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ABSTRACT
Commercial DBMSs, such as Microsoft SQL Server, cater to diverse
workloads including transaction processing, decision support, and
operational analytics. They also support variety in physical design
structures such as B+ tree and columnstore. The benefits of B+
tree for OLTP workloads and columnstore for decision support
workloads are well-understood. However, the importance of hy-
brid physical designs, consisting of both columnstore and B+ tree
indexes on the same database, is not well-studied — a focus of
this paper. We first quantify the trade-offs using carefully-crafted
micro-benchmarks. This micro-benchmarking indicates that hybrid
physical designs can result in orders of magnitude better perfor-
mance depending on the workload. For complex real-world appli-
cations, choosing an appropriate combination of columnstore and
B+ tree indexes for a database workload is challenging. We extend
the Database Engine Tuning Advisor for Microsoft SQL Server to
recommend a suitable combination of B+ tree and columnstore
indexes for a given workload. Through extensive experiments us-
ing industry-standard benchmarks and several real-world customer
workloads, we quantify how a physical design tool capable of recom-
mending hybrid physical designs can result in orders of magnitude
better execution costs compared to approaches that rely either on
columnstore-only or B+ tree-only designs.
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1 INTRODUCTION
B+ tree indexes [6, 13] have been available in relational database sys-
tems (RDBMSs) for several decades and are widely used in practice.
More recently, major commercial RDBMSs have also incorporated
columnstore indexes [21, 22, 24, 33, 39]. Microsoft SQL Server sup-
ports both B+ tree and columnstore indexes on the same table,
either as a primary index that contains data of all columns in the
table, or a redundant secondary index with a subset of columns.

Commercial RDBMSs, such as SQL Server, support applications
with workloads that vary from update-heavy OLTP, to read-heavy
analytic and decision support workloads, to mixed workloads con-
sisting of both OLTP and analytic queries on the same database
for operational analytics scenarios. It is generally understood that
columnstores are crucial to achieving high performance for analytic
queries and that B+ tree indexes are key to supporting transactional
workload efficiently. However, it is not well understood whether
hybrid physical designs—both columnstore and B+ tree indexes on
the same database and potentially the same table—are important
for any of the above workloads.

To answer this question, we first empirically quantify the read
and update characteristics of columnstore and B+ tree indexes us-
ing carefully-crafted micro-benchmarks on a commercial RDBMS—
Microsoft SQL Server. We analyze performance across a range of
important parameters such as data size, selectivity, query working
memory, number of rows updated, and concurrency (Section 3).

For read-only queries, we find that both columnstore and B+ tree
indexes can significantly outperform one another based on work-
load characteristics. B+ trees outshine columnstores when query
predicates are selective even when all data is memory resident; and
the trade-off shifts further in favor of B+ trees when data is not
memory resident. Likewise, B+ trees can be a better option for pro-
viding data in sorted order when server memory is constrained. On
the other hand, columnstores are often an order of magnitude faster
for large scans whether or not the data is memory resident. For
updates, B+ trees are significantly cheaper. Secondary columnstores
incur much lower update cost compared to primary columnstore
indexes, but are still much slower than B+ trees. This empirical
study indicates that for certain workloads, hybrid physical designs
can provide significant performance gains.
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Despite the promise of hybrid physical designs, choosing an ap-
propriate mix of B+ tree and columnstores for complex real-world
workloads can be daunting even for expert DBAs. Motivated by this
need, we extend Database Engine Tuning Advisor (DTA), a physical
design tuning tool for SQL Server, to analyze and recommend both
B+ tree and columnstore indexes when suitable for a given work-
load. We discuss the challenges in the design and implementation
of our extensions to DTA and SQL Server to consider this expanded
space of physical designs (Section 4). This new functionality in DTA
was released in January 2017 as part of Community Technology
Preview (CTP) release of Microsoft SQL Server 2017 [37].

Finally, we conduct extensive experiments using standard bench-
marks, such as TPC-DS [40] and CH [12], and several real-world
customer workloads (Section 5). We derive two major conclusions
from our experiments: (i) hybrid physical designs can result in
more than an order of magnitude lower execution costs for many
workloads when compared to alternatives using B+ tree-only or
columnstore-only; (ii) the extensions to DTA to recommend hybrid
physical designs helps exploit the best of both worlds: selecting
the appropriate combination of B+ tree-only, columnstore-only, or
hybrid configurations appropriate for a given workload. Kester et
al. [19] present a similar empirical study considering columnstore
and secondary B+ tree indexes in a main-memory-optimized proto-
type system supporting shared scans, with the focus on concurrency.
Our study considers a richer hybrid design space supported in a
commercial-strength DBMS, with the focus on variety of workloads
and an automated tool to recommend such hybrid designs.

