f3 }, 1.0}

J4 4 6 {f2, 1.0}

J5 4.5 5 {f3, 2.0}

J6 5 6 {f1, 1.0}

Table 1: Workload with 6 jobs and 3 files. All files are unit size.

from the store containing the files. Assume that all files have unit

size, the cache tier has two units of capacity, the network between

the store and compute has unit bandwidth, and the I/O bandwidth

from the local cache is three units.

Figure 3a shows a time-lapse of job execution when the cache

is managed using LRU; recall that in LRU, every cache-miss is

added to cache by evicting, if necessary, the least recently used file.

In this example, for simplicity, we assume that the interconnect

bandwidth is divided equally across all jobs running at any point

in time. Similar examples exist for other methods to share the I/O

bandwidth. When J2 starts at t = 1.5, the I/O bandwidth to the store

is shared equally between J1 and J2 causing J1 to miss its deadline;

note that J1 reads half of f1 in [1.0, 1.5] but the other half takes a
full unit as it shares the I/O bandwidth. When J3, J4 start at t = 4,

f1 is evicted to make room for f3. J4 benefits from a cache-hit and

finishes in one unit time; reading from the cache is faster but this

job is limited by its own maximum processing rate of the file f2.
J3 also benefits from cache hit on f2 and would have finished at

t = 6 because it takes two units of time to read f3 from remote store.

However, when J5 and J6 start, J3’s bandwidth to the store drops to

a half and a third respectively causing J3 to miss its deadline. J5 and
J6 both suffer from cache misses and receive small shares of the I/O

bandwidth to the store causing them to also miss their deadlines.

In summary, four out of six jobs miss their deadlines, the average

job latency is 1.875 and 5 units are read from the remote store.

Figure 3b shows a time-lapse to execute the same jobs using

Netco. Netco decides to prefetch two files: f1 because it is read at

a high I/O rate by J1 and f3 because J5 has a strict deadline. Even

though f2 is used by three different jobs, it is not prefetched as

J2 has a loose deadline. However, f2 is cached after J2 reads it

from remote store (because f2 is more useful than f1 after t = 3.5).

Note that both J2 and J6 finish faster even though neither benefits

directly from the cache because Netco’s actions ensure that more

I/O bandwidth is available to them. Netco also ensures that both

inputs are in the cache for J3. In summary, all six jobs meet their

deadlines, the average job latency is 1 and 4 units are read from the

store; Netco improves on all of these metrics compared to LRU.

This example shows how Netco uses job characteristics to deter-

mine a cache and network-use schedule that lets more jobs meet

their deadlines.

2.4 Takeaways
Our analysis above indicates that:

• Job and input characteristics are predictable before job sub-

mission, and can be used for network and storage resource

planning.

• Files can be prefetched ahead of job execution allowing jobs

to benefit from the higher throughput and predictability of

reading from local storage.

• I/O management for analytics in disaggregated environ-

ments should consider both the bandwidth to the remote

store and the capacity of local storage.

3 NETCO OVERVIEW
Netco focuses on deployments where (i) a compute cluster (e.g.,

Azure Compute [19]) executes multiple analytics jobs over (ii) input

data that is stored in a separate store such as Azure Blob Storage [23]

and (iii) a distributed filesystem manages the storage available on

the compute nodes (e.g., local VM disks, memory, SSDs).

The key idea behind Netco is to use the characteristics of recur-

ring jobs to plan how I/O resources should be allocated so that

more jobs finish within deadlines. In particular, Netco explicitly

manages (i) the I/O bandwidth available to the primary cloud stor-

age (also referred to as remote store), and (ii) the storage capacity

of the secondary storage volumes (referred to as local store or the
cache). An optimal solution to this planning problem requires joint

optimization across these two resources. This, in turn, necessitates

decisions along multiple dimensions — for each (job, input file) pair

determine if the file has to be cached, when and at what rate should

the file be transferred from remote to local store, and when to evict

it from the cache.

We model this optimization as a linear program. While we defer

the details to §4, in this section, we describe the architecture of

Netco: Cache and I/O Management for Analytics over Disaggregated Stores SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

DFS
Worker

Netco
Slave

DFS
Master

Netco
Coordinator

DFS
Worker

Netco
Slave

Netco
Planner

Recurring job j
{start time,

deadline, files}

timeI/
O

, c
ac

h
e

execution plan for job j

Netco
Runtime

Store (remote)

Figure 4: Netco architecture

Netco (§3.1), the design choices that result in a practically scalable op-
timization framework (§3.2) and, various deployment details (§3.3).

3.1 System architecture
Figure 4 illustrates the architecture of Netco which consists of a

coordinator and a collection of slaves; this architecture is chosen

to work well with existing distributed file systems (DFS) such as

HDFS [16] and Alluxio [3]. As shown in the figure, the Netco co-
ordinator is conjoined with the file system master and the Netco
slaves serve as an intermediary between the DFS workers and the

remote store. We describe each of these components below.

Planner. Recurring job arrivals, their deadlines and inputs are ob-

tained from analyzing logs of previous job executions [54]. With

this input, the planner determines a cache and I/O resource assign-
ment for jobs using the algorithms in §4. As distributed file systems

like HDFS divide files into a sequence of blocks, this plan specifies

how each input block is processed by a job during its execution —

whether (i) the block is prefetched before job start and if so, when

the block should be prefetched or (ii) the block is to be read from

the remote store during job execution, in which case it is specified

whether the block should be cached. In either case, the plan also

specifies the I/O rate to use to read/transfer the block and if the

block is to be cached, it specifies which other block(s) to evict.

The planner runs at the start of every planning window (a config-

urable parameter, e.g., every hour) to plan for newly arriving jobs.

It also maintains the expected state of the cluster — what files (or

portions thereof) are cached locally and how much bandwidth to

the remote store is assigned to individual file transfers at future

times. If the deadline of a job cannot be satisfied, the job can either

execute as a best effort job or the user may submit it at a later time.

The planner can also be invoked, on demand, to handle changes in

the cluster or workload.

Netco runtime. The runtime, as shown in Figure 4, consists of a

cluster-wide coordinator and per-node slaves. The coordinator co-

ordinates I/O and cache activities. To prefetch a file, the coordinator

performs the necessary metadata operations with the file system

master to ensure that file blocks can be cached. For example, in

HDFS, this involves setting the replication factor for the file so that

the master does not delete the newly cached blocks. Next, the coor-

dinator issues fetch commands to individual workers (chosen at

random) to fetch file blocks from remote store. The workers use the

Netco slaves to read data from the remote store at the specified rate.

The coordinator tracks the progress of prefetching and also handles

evictions. Evicting a file requires metadata operations on the file

system master and evict commands are issued to the workers to

delete cached blocks.

3.2 Design choices
Modeling each possible I/O action (prefetch a file, demand-

paging, . . .) at the granularity of file blocks results in an intractable

optimization problem. Consequently, we make some design choices

which lead us towards a scalable hierarchical optimization for the

planning problem while also accounting for practical constraints

imposed by big data filesystems.

Decouple demand paging decisions from the central opti-
mization framework. A job can read files in multiple ways: (a)

from the remote store, either without caching the data (remote read)
or after caching it locally (demand paging), or (b) from the cache, if

the files are prefetched into the cache before it starts (prefetch read)
or cached by an earlier job (cache hit).

The various read methods interact in complex ways. For example

if two contemporaneous jobs access the same file, each can remote-

read half of the file and benefit from a cache hit on the other half.