To summarize, this paper makes the following contributions:

• We present an extensive experimental study using micro-
benchmarks to systematically quantify the trade-offs associ-
ated with hybrid physical designs in a commercial RDBMS.

• We extend a commercial physical design tuning tool to add
the ability to analyze and recommend hybrid physical de-
signs based on the workload’s characteristics.

• End-to-end experiments with several standard benchmarks
and real-world customer workloads reveal that hybrid phys-
ical designs can result in orders of magnitude performance
gains compared to B+ tree-only or columnstore-only designs.

2 PHYSICAL DESIGNS IN SQL SERVER
SQL Server supports a variety of physical design options, such
as indexes, materialized views, and partitioning. In this paper, we
focus only on the variety of indexes supported by SQL Server.
B+ tree and columnstore: RDBMSs have supported B+ trees and
heap files for several decades. Since the advent of columnstores,
which significantly outperform B+ trees for data analysis workloads,
many commercial RDBMS vendors have added support for column-
store indexes (CSI). While the high-level design of columnstores is
similar across different systems, there are many variations in what
combination of indexes can be created, how they are built, com-
pressed, maintained, and updated. In this section, we discuss the
specific implementation of columnstore in Microsoft SQL Server.

SQL Server supports columnstores as an additional mechanism
to store data [23, 28]. Similar to B+ trees, columnstores in SQL
Server are treated as indexes, which can either be primary (main
storage of all columns of the table) or secondary (redundant storage

with a subset of columns). SQL Server supports any combination
of primary and secondary indexes on the same table. That is, the
primary index can be a heap file, B+ tree, or a columnstore. A sec-
ondary index can be a B+ tree or a columnstore, with the restriction
of a single columnstore index per table. B+ tree indexes provide
ordering of data based on the key columns in the index and allow
efficient lookups, while columnstores in SQL Server do not provide
sort order and are optimized for efficient scanning. Columnstores
allow vectorized operations on a dense array of homogenous types
often on encoded values (called batch mode in SQL Server) [1, 7]
which is significantly more efficient compared to row-at-a-time (or
row mode) execution, typically used for B+ tree.
Compression: Columnstores support compression and query pro-
cessing on compressed data [1, 2]. When building a columnstore,
SQL Server selects a sort ordering of the columns that aims to
maximize the compression ratio of the overall columnstore index.
Columnstore index compression uses several encoding techniques,
the most notable being dictionary encoding and run-length en-
coding [24]. Dictionary encoding converts data values from non-
numeric domains (such as strings) to numeric domain. Run-length
encoding compresses sorted runs (e.g., 2, 2, 2, . . . , 2 can be con-
verted to 2, k repetitions). SQL Server’s columnstores are com-
prised of sets of rows, called row groups. A row group contains
between 100K − 1M rows, which are compressed independently.
Each column in a row group forms a column segment. Primary and
secondary columnstores use the same compression algorithms and
have similar structure for compressed segments.
Updates: Inserts are handled via delta stores which are imple-
mented as B+ trees [23]. Bulk loaded data is transformed directly
into the compressed row groups. Smaller point updates are handled
as a delete followed by an insert. Primary and secondary column-
stores differ in how deletes are handled, driven by the application
characteristics they optimize for. Secondary columnstores, opti-
mized for operational analytics, have a delete buffer which is a B+
tree storing the logical row being deleted. When deleting a row,
it is inserted into the delete buffer, allowing for fast logical dele-
tion. However, query processing pays an additional overhead of an
anti-semi join between the compressed row groups and the delete
buffer. To reduce the cost of this anti-semi join, a background pro-
cess periodically compresses the delete buffer into a delete bitmap,
which stores the physical identifiers of the deleted rows, and even-
tually compacts the delete bitmap into the compressed segments. A
primary columnstore on the other hand does not support a delete
buffer, only the delete bitmap, which optimizes scan performance
by avoiding the anti-semi join. Hence, deleting a row in a primary
columnstore needs to scan the compressed row group to obtain
the physical row locator, which is added to the delete bitmap. Pri-
mary columnstores are therefore more suitable for scans and bulks
loads common in data warehouses, while secondary columnstores
are amenable to small updates while still being efficient for scans
optimized for operational analytics.

3 MICRO-BENCHMARKING HYBRID
PHYSICAL DESIGNS

We use micro-benchmarks that allow us fine-grained control over
data and queries to quantify the performance trade-offs between B+
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Figure 1: Execution and CPU time for hot and cold runs for a query with varying selectivity.

trees and columnstores and identify cases where the hybrid physical
designs are crucial. We use the following broad categories of work-
loads in our performance study: (a) scans with single predicates
with varying selectivity to study the trade-off between range scan
of a B+ tree vs. columnstore scan; (b) sort and group by queries to
study the benefit of the sort order supported by B+ tree; (c) update
statements with varying numbers of updated rows to analyze the
cost of updating the different index types; and (d)mixed workloads
with different combinations of reads and updates.

3.1 Experimental setup
Hardware: All experiments were run on a server equipped with
dual socket Intel ® Xeon ® CPU E5 − 2660v2 (10 cores per socket,
2 threads per core) clocked at 2.20 GHz, 64 KB L1 cache per core,
256 KB L2 cache per core and 25MB L3 cache shared, 384 GB RAM,
18 TB HDD in RAID-0 configuration (with throughput of about 1
GB/sec for reads and 400MB/sec for writes) and running Microsoft
Windows Server 2012 R2 Datacenter (64 bit).
Software: We use a pre-release version of Microsoft SQL Server
2017 as the database engine.
Data set:We TPC-H [42] and other synthetically-generated data
with sizes in range 1 − 100 GB. Synthetic data set consists of tables
with different numbers of columns. Each column contains uniformly
distributed 32-bit integers in range from 0 to 231 − 1 (similar to
Kester et al. [19]).
Methodology: We execute the workloads and measure execution
(elapsed) time, CPU time, memory usage and disk I/Os. We moni-
tor query performance using the Query Store [29] and collect the
system-wide performance statistics via Microsoft Windows Per-
formance Monitor. Each experiment is run at least 5 times and we
report the average of the collected data points.

3.2 Read-only queries
3.2.1 Impact of data skipping. Our first experiment studies the

trade-off between range scans of B+ tree and full scan of column-
store. We use a 10 GB table with a single integer column. To control
the amount of data accessed by the query, we use a simple query
that selects a set of rows and computes an aggregate on it. We use
the query (Q1): SELECT sum(col1) FROM table WHERE col1
< {1} where the selectivity is controlled by setting the appropri-
ate parameter for the predicate. We compare the performance of

the query for a primary B+ tree vs. primary columnstore for both
cold and hot runs. For cold runs, the data resides on HDD.

Figure 1 plots the execution time and CPU time (in ms, log
scale) as we vary the selectivity of the predicate.1 For low values of
selectivity, B+ tree significantly outperforms CSI by about one to
two orders of magnitude in execution time, and up to three orders
of magnitude in CPU time. When selectivity is small, using a B+
tree implies few accessed pages where the optimizer chooses a
single-threaded execution plan. Such sequential plans are more
CPU-efficient compared to parallel plans, which are chosen in the
case of CSI or for higher selectivity values for B+ tree (about 0.2%
in our experiments). The change in degree of parallelism (DOP)
from 1 to 40 at selectivity of 0.2% results in a dip in execution time
(Figure 1(a)) and a jump in CPU time (Figure 1(b)). Note that for cold
runs, when data needs to be accessed from storage, the benefits of B+
tree is more significant since it accesses significantly less data when
the query has low selectivity. The extent of this benefit depends
on the bandwidth and access latencies of the storage media—the
slower the storage, the more pronounced the benefit of B+ tree is.
For cold runs, the crossover point for execution time is 10%.

Note that columnstores also benefit from smaller amounts of
data accessed by very selective queries. SQL Server stores simple
aggregates (min and max) for each column in each segment which
allows data skipping (or segment elimination) if the segment is guar-
anteed to not contain data relevant to the query [23, 30]. Several
approaches have been proposed in literature to aid such data skip-
ping. For instance: (a) sorted columnstores, such as projections in
C-Store and Vertica [39, 43]; or (b) small materialized aggregates
(e.g., min, max, sum, count) for each column segment [30].

We now study how columnstores compare with B+ tree if they
can skip data more aggressively. SQL Server does not provide a sort
order guarantee on a specific column in a CSI. However, if data was
pre-sorted on a specific column C1 when a CSI was built, the range
of value in different segments of C1 will be sorted, which can be
used to eliminate irrelevant segments if there is a predicate on C1.