However, an optimization problem that considers such complex

interactions becomes intractable. An earlier formulation that ac-

counts for all the different kinds of reads was over 10× slower than

the formulation described in this paper. Thus, to obtain a practi-

cally tractable solution, we trade-off some accuracy for much better

performance – our optimization problem ignores demand paging

and only models prefetch, cache-hits (due to prefetches) and re-

mote reads. A later cache augmentation phase (§4.3) is used to take

advantage of demand paging opportunities.

Plan at the granularity of files. Analytics frameworks store files

as a sequence of blocks, and jobs consist of tasks which read one

or more blocks. Hence, planning at block granularity is useful. For

example, because even when a file is not fully available in the

cache many of its blocks may be in the cache. However, this results

in trillions of variables and constraints making the optimization

intractable at scale (Table 2 offers some typical problem sizes).

Hence, our planner only optimizes at the granularity of jobs and

files but the Netco runtime greedily avails of additional cache hit

opportunities.

Translating a file-level plan to a block-level plan. One sim-

ple translation would be to assign to each block 1/nth of the rate

assigned to the file if the file has n blocks. However, our formu-

lation (§4.2) allocates time-varying I/O rates to files which will

translate into a time-varying rate for each block. Enforcing a time-

varying rate requires tight coordination across the machines that

work on each block. To circumvent this complexity, we enforce a

fixed but different rate for each block in the file; these rates are

computed by fitting as many rectangles as the number of blocks

into the “skyline" of file’s allocation (height at time t is the rate
assigned to the file at time t) (see §4.3).

3.3 Deployment considerations
Replica placement on local storage, and task placement.
Netco only considers what to cache and how to transfer data from

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA V. Jalaparti et. al.

remote stores to the cache but does not model replica placement;

that is, which machines contain each block. Replica placement is an

involved problem in its own right because it has to account for load

balance, robustness to machine faults etc. Our implementation (§5)

uses the default replica placement policy in HDFS [16] and uses

the locality-aware scheduler in Yarn [8] for task placement. Better

replica placement policies (e.g., Corral [53]) and task placement (e.g.,

Tetris [48]) can lead to better results.

Ad hoc jobs. While a large fraction (40–75%) of the workload in

production clusters is recurring and known in advance [47, 54], big

data clusters also run ad hoc jobs. Such ad hoc jobs can compete

with SLO jobs for compute, cache and network resources. To protect

the SLO jobs from such interference by ad hoc jobs, Netco runs ad
hoc jobs at lower priority; several frameworks support priority

scheduling (e.g., Yarn [8], Mesos [49]). Further, Netco prevents ad-
hoc jobs from evicting data that is cached for SLO jobs.

Prediction errors. Netco relies on the ability to predict submission

times of jobs and the time their input files are available using tech-

niques such as the ones used in Morpheus [54]. When the runtime

behavior of a job diverges significantly from Netco’s plan (e.g., a file

is not available for prefetch when expected), Netco executes the job
using existing techniques; for example, caching the job’s input on-

demand using PACMAN [28]. Dynamically adapting Netco’s plan to

meet job SLOs with such runtime deviations is left for future work.

Even without such dynamic plan adaptation, our experiments indi-

cate that Netco is fairly robust to runtime variations under typical

conditions (§6.3).

Exogenous concerns. Netco does not consider the problems of

capacity planning or auto-scaling resource reservations with cluster

load; prior work on these problems [54, 60] can work in conjunction

with Netco. Furthermore, Netco only considers I/O reads but not

writes; writes can be accommodated by setting aside a portion of

the I/O bandwidth and using techniques such as Sinbad [39] or by

specifying some time-varying write rate in the Netco planner. We

leave further investigation to future work.

4 ALGORITHM DESIGN
In this section, we first formulate the algorithmic setting for

Netco (§4.1). We then develop a unified Linear Programming (LP)

optimization framework that allows Netco to plan for the I/O re-

source allocation to meet end-to-end job level goals. Finally, we

describe the lower-level mechanisms that translate the solution of

the LP into an efficient and practical execution plan (§4.3).

4.1 Preliminaries
We next formulate an offline planning problem, in which the

algorithm has full information about all jobs submitted and all files

required within the planning window T . The input to the problem

consists of a set of N jobs j = 1, . . . ,N and L files ℓ = 1, . . . , L. All
files are stored in the remote store (to start off) and the jobs are run

in a separate compute cluster. Each job j has a submission time aj
and deadline dj . Each file ℓ has size sℓ , and is required by a subset

of jobs Jℓ . We also denote by Fj the subset of files required by job

j. The local store has fixed capacity C . The maximum bandwidth

available to transfer data from the remote storage to the local store

is B – this limit can be enforced by the remote storage itself [23] or

can be because of the limits on the (virtual) network cards of the

compute instances.

We model two ways in which files can be read:

Prefetch read. If file ℓ (or parts of it) is prefetched and cached

in the local store, then all jobs in Jℓ that start after the prefetch

can access it. We assume that prefetching can be done with no

rate restrictions, i.e., a file can be prefetched using any amount of

available network bandwidth (the total bandwidth used should be

less than B). Further, to fully benefit from prefetching, we require

that all file data is cached before job start. We also assume that a

cached file ℓ cannot be evicted during time window [aj ,dj] if there
is a job j that requires ℓ. While these assumptions might affect the

quality of the solution (e.g., parts of a file that are processed can be

evicted to free up cache space), they allow us to formulate a tractable

optimization problem. Overall, Netco still significantly outperforms

state-of-the-art techniques as shown in our evaluation (§6).

Remote read. If the file (or parts of it) is read from the remote

store, each job j has to read the file separately. Due to practical

restrictions (§3.2) and simplicity of implementation, we require

that remote read take place at a fixed rate r j ,ℓ , determined by the

solution.

Objectives. We consider two variants of our problem, correspond-

ing to different load regimes:

(i) Light/medium load regime, where there is enough network

bandwidth to accommodate all job deadlines. The objective is to

minimize peak bandwidth utilization while meeting all job dead-

lines. This objective also allows us to free up the network for un-

planned/ad hoc jobs.

(ii) High load regime, where all production jobs may not finish by

their deadline. Hence, the objective is to maximize the number of

jobs that meet their deadlines given a fixed network bandwidth.

4.2 Linear programming formulation
In this section, we describe a unified linear programming formu-

lation that is used for the two objective functions described above.

We use the following variables:

• r j ,ℓ : the rate at which file ℓ is read by job j from remote (as

remote read).

• Cℓ,t : number of bytes of file ℓ in cache at time t

• Xℓ,t : number of bytes of file ℓ prefetched to cache at time t

• B: available network bandwidth.

The LP includes the following constraints:

(1) r j ,ℓ(dj − aj) +Cℓ,aj ≥ sℓ , ∀j, ℓ.

(all data is read, either from cache or remotely.)

(2) Cℓ,t ≤ Cℓ,t−1
+ Xℓ,t ,∀t, ℓ.

(caching requires prefetching.)

(3) Cℓ,t+1
≥ Cℓ,t , ∀t ∈ [aj ,dj], ∀ℓ ∈ Fj , j.

(prevent cache evictions while job j is running).

(4)

∑
ℓ Cℓ,t ≤ C,∀t .

(cache capacity cannot be exceeded.)