To achieve this behavior for Q1 where the predicate was on
col1, we sort the data on col1 before building a CSI and compare
the performance of CSI when it is built on data in random order
vs. sorted order on col1. Figure 2 reports the execution time and

1We use selectivity to denote the fraction of rows in the table that qualify the predicate,
i.e., higher selectivity implies more rows qualify.
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Figure 2: Execution time and amount of data read for B+ tree and CSI (sorted and unsorted) for a querywith varying selectivity.
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Figure 3: Execution time and amount of memory used for B+ tree and CSI for a query with varying selectivity on one column
(col1) and sort order on another column (col2).

the amount of data read (in MB) for a cold run as we vary the selec-
tivity. As expected, the sorted ranges allow more segments to be
skipped, making the CSI more competitive with B+ tree. Referring
to Figure 2(a), the crossover selectivity moves to 0.09% for sorted
CSI (compared to about 10% for the CSI with random data). As is
evident from Figure 2(b), the sorted CSI accesses one to two orders
of magnitude less data compared to unsorted CSI. Note, however,
that the data access crossover is around 10%, which implies that
with a CSI, the query latency is comparable to B+ tree even when
an order of magnitude more data is being accessed. This efficiency
can be attributed to vectorized processing in CSI as well as other
optimizations such as accessing and prefetching larger data blocks
(megabytes in CSI compared to kilobytes in B+ tree). In Appen-
dix A.1, we present the graph for CPU Time.

3.2.2 Impact of sort order. B+ tree indexes also provide sort
order on the key columns in the index. Such sort order is beneficial
if a query result requests a sort order, or in execution plans that can
benefit from sorted data order, such as using a streaming aggregate
instead of a hash-based aggregate, or a merge join instead of a hash
join. In all such cases, not having to sort or hash the data reduces
the memory required for the query execution. CSI’s in SQL Server
provide CPU and I/O-efficient data processing, but do not provide
sort order. While it is possible to have sorted columnstores (such
as projections in Vertica [43]), maintaining the sort order in the
presence of arbitrary updates becomes expensive.

Explicit sort order.We first consider a query which requests ex-
plicit sort order on a column, while having a predicate on another
column. Q2: SELECT col1, col2 FROM table WHERE col1 <
{1} ORDER BY col2. The table has two integer columns with 10
GB data and all data is memory-resident during query execution.
We consider three physical designs: (a) Primary CSI where scan,
filter, and sorting the result will be performed during query exe-
cution. (b) Primary B+ tree keyed on col1, with col2 as included
column. Here B+ tree range scan is based on the filter, though the
result must be sorted during query execution. (c) Primary B+ tree
keyed on col2, with col1 as included column. Here the filter is
evaluated during query execution after scanning data in sort order.

Figure 3 presents the execution time (Figure 3(a)) and thememory
used by the query during execution (Figure 3(b)). Since scanning
CSI is significantly more efficient than scanning B+ tree, option (c)
is the most expensive in terms of execution time, but also has low
memory footprint since no sorting of data is required. On the other
hand, when selectivity is low, option (b) allows efficient access to
data by touching very little data, and since the result size is small,
the cost to sort the result is also small. Compared to option (a), the
benefits of efficient data selection of B+ tree dominates. However,
as the selectivity increases, and more data needs to be processed,
the benefits of the efficient CSI scan and sort starts to dominate, and
hence eventually CSI outperforms both the B+ tree-based options
for selectivity values above 1%. Therefore, when accessing large
amounts of data, the sort order of B+ tree does not provide benefits



0

20,000

40,000

60,000

80,000

100,000

100 1,000 10,000 1,000,000Ex
ec

u
ti

o
n

 t
im

e 
(m

ill
is

ec
)

# of groups

B+ tree CSI

Figure 4: Execution time for group by query where we vary
the number of groups.

above CSI, especially when sufficient memory is available to sort
the data in-memory during query execution.
Sort order benefiting execution. We next consider a query to
study how the sort order provided by key columns in a B+ tree
can benefit query execution when the query does not explicitly
require a sort. We consider the case of aggregation where a stream-
ing aggregation can be used when data is sorted, as opposed to a
hash-based aggregate. We consider the query Q3: SELECT col1,
sum(col2) FROM table GROUP BY col1. We use a table with
20 GB data, two integer columns, where we vary the number of dis-
tinct values of col1 from 100 − 1, 000, 000. We report results from
a hot run. To study performance when there is insufficient query
working memory, we limit the query’s working memory (called
grant memory in SQL Server) in this experiment. For cases where
the number of groups is large, and a hash-based aggregation is used,
disk-based aggregation is used when memory is insufficient.