(5)

∑
j |t ∈[aj ,dj]

∑
ℓ
(
r j ,ℓ + Xℓ,t

)
≤ B,∀t .

(bandwidth used cannot exceed the capacity B.)
A solution to the above linear program provides a prefetching

plan of files to the cache. We note that it allows only part of a file to

be prefetched to the cache and the rest to be read from the remote

Netco: Cache and I/O Management for Analytics over Disaggregated Stores SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

store. By the above assumptions, a (part of) file ℓ read from the

remote store defines a rectangle whose base is the window [aj ,dj]
and its height is the rate r j ,ℓ at which the file is read.

Bandwidth minimization. Under this scenario, the network

bandwidth B is a variable, and the objective is to minimize B under

the above constraints. A solution to this LP can be used as an exe-

cution plan, as the files of every job are fully read, either from the

cache or the remote store (§4.3).

Maximizing number of jobs satisfied. In high load scenarios,

our objective is to maximize the number of jobs that are fully sat-

isfied, when the network bandwidth B is fixed. This problem can

be shown to be NP-hard by reducing the densest-k-subgraph prob-

lem [32, 46] to it (proof in Appendix). The densest-k-subgraph
problem is NP-hard and its approximability has remained wide

open despite many efforts [32, 59].

We formulate amixed integer linear program (MILP) tomaximize

number of jobs satisfied. First, constraints 2–5 described above also

apply here. For each job j, we introduce a new binary variable pj
such that pj = 1 iff job j is fully satisfied (i.e., its input files are read

completely). Formally, this requirement is captured through the

constraint: pj ≤
r j ,ℓ (dj−aj)+Cℓ,aj

sℓ for every j, ℓ.

The objective now is to maximize

∑
j pj . In our experiments, we

find that this MILP is not scalable for problem instances of around

thousand jobs (or more). Consequently, we use a solution which is

based on the following relaxation of the problem: pj as a continuous
variable between zero and one, i.e., pj now stands for the fraction
of job j executed. This results in a LP with the same objective and

constraints as the above MILP.

However, the fractional solution obtained from this LP for max-

imizing number of jobs does not directly yield an execution plan

as job j will not process its files fully when 0 < pj < 1. Thus, our

goal now is to translate this fractional solution into a solution of

the MILP above (jobs either execute fully or not at all). For this

purpose, we use the following rounding procedure:

Randomized rounding procedure. The execution plan is divided

between prefetching files to the cache and reading files from the

remote store. We follow the prefetch plan for files as given by the

fractional solution. The remaining parts of the files may not be fully

transferred from the remote store. Hence, we need a procedure

for choosing which content should be transferred from the remote

store. To that end, we use a procedure called randomized rounding
[62] to the remote reading of files. Intuitively, the idea here is to

pick files with probability which is proportional to their value in

the fractional LP, while ensuring that the channel capacity is not

violated (with high probability).

Consider a job j; in the fractional solution each file ℓ read by

j corresponds to a rectangle whose basis is [aj ,dj] and height is

r j ,ℓ . We can aggregate all such rectangles into a single rectangle of

height hj =
∑

ℓ r j ,ℓ . Define p
′
j =

hj (dj−aj)∑
ℓ∈j (sℓ−Cℓ,aj)

; p′j is the fraction

of the contents of files read by job j from the remote store, ignoring

the cache contribution. We now apply randomized rounding to the

remote reading of files. Independently, for each job j, allocate a

rectangle of height (
∑

ℓ∈j (sℓ −Cℓ,aj))/(dj −aj) with probability p′j .

It follows from the work of [35] that the probability of deviating

from the network capacity is small, as a result of this randomized

rounding procedure. This can be proved under the assumption

that for each job j,
∑

ℓ∈j (sℓ −Cℓ,aj) is not too large relative to B.
Unfortunately, one cannot prove any approximation factors for this

procedure, since pj and p
′
j cannot be related.

4.3 Determining an execution plan
The pseudo-code below describes a simple mechanism, which

supplements our LP solution. The mechanism reclaims some of the

lost opportunities due to our design choices (§3.2), and outputs a

practical execution plan.

function translate(start time s , end time T , rates X [], blocks b[])
i ← min{t | t ≥ s , Xℓ,t > 0 ∨ T } ◃ Start of interval

if i = T then
return ∅ ◃ No capacity in interval

j ← min{t | t > i , Xℓ,t = 0} ◃ End of interval

r ← min{Xℓ,k |∀i ≤ k < j } ◃ Least common rate to interval

a ← {(bx , r) | x = 1, . . . , ⌈r (j − i)/blocksize ⌉ } ◃ Assign x blocks at rate r

b′ ← {bx |bx ∈ b , bx < a } ◃ Remaining blocks

X ′ ← [Xi − r |i = 1, . . . , |X |] ◃ Remaining bandwidth

a ← a ∪ translate(i , j , X ′, b′) ◃ Recursively assign remaining

b′ ← {bx |bx ∈ b , bx < a } ◃ Remaining blocks

X ′ ← [Xi − r |i = 1, . . . , |X |] ◃ Remaining bandwidth

return a ∪ translate(j ,T , X , b′) ◃ Assign capacity after this interval

Algorithm 1: Assign transfers for file ℓ

Cache augmentation. The optimization framework discussed in

§4.2 forgoes opportunities for demand paging, preferring a simple

and scalable formulation. However, caching data read directly from

the remote store can further reduce the remote I/O. To exploit such

opportunities, we leverage the cache space that is not consumed

by prefetched data. Thus, the usable cache space is given by C̄t =
C −

∑
ℓ Cℓ,t at any time t . We use a pluggable caching policy to

manage this space and cache the data read remotely by each job j,
when possible. In our experiments (§6), we used Belady’s MIN as

the caching policy as we can estimate which files are going to be

used furthest in the future. Other caching policies like PACMan [28]

can also be implemented.

Translate file-level plan to block-level plan. The solution of

the LP determines a file-level plan. However, as discussed earlier,

most distributed file systems store files as a sequence of blocks.

Thus, a file-level plans needs to be translated into a block-level plan

to be practical. This involves translating the following components:

(a) Cache state. Suppose the block size of file ℓ is bℓ bytes. Cℓ,t
gives the size of file ℓ in the cache at time t . This translates to
the first ⌊Cℓ,t /bℓ⌋ blocks of file ℓ being cached at time t . If this
value decreases at any time t compared to t − 1, the corresponding

number of blocks should be evicted from the cache. If it increases,

then blocks of file ℓ will be added to the cache using the network

transfers described next.

(b) Prefetch network transfers. A solution of the LP formulation

assigns a time-varying rate, Xℓ,t , to the file ℓ at time t . Thus, its
transfer is described by the time series given by {Xℓ,t |t ∈ [0,T]}
where Xℓ,T = 0. Suppose file ℓ is fetched into the cache only once.

We use Algorithm 1 to translate its time series into a collection of

rectangles, where each rectangle corresponds to the transfer of a

single block at a constant rate (as mentioned in §3.2). If file ℓ is

fetched multiple times, we repeat Algorithm 1 for each time it is

fetched.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA V. Jalaparti et. al.

5 NETCO IMPLEMENTATION
We implement Netco by extending Apache Hadoop/HDFS [8],

a widely used data analytics platform
4
. With our changes, HDFS

can serve as a cache for cloud stores like Amazon S3 [6], and Azure

Blob Store [23]. Users can (a) seamlessly access data in the remote

store through HDFS, (b) prefetch data into the local HDFS storage

for future jobs at a specified rate, and (c) cache data in local storage

as needed. Below, we first provide a brief overview of HDFS and

then describe our implementation.

HDFS overview. HDFS exports a hierarchical namespace through

a centralNameNode. Files are managed as a sequence of blocks. Each
block can have multiple replicas stored on a cluster of DataNode
servers. Each DataNode is configured with a set of attached storage
devices, each associated with a storage type. The storage type is used
to identify the type of the storage device — existing types are DISK,

SSD, or RAMdisk. When a DataNode starts up, it reports the list of

replicas stored on each of its storage devices (and hence, storage

type). From these reports, the NameNode constructs a mapping

between the blocks and the storage devices on all the DataNodes

that contain a replica for the block.

For each file in the namespace, the NameNode also records a

replication factor specifying the target number of replicas for each

block in the file, and a storage policy that defines the type of storage
in which each replica should be stored. If the number of available

replicas for a block are below its expected replication factor, the

NameNode schedules the necessary replications.

Modifications to HDFS. Implementing Netco in HDFS required

two major extensions. The following description elides engineering

details (can be found on JIRA [2]) to focus on conceptual implemen-

tation changes.

PROVIDED storage.We add a new storage type called PROVIDED

to HDFS to identify data external to HDFS and stored in remote

stores. Both the NameNodes and DataNodes are modified to under-

stand the PROVIDED storage type. To address data in the remote

store, the remote namespace (or portion thereof) is first mounted
as a subtree in the NameNode. This is just a metadata operation,

and is done by mirroring remote files in the HDFS namespace and

configuring a replica of PROVIDED storage type for each block in

the namespace.

Subsequently, when any DataNode configured with PROVIDED

storage reports to the NameNode, it considers all PROVIDED repli-

cas reachable from that DataNode. Any request to read data from

the remote store has to pass through a DataNode with PROVIDED

storage type. As data is streamed back to the client, the DataNode

can cache a copy of it in the local storage.

Metered block transfers.We add a throttling parameter to block

transfer requests, allowing us to control the rate at which block data

is sent. The throttling is implemented using token buckets. With

this, client read requests and block replications can be limited to a

target rate. When blocks of a file are replicated together, concurrent

transfers do not exceed the target rate.

Netco realization. The Netco planner and coordinator are imple-

mented as standalone components (run on the same machine as the

4
We are contributing back our changes to Apache HDFS as part of HDFS-9806 [2] (merged), HDFS-

12090 [17] (in-progress), and HDFS-13069 [14] (in-progress).

Workload Jobs Data processed Files

B1 9k 720TB 30k

B2 4k 66TB 12k

B3 20k 170TB 66k

B4 1k 200TB 3k

Table 2: Characteristics of workloads from different business units
using Microsoft Cosmos (rounded to nearest thousand).

HDFS NameNode in our experiments). PROVIDED storage devices

configured in DataNodes serve as a Netco slave.
Using the above modifications to HDFS, the Netco coordinator

can prefetch remote files (into local storage) by adjusting their stor-

age policy and scheduling block replications at the rate determined

by the execution plan. The Netco slaves ensure that when jobs read

data from the remote store, it is transferred at the rate specified

by the execution plan. For cache evictions, the coordinator evicts

replicas from local storage by lowering the replication of a file. For

example, lowering replication to 1 causes HDFS to delete all replicas

but the PROVIDED replica.

6 EVALUATION
We evaluate Netco on a 50 node cluster on Microsoft Azure [19],

a 280 node bare metal cluster, and using large-scale simulations. All

experiments are based on workload traces from a production ana-

lytics cluster at Microsoft, running on thousands of machines. Com-

pared to various baselines representing state-of-the-art in cloud

data analytics, Netco:

• Reduces peak utilization and total data transferred from the

remote store to the compute cluster by up to 5×. This, in

turn, reduces I/O cost per SLO attained by 1.5×–7×.

• Increases the number of jobs that meet their deadlines up to

80%, under high-load.

• Efficiently allocates I/O resources for the SLO jobs which

allows ad hoc jobs to run 20%–68% faster.

6.1 Methodology
Experimental setup.We deploy our implementation of Netco in
two different environments:

50-node VM cluster on Microsoft Azure: We run HDFS with our mod-

ifications (§5) on a cluster of 50 Standard_D8s_v3 VMs [21], using

YARN as the resource management framework. HDFS DataNodes

are configured with the SSD-based local disk (acts as cache), and

the Azure Blob Storage as PROVIDED storage. Input files are stored

on Azure Blob Storage.

280-node bare metal cluster: We evaluate Netco at larger scale using
this cluster. The cluster consists of 7 racks with 40 machines each.

Each machine has an Intel Xeon E5 processor, 10Gbps NIC, 128GB

RAM and 10 HDDs. Six of the racks are used for compute and one is

used for storage. Bandwidth between the two is limited to 60Gbps

to emulate a cloud environment. The storage tier runs stock HDFS

and stores the input data for the workloads. The compute tier runs

HDFS with our modifications.

Workloads. Our workloads are based on a day-long trace from

Microsoft Cosmos [33] (Table 2). We consider workloads from 4

different business units (B1, B2, B3 and B4), and scale them down

to fit our cluster setup. Job SLOs are derived using techniques from

Netco: Cache and I/O Management for Analytics over Disaggregated Stores SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 60

 70

 80

 90

 100

B1 B2 B3 B4%
 d

e
a
d

lin
e
s

m
e
t

Workload

RemoteRead
PACMan-LIFE

Alluxio

FixedTimePrefetch
Netco

(a) Percentage of jobs that meet their
deadlines under medium load.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

B1 B2 B3 B4

Pe
a
k

I/
O

 b
a
n
d

w
id

th

 r
e
la

ti
v
e
 t

o
 R

e
m

o
te

R
e
a
d

Workload

PACMan-LIFE
Alluxio

FixedTimePrefetch
Netco

(b) Peak I/O bandwidth used relative
to RemoteRead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

B1 B2 B3 B4

D
a
ta

 t
ra

n
sf

e
rr

e
d

 r

e
la

ti
v
e
 t

o
 R

e
m

o
te

R
e
a
d

Workload

PACMan-LIFE
Alluxio

FixedTimePrefetch
Netco

(c) Reduction in data transferred from remote
store, relative to RemoteRead.

Figure 5: Benefits of running SLO workloads with Netco on Azure.

Morpheus [54]. Based on these workloads, we generate a job trace

lasting one hour and run them using Gridmix [7].

Metrics. We use the following metrics to measure the benefits

of Netco under medium to high load scenarios: (i) peak network

bandwidth (averaged over 2 seconds), (ii) total data transferred from

remote store and (iii) number of SLO jobs that are admitted, and

meet their deadlines.We note that the total data transferred from the

remote storage is directly proportional to the cost of I/O (in dollars)

to cloud users [6, 23]. Thus, any reduction in this metric reduces the

I/O cost for a workload. We also evaluate the scalability of Netco’s
planning algorithm (§4), and its solution quality by comparing

against a Mixed Integer Linear Program (MILP).

Baselines. We compare Netco against the following baselines,

which represent how typical data analytics workloads run in public

clouds today [12, 20, 22].

(1) RemoteRead, in which all workloads read and write data directly

from the remote storage.

(2) PACMan-LIFE, where data is paged in on demand and cached in

local VM storage. We use the PACMan-LIFE algorithm to manage

the cache as it outperforms traditional caching algorithms for data

analytics [28].