Figure 4 presents the execution time of the query as we vary
the number of groups and compares the performance of a primary
B+ tree (on col1) with that of a primary CSI. For smaller number
of groups, where the hash-based aggregation can be performed in
memory, CSI significantly outperforms B+ tree due to two reasons:
(a) efficient scan and vectorized execution; and (b) compression
achieved by CSI for cases where the number of distinct values of
col1 is small, resulting in CSI accessing much less data compared
to B+ tree which cannot benefit from such compression. However,
as the number of distinct values of col1 increases, the benefits
of compression decreases. Moreover, the memory requirement for
the hash-based aggregation also increases. When this memory re-
quirement is higher than the working memory for the query, a
disk-based aggregation implementation makes the CSI significantly
slower compared to B+ tree where the sort order allows streaming
aggregate which has very low memory requirement. An approach
such as the incremental spilling with replacement selection [15]
can potentially be used to improve performance for such cases.

3.2.3 Key Findings. B+ trees are important for queries with
very selective predicates (in our experiments, less than 0.7% for the
memory-resident data and less than 10% for the disk-resident data).
The crossover point depends on the access latency and bandwidth of
the data storage medium—the slower the storage, the higher is the
cross-over point. Data sort order in B+ tree is beneficial only when
memory for sorting or computing hash-based aggregate is scarce. If
operations can be completed in memory, then columnstores result
in significantly better (about 5× in our experiments) performance
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Figure 5: Execution time for update statements that update
different number of rows.

compared to B+ trees. However, if memory is insufficient and a disk-
based implementation of hashing or sorting is used, then sortedness
of data in B+ tree helps it achieve significantly better performance
(up to 5× in our experiments) compared to columnstore.

3.3 Updates
We now analyze the cost of updating the B+ tree and column-
store indexes for updates of different sizes, an experiment mod-
eled along the lines of Larson et al. [23]. We use the update
statement Q4: UPDATE top (N rows) SET l_quantity +=1,
l_extendedprice += 0.01 WHERE l_shipdate = ’{1}’ on
TPC-H 30 GB. We report results from a hot run with a single thread
issuing updates. As discussed in Section 2, primary and secondary
CSI in SQL Server process updates differently. Therefore, we con-
sider three different types of physical designs: B+ tree, secondary,
and primary CSI. We use a primary B+ tree on l_shipdate for the
B+ tree-only and the design with secondary CSI.

Figure 5 reports the execution time for the statements as we vary
N , the number of rows which are updated. As expected, the cost to
update B+ tree is the cheapest. Updates in CSIs are handled with
internal structures composed of B+ trees. For small updates (i.e.,
0.01% of the data), a secondary CSI is about 2× slower compared
to a just updating the primary B+ tree. However, since to update
(which is a delete followed by an insert) a primary CSI, deletes
need to be added to the delete bitmap (see Section 2), there is a
high cost to locate the deleted rows in the column segments so that
its physical locator can be added to the delete bitmap. This makes
updating the primary CSI significantly more expensive compared
to both B+ tree-only or secondary CSI.

As the percentage of the updated rows increases, the perfor-
mance for the secondary CSI deteriorates in comparison to the
primary B+ tree and is similar to the performance of the primary
CSI. When about 40% of data is updated, both columnstore indexes
are about 16× slower than the B+ tree. A secondary CSI is faster
than primary CSI when a small amount of data is updated and sim-
ilar to a primary CSI when more than about 1% of data is updated.

3.4 Mixed workload
Many applications execute a mix of OLTP and data analysis queries
in an operational system to get quick operational insights from
data. In this section, we mimic such a setup where we have two
query types: an update statement which is Q4 from Section 3.3 and
a select query Q5: SELECT sum(l_quantity) sum_quantity,
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sum(l_extendedprice * (1-l_discount)) FROM lineitem
WHERE l_shipdate between ’1’ and DATEADD (day, 1,
’1’). For Q4, we set N to 10. We use multiple threads (10 for
this experiment) to issue these requests and record the execution
time. When executing concurrent read and write transactions, the
isolation level has significant influence on lock contention. We use
SQL Server’s default isolation level Read Committed.

We report performance for three different physical designs: (A) a
primary B+ tree on l_orderkey and l_linenumber and a sec-
ondary B+ tree on l_shipdate; (B) a primary B+ tree on l_orderkey
and l_linenumber and a secondary B+ tree on l_shipdate and
a secondary CSI on all columns; (C) a primary CSI and a secondary
B+ tree on l_shipdate. In all three cases, the secondary B+ tree
on l_shipdate helps with the selective predicate for