(3) Alluxio [3], an open-source filesystem that allows applications

to cache data, from underlying filesystems, in locally available stor-

age. In our experiments, we configured Alluxio to use Azure Blob

Storage as the underlying filesystem, the local SSD-based storage

in the VMs as cache and an LRU eviction policy.

(4) FixedTimePrefetch, builds on PACMan-LIFE and starts fetch-

ing job input files T time units before the job starts (if absent from

local cache). Files are fetched at a constant rate and are cached by

job start. Comparison with FixedTimePrefetch shows how care-

ful planning in Netco compares with a simple prefetching scheme.

We set T to be 15 minutes in our experiments.

Netco generates an execution plan using the planning algorithms

described in §4 and enforces it using our implementation (§5). We

use Gurobi [15] to solve the linear programs. PACMan-LIFE and

FixedTimePrefetch use the same implementation as Netco but

their respective caching, and prefetch policies.

6.2 Benefits with Netco

Deployment on Microsoft Azure. We evaluate Netco on Azure

under two different load regimes.

 1

 2

 3

 4

 5

 6

 7

B1 B2 B3 B4

I/
O

 c
o
st

 p
e
r

jo
b

S
LO

 m
e
t

(r
e
l.
 t

o
 N

e
tc

o
)

Workload

PACMan-LIFE
Alluxio

FixedTimePrefetch
Remote Read

Figure 6: Average I/O cost to meet a job deadline for various base-
lines, relative to Netco.

Medium load regime.When the job arrival rate is low, we expect all

jobs to meet their deadline SLOs. In particular, in our experiments,

we ensure that the available I/O bandwidth to Azure Blob Storage

is sufficient to meet all job deadlines even when each job reads

directly from it. However, in practice, due to variance in the I/O

bandwidth to the blob store (§2), jobs can miss their deadlines. In

particular, we find that RemoteRead misses the deadlines of up to

25% jobs (Figure 5a). Using reactive caching techniques such as

PACMan-LIFE and Alluxio still results in 5–10% jobs missing their

SLOs. With its careful planning, Netco eliminates almost all deadline

misses (except in the case of workload B2 where fewer than 1% of

jobs miss their deadlines).

Figures 5b and 5c show (a) peak bandwidth used, and (b) total

data transferred from azure blob storage relative to RemoteRead.
Our observations are three-fold. First, while caching (PACMan-LIFE
and Alluxio) appreciably reduces the total amount of data trans-

ferred from remote storage compared by RemoteRead (by 23− 45%),

it has limited impact on the peak I/O bandwidth used — just 2 − 6%

reduction on average over all workloads with a maximum of 25%

reduction for workload B3. This is a result of files being read di-

rectly from the remote store when first accessed, at the rate it is

processed by the dependent job(s). This phenomenon is amplified if

multiple jobs read the same file concurrently, which was observed

in our workloads. Similar behavior has been reported earlier in

Scarlett [26], and is expected as most jobs are submitted at the start

of an hour [54].

Second, we find that these limitations with caching algorithms

can be overcome by prefetching files — FixedTimePrefetch re-

duces the peak I/O bandwidth and total data transferred by 13–

43% and 41–51% compared to RemoteRead. Finally, using Netco

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA V. Jalaparti et. al.

 0
 20
 40
 60
 80

 100

50 100 150Im
p
ro

ve
m

e
n
t

in

Jo
b
s

A
d
m

it
te

d
(%

)

Network Bandwidth (Gbps)

RemoteRead
PACMan-LIFE

(a) Offline scenario.

 0
 20
 40
 60
 80

 100

50 100 150Im
p
ro

ve
m

e
n
t

in

Jo
b
s

A
d
m

it
te

d
(%

)

Network Bandwidth (Gbps)

RemoteRead
PACMan-LIFE

(b) Online scenario.

Figure 7: Increase in jobs that meet their SLOs with Netco.

results in even more improvements – 44–77% reduction in peak I/O

bandwidth and 63–81% reduction in data transferred compared to

RemoteRead (i.e., up to 5× reduction). Such significant reductions

are a result of Netco’s use of job and file-access characteristics to

carefully plan data prefetch and cache occupancy. Netco prioritizes
prefetch of files accessed by larger number jobs, and fetches them

at a sufficient rate.

As cloud providers charge users for data transferred from the

storage to the compute tiers [6, 23], Netco also helps reduce

the I/O cost per job SLO met — as shown in Figure 6, we see

a 4–7× reduction in cost compared to RemoteRead, 2–4× rela-

tive to PACMan-LIFE and Alluxio, and 1.5–2.5× compared to the

FixedTimePrefetch.

 0

 0.2

 0.4

 0.6

 0.8

 1

B1 B2 B3 B4

D
a
ta

 t
ra

n
sf

e
rr

e
d

 r
e
la

ti
v
e
 t

o
 R

e
m

o
te

R
e
a
d

Workload

PACMan-LIFE
Netco

Figure 8: Data transferred from storage to compute (relative to
RemoteRead) in 280 node deployment.

High load regime. Under high load when it may not be possible to

meet deadlines of all SLO jobs, Netco aims to maximize the number

of jobs that meet their deadlines. We compare Netco’s planning
algorithm (§4) with planning algorithms that use (a) RemoteRead,
and (b) demand paging with PACMan-LIFE as the eviction policy, to

run jobs. Figure 7 shows the increase in number of jobs admitted by

Netco compared to these strategies in (a) an offline scenario, where

we assume all jobs are known ahead of time, and (b) an online

scenario, where jobs are planned for as they are submitted. Jobs are

derived from workload B1, job inter-arrival duration is decreased

by a random factor between 2–5×, and planning algorithms are run

with different bandwidth limits between the storage and compute.

While Netco completes fewer jobs in the online scenario com-

pared to offline, the difference is small. Overall, Netco accepts up
to 80% more jobs than RemoteRead and 10–30% more jobs than

demand paging. This increase is a result of (a) the reduction in the

peak network bandwidth with prefetching, allowing more jobs to be

admitted, and (b) efficient use of the cache and network resources

by planning ahead of job submissions.

Deployment on 280-node bare-metal cluster. The results here
are qualitatively similar to those observed in the above experiments.

As shown in Figure 8, Netco results in up to 70% less data transferred

relative to RemoteRead. While caching helps PACMan-LIFE (up to

50% less data transferred compared to RemoteRead), it reads 1.2–

1.75× more data than Netco.

6.3 Performance of planning algorithms
Scalability of LP formulation. The scalability of Netco’s linear
program (Section 4) depends on the number of jobs to plan for,

number of files accessed by each job, and the duration of the plan.

Figure 9 shows that the LP only takes a few minutes to execute as

we increase the number of jobs planned for. For this experiment,

the workload lasted for one hour, and the average number of files

accessed per job varied between 4.5 to 6.7. As this planning is done

ahead of job arrivals and is not in the critical path of the jobs, this

overhead is acceptable.

Comparison to a MILP-based lower bound. For better scalabil-
ity, Netco solves a fractional linear program and approximates the

MILP to maximize the number of jobs admitted (§4.2). This can lead

to fewer admitted jobs than using the MILP. In practice, we find

that this reduction is minimal — Netco is within 3% of the MILP.

Sensitivity analysis. Netco relies on predictable job characteristics
to determine an efficient execution plan. However, even state-of-the-

art techniques to predict workload characteristics have prediction

errors [54]. To understand how robustNetco is to this, we introduced
errors in the following job characteristics for workload B1: (a) job

submission times – A certain percentage of jobs are chosen at

random, and their submission times are changed by a randomly

chosen value between between −5 and 5 minutes (this is more than

twice the average job inter-arrival duration), and (b) file sizes –

the sizes of a certain percentage of files, chosen at random, are

increased or decreased by up to 10%; this represents nearly 3× the

typically prediction error [53]. As the percentage of error increases,

the benefits of Netco reduce slightly compared to PACMan-LIFE but

it performs significantly better than various baselines (Figure 10).

6.4 Benefits for ad hoc jobs
Data analytics clusters run ad hoc jobs along with SLO jobs for

data exploration or research purposes. No guarantees are provided

to the ad hoc jobs, but users expect them to finish quickly. While

Netco does not schedule the ad hoc jobs, its efficient use of resources

for SLO jobs allows ad hoc jobs to run faster.

To understand this effect, we perform trace-driven simulations

with ad hoc jobs running alongside SLO jobs. The SLO jobs are

derived fromworkloads B1 and B2. Ad hoc jobs are derived from two

traces: (a) internal production cluster traces and (b) published traces

from Facebook’s data analytics clusters [36]. We will label these

workloads A1 and A2, respectively. For the traces from Facebook,

we randomly sample 40% of the jobs to be ad hoc jobs (this has been

shown to be typical percentage of ad hoc jobs in clusters [53, 54]). In

these simulations, resources are reserved for the SLO jobs to avoid

interference from ad hoc jobs, and ad hoc jobs share the remaining

resources based on max-min fairness.

Figure 11 shows the improvement in the runtime percentiles

of ad hoc jobs, when the SLO jobs are scheduled with Netco and

Netco: Cache and I/O Management for Analytics over Disaggregated Stores SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 0

 100

 200

 300

 400

 1000 2000 3000 4000

T
im

e
 (

se
co

n
d

s)

Number of jobs

Figure 9: Runtime of Netco’s planning algo-
rithm (averaged over 10 runs).

 0

 0.25

 0.5

 0.75

 1

 1.25

10 20 30 40 50

D
a
ta

 t
ra

n
sf

e
rr

e
d

 r

e
la

ti
v
e
 t

o
 P

A
C

M
a
n
-L

IF
E

% start times misestimated

Alluxio
FixedTimePrefetch

Netco

(a) Misestimated job arrival times.

 0

 0.25

 0.5

 0.75

 1

 1.25

10 20 30 40 50

D
a
ta

 t
ra

n
sf

e
rr

e
d

 r

e
la

ti
v
e
 t

o
 P

A
C

M
a
n
-L

IF
E

% file sizes misestimated

Alluxio
FixedTimePrefetch

Netco

(b) Misestimated file sizes.

Figure 10: Data transferred from remote store (relative to PACMan-LIFE) when job characteris-
tics are misestimated in for workload B1.

 0

 20

 40

 60

 80

 100

B1/A1 B1/A2 B2/A1 B2/A2Im
p
ro

v
e
m

e
n
t

C
o
m

p
a
re

d
To

 P
A

C
M

a
n
-L

IF
E
(%

)

Workload

50th
75th
95th

Figure 11: Reduction in adhoc job runtimes forworkloadswith both
SLO and ad hoc jobs.

PACMan-LIFE, for different workload combinations (workload Bi/Aj

denotes SLO jobs drawn from Bi and ad hoc jobs from Aj). As Netco
aims to reduce the network utilization of SLO jobs, it frees up

the network resources for ad hoc jobs and significantly improves

their runtimes — we observe up to 68% improvement in the 50
th

percentile.

7 RELATEDWORK
Caching and prefetching. Practical [38, 61, 63] and theoreti-

cal [25, 30, 34, 51] treatments of general-purpose caching and

prefetching techniques are ubiquitous [31, 43, 65, 66, 69, 71]. Big

data workloads apply caching techniques to improve locality for

applications’ working set [26, 28] and to share expensive storage

media in multi-tenant workloads [67, 68]. Correlations between

datasets are also mined for prefetch heuristics in block stores [74]

and cloud storage gateways [75]. In contrast, Netco targets recur-
ring workloads, optimizing for job-level metrics (e.g., deadlines).

Netco not only schedules the necessary transfers to cache data, it

also performs admission control under high load.

Scheduling network flows. Scheduling network transfers to

guarantee deadlines, or increase network utilization has been

extensively explored for datacenters [42, 45] and wide-area net-

works [52, 56, 76]. Recent work also aims to improve end-to-end

application runtimes using smart replica placement [53] and the

coflow abstraction [40–42, 77]. However, these works do not con-

sider the cache optimization problem tackled by Netco.

Storage systems. Similar to Netco, Alluxio [3, 58] transparently

caches data from remote file systems in local storage. CAST [37]

and OctopusFS [55] optimize data placement across media tiers to

achieve performance and fault tolerance objectives. Systems such

as IOFlow [70] focus on the mechanism enforcing fine-grained

bandwidth guarantees. These systems are complementary to Netco,
which generates an explicit local storage and network I/O schedule

for satisfying workload SLOs.

Resource management. Explicit I/O planning in Netco is orthog-
onal to straggler mitigation strategies [27, 29] in data analytics

frameworks. Our work assumes that compute resources may be

provisioned either reactively [47] or proactively [44, 54] to meet job

SLOs. In principle, these techniques may be combined with Netco
to plan for storage, compute, and network resources for recurring

workloads. We leave this direction for future work.

Provisioning cloud resources. Sizing cloud resources to meet

application, resource, and budget objectives has been widely ex-

plored [72, 73, 78]. Netco complements these techniques by perform-

ing admission control and schedules I/O for analytics workloads in

a given cluster.

8 CONCLUSION
We have designed and implemented Netco which maintains one

or more caching tiers to provide predictable data access for analytics

jobs over disaggregated stores. Netco has several ideas that can be

used individually or together. When workload is predictable, Netco
prefills the cache.When job characteristics such as deadlines and I/O

rates are available,Netco can tunewhat it caches and how it allocates

the I/O rate so as to let more jobs meet their deadlines. Doing so

preferentially caches files used by jobs with tighter deadlines and

files processed by jobs that read with high I/O rate. The overall

problem, jointly allocating network and cache resources in order to

meet job SLOs and/or minimizing the network bandwidth used is of

interest primarily in our simplifications; we make the optimization

tractable by ignoring carefully chosen aspects of the problem. Our

implementation of Netco is open sourced with Apache Hadoop. Our

evaluations show promising results (up to 80% more jobs meet their

SLOs while using up to 5× less I/O bandwidth).

9 APPENDIX
Proof sketch forNP-hardness ofmaximizing number of jobs
satisfied. The NP-hardness proof follows by reducing the densest-
k-subgraph problem [32, 46] to a special case of our problem. The

densest-k-subgraph problem is NP-hard by a reduction from max

clique and its approximability remains an open question [32, 59].

Reduction: Suppose that the network capacity is very small and

all jobs have the same window [a,d], where a is far enough into

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA V. Jalaparti et. al.

the future that there is only one time opportunity to transfer files

to the cache before the jobs start running. Assume further that all

files are of equal size (one unit) and the cache size is k . The goal is
to bring in k files so as to satisfy as many jobs as possible. Given

an undirected graph, the densest-k-subgraph problem asks for a

subset of k vertices that contains the maximum number of edges.

For an instance of the densest-k-subgraph problem we construct

an instance of the above problem as follows: Given graphG , define
for each vertex ℓ a file fℓ and for each edge e a job je . If edge e
is adjacent to vertices ℓ and ℓ′, then job je requires file fℓ and f ′

ℓ
.

Finding a densest-k-subgraph inG is now equivalent to maximizing

the number of jobs satisfied with cache size k .

REFERENCES
[1] Amazon Elastic Compute Cloud: Enhanced Networking on Linux. https://docs.aws.amazon.

com/AWSEC2/latest/UserGuide/enhanced-networking.html.

[2] AllowHDFS block replicas to be provided by an external storage system. https://issues.apache.

org/jira/browse/HDFS-9806.

[3] Alluxio - Open Source Memory Speed Virtual Distributed Storage. http://www.alluxio.org/.

[4] Amazon EC2. https://aws.amazon.com/ec2/.

[5] Amazon Elastic Block Store. https://aws.amazon.com/ebs/.

[6] Amazon S3. https://aws.amazon.com/s3/.

[7] Apache Gridmix. https://hadoop.apache.org/docs/r1.2.1/gridmix.html.

[8] Apache Hadoop. http://hadoop.apache.org/.

[9] Azure Data Lake Analytics. https://azure.microsoft.com/en-us/services/data-lake-analytics/.

[10] Azure Storage Scalability and Performance Targets. https://docs.microsoft.com/en-us/azure/

storage/common/storage-scalability-targets.

[11] Best Practices for Amazon EMR. https://d0.awsstatic.com/whitepapers/

aws-amazon-emr-best-practices.pdf.

[12] Cloudera Enterprise Reference Architecture for Azure Deployments. http://www.cloudera.

com/documentation/other/reference-architecture/PDF/cloudera_ref_arch_azure.pdf.

[13] Databricks IO Cache. https://docs.databricks.com/user-guide/databricks-io-cache.html.

[14] Enable HDFS to cache data read from external storage systems. https://issues.apache.org/jira/

browse/HDFS-13069.

[15] Gurobi Optimization. http://www.gurobi.com/.

[16] Hadoop Distributed File System. https://wiki.apache.org/hadoop/HDFS.

[17] Handling writes from HDFS to Provided storages. https://issues.apache.org/jira/browse/

HDFS-12090.

[18] High-performance Premium Storage and managed disks for VMs. https://docs.microsoft.com/

en-us/azure/virtual-machines/windows/premium-storage.

[19] Microsoft Azure. https://azure.microsoft.com/en-us/.

[20] Moving Data into HDFS from Amazon S3. http://documentation.altiscale.com/

moving-data-from-s3-to-hdfs.

[21] Sizes for Windows virtual machines in Azure. https://docs.microsoft.com/en-us/azure/

virtual-machines/windows/sizes.

[22] Use HDFS-compatible Azure Blob storage with Hadoop in HDInsight. https://docs.microsoft.

com/en-us/azure/hdinsight/hdinsight-hadoop-use-blob-storage.

[23] Windows Azure Storage BLOB. https://azure.microsoft.com/en-us/services/storage/blobs/.

[24] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou. Re-optimizing data-parallel

computing. In NSDI, 2012.
[25] S. Albers, S. Arora, and S. Khanna. Page replacement for general caching problems. In Proceed-

ings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’99, Philadel-

phia, PA, USA, 1999. Society for Industrial and Applied Mathematics.

[26] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan, and E. Harris.

Scarlett: Coping with skewed content popularity in mapreduce clusters. In Proceedings of the
Sixth Conference on Computer Systems, EuroSys ’11, New York, NY, USA, 2011. ACM.

[27] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective Straggler Mitigation:

Attack of the Clones. In NSDI, 2013.
[28] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S. Shenker, and I. Stoica.

Pacman: Coordinated memory caching for parallel jobs. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, NSDI’12, Berkeley, CA, USA,
2012. USENIX Association.

[29] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining

in the Outliers in Map-reduce Clusters Using Mantri. In OSDI, 2010.
[30] N. Bansal, N. Buchbinder, and J. S. Naor. A primal-dual randomized algorithm for weighted

paging. Journal of the ACM (JACM), 59(4):19, 2012.
[31] A. Bestavros. Using speculation to reduce server load and service time on the www. Technical

report, Boston, MA, USA, 1995.

[32] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high log-

densities: an O(n1/4) approximation for densest k-subgraph. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010,
pages 201–210, 2010.

[33] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L. Zhou. Apollo: Scalable

and Coordinated Scheduling for Cloud-scale Computing. In OSDI, 2014.
[34] M. Brehob, S. Wagner, E. Torng, and R. Enbody. Optimal replacement is np-hardfor nonstan-

dard caches. IEEE Trans. Comput., 53(1):73–76, Jan. 2004.
[35] G. Călinescu, A. Chakrabarti, H. J. Karloff, and Y. Rabani. An improved approximation algo-

rithm for resource allocation. ACM Trans. Algorithms, 7(4):48:1–48:7, 2011.
[36] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing in big data systems: A

cross-industry study of mapreduce workloads. Proc. VLDB Endow., 5(12):1802–1813, Aug. 2012.

[37] Y. Cheng, M. S. Iqbal, A. Gupta, and A. R. Butt. Cast: Tiering storage for data analytics in the

cloud. In Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’15, New York, NY, USA, 2015. ACM.

[38] H.-T. Chou and D. J. DeWitt. An evaluation of buffer management strategies for relational

database systems. In Proceedings of the 11th International Conference on Very Large Data Bases
- Volume 11, VLDB ’85. VLDB Endowment, 1985.

[39] M. Chowdhury et al. Leveraging Endpoint Flexibility in Data-Intensive Clusters. In SIGCOMM,

2013.

[40] M. Chowdhury and I. Stoica. Coflow: A networking abstraction for cluster applications. In

Proceedings of the 11th ACM Workshop on Hot Topics in Networks, HotNets-XI, New York, NY,

USA, 2012. ACM.

[41] M. Chowdhury and I. Stoica. Efficient coflow scheduling without prior knowledge. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM

’15, New York, NY, USA, 2015. ACM.

[42] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with varys. In ACM
SIGCOMM 2014.

[43] D. E. Culler, A. Gupta, and J. P. Singh. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 1997.

[44] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and S. Rao. Reservation-

based scheduling: If you’re late don’t blame us! In Proceedings of the ACM Symposium on Cloud
Computing, SOCC ’14, New York, NY, USA, 2014. ACM.

[45] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. Decentralized task-aware scheduling

for data center networks. In ACM SIGCOMM 2014.
[46] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29(3):410–

421, 2001.

[47] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey: Guaranteed job latency

in data parallel clusters. In Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, New York, NY, USA, 2012. ACM.

[48] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. Multi-resource Packing

for Cluster Schedulers. In SIGCOMM, 2014.

[49] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and I. Sto-

ica. Mesos: A Platform for Fine-grained Resource Sharing in the Data Center. In NSDI, 2011.
[50] A. Iosup, N. Yigitbasi, and D. Epema. On the Performance Variability of Production Cloud

Services. In CCGRID, 2011.
[51] S. Irani. Page replacement with multi-size pages and applications to web caching. In Proceed-

ings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97, New

York, NY, USA, 1997. ACM.

[52] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou,

M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Experience with a globally-deployed

software defined wan. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,

SIGCOMM ’13, New York, NY, USA, 2013. ACM.

[53] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, andM. Caesar. Network-aware sched-

uling for data-parallel jobs: Plan when you can. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIGCOMM ’15, New York, NY, USA, 2015. ACM.

[54] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov, J. Yaniv, R. Mavlyu-

tov, I. n. Goiri, S. Krishnan, J. Kulkarni, and S. Rao. Morpheus: Towards automated slos for

enterprise clusters. In Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation, OSDI’16, Berkeley, CA, USA, 2016. USENIX Association.

[55] E. Kakoulli and H. Herodotou. OctopusFS: A Distributed File System with Tiered Storage

Management. In SIGMOD Conference, 2017.
[56] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula. Calendaring for wide area networks.

In Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, New York, NY, USA,

2014. ACM.

[57] P. Leitner and J. Cito. Patterns in the chaos–a study of performance variation and predictability

in public iaas clouds. ACM Transactions on Internet Technology (TOIT), 16(3):15, 2016.
[58] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon: Reliable, memory speed

storage for cluster computing frameworks. In Proceedings of the ACM Symposium on Cloud
Computing, pages 1–15. ACM, 2014.

[59] P. Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-subgraph.

In Proceedings of the 49th ACM Symposium on Theory of Computing, STOC 2017, Montreal, Que-
bec, Canada.

[60] M. Mao and M. Humphrey. Auto-scaling to Minimize Cost and Meet Application Deadlines in

Cloud Workflows. In SC, 2011.
[61] N. Megiddo and D. S. Modha. Arc: A self-tuning, low overhead replacement cache. In Proceed-

ings of the 2Nd USENIX Conference on File and Storage Technologies, FAST ’03, Berkeley, CA,

USA, 2003. USENIX Association.

[62] R. Motwani and P. Raghavan. Randomized algorithms. Chapman & Hall/CRC, 2010.

[63] V. Narasayya, I. Menache, M. Singh, F. Li, M. Syamala, and S. Chaudhuri. Sharing buffer pool

memory in multi-tenant relational database-as-a-service. Proceedings of the VLDB Endowment,
8(7):726–737, 2015.

[64] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K Page Replacement Algorithm for Data-

base Disk Buffering. In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’93, New York, NY, USA, 1993. ACM.

[65] E. J. O’neil, P. E. O’neil, and G. Weikum. The LRU-K page replacement algorithm for database

disk buffering. ACM SIGMOD Record, 22(2):297–306, 1993.
[66] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to improve world wide web

latency. SIGCOMM Comput. Commun. Rev., 26(3):22–36, July 1996.

[67] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica. Fairride: Near-optimal, fair cache sharing.

In Proceedings of the 13th Usenix Conference on Networked Systems Design and Implementation,
NSDI’16, Berkeley, CA, USA, 2016. USENIX Association.

[68] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchandran. EC-cache: Load-

balanced, Low-latency Cluster Caching with Online Erasure Coding. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, 2016.

[69] A. S. Tanenbaum and H. Bos. Modern Operating Systems. Prentice Hall Press, Upper Saddle
River, NJ, USA, 4th edition, 2014.

[70] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron, T. Talpey, R. Black, and T. Zhu.

Ioflow: A software-defined storage architecture. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, New York, NY, USA, 2013. ACM.

https://docs.aws.Alpha XR/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.Alpha XR/AWSEC2/latest/UserGuide/enhanced-networking.html
https://issues.apache.org/jira/browse/HDFS-9806
https://issues.apache.org/jira/browse/HDFS-9806
http://www.alluxio.org/
https://aws.Alpha XR/ec2/
https://aws.Alpha XR/ebs/
https://aws.Alpha XR/s3/
https://hadoop.apache.org/docs/r1.2.1/gridmix.html
http://hadoop.apache.org/
https://azure.microsoft.com/en-us/services/data-lake-analytics/
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://docs.microsoft.com/en-us/azure/storage/common/storage-scalability-targets
https://d0.awsstatic.com/whitepapers/aws-amazon-emr-best-practices.pdf
https://d0.awsstatic.com/whitepapers/aws-amazon-emr-best-practices.pdf
http://www.cloudera.com/documentation/other/reference-architecture/PDF/cloudera_ref_arch_azure.pdf
http://www.cloudera.com/documentation/other/reference-architecture/PDF/cloudera_ref_arch_azure.pdf
https://docs.databricks.com/user-guide/databricks-io-cache.html
https://issues.apache.org/jira/browse/HDFS-13069
https://issues.apache.org/jira/browse/HDFS-13069
http://www.gurobi.com/
https://wiki.apache.org/hadoop/HDFS
https://issues.apache.org/jira/browse/HDFS-12090
https://issues.apache.org/jira/browse/HDFS-12090
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/premium-storage
https://azure.microsoft.com/en-us/
http://documentation.altiscale.com/moving-data-from-s3-to-hdfs
http://documentation.altiscale.com/moving-data-from-s3-to-hdfs
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-blob-storage
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-blob-storage
https://azure.microsoft.com/en-us/services/storage/blobs/

Netco: Cache and I/O Management for Analytics over Disaggregated Stores SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

[71] J. Wang. A survey of web caching schemes for the internet. SIGCOMMComput. Commun. Rev.,
29(5), Oct. 1999.

[72] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Orchestrating the Deployment of Computa-

tions in the Cloud with Conductor. In NSDI, 2012.
[73] Z. Wu, C. Yu, and H. V. Madhyastha. CosTLO: Cost-effective Redundancy for Lower Latency

Variance on Cloud Storage Services. In NSDI, 2015.
[74] J. Yang, R. Karimi, T. Sæmundsson, A. Wildani, and Y. Vigfusson. MITHRIL: Mining Sporadic

Associations for Cache Prefetching. CoRR, abs/1705.07400, 2017.
[75] S. Yang, K. Srinivasan, K. Udayashankar, S. Krishnan, J. Feng, Y. Zhang, A. C. Arpaci-Dusseau,

and R. H. Arpaci-Dusseau. Tombolo: Performance enhancements for cloud storage gateways.

In MSST, 2016.
[76] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and M. Zhang. Guaranteeing

deadlines for inter-datacenter transfers. In Proceedings of the Tenth European Conference on
Computer Systems, EuroSys ’15, New York, NY, USA, 2015. ACM.

[77] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng. Coda: Toward automatically

identifying and scheduling coflows in the dark. In Proceedings of the 2016 Conference on ACM
SIGCOMM 2016 Conference, SIGCOMM ’16, New York, NY, USA, 2016. ACM.

[78] T. Zou, R. Le Bras, M. V. Salles, A. Demers, and J. Gehrke. ClouDiA: a deployment advisor for

public clouds. In PVLDB’13, 2013.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Storage in public clouds
	2.2 Analysis of production workloads
	2.3 An illustrative example
	2.4 Takeaways

	3 Netco overview
	3.1 System architecture
	3.2 Design choices
	3.3 Deployment considerations

	4 Algorithm design
	4.1 Preliminaries
	4.2 Linear programming formulation
	4.3 Determining an execution plan

	5 Netco implementation
	6 Evaluation
	6.1 Methodology
	6.2 Benefits with Netco
	6.3 Performance of planning algorithms
	6.4 Benefits for ad hoc jobs

	7 Related work
	8 Conclusion
	9 Appendix
	References

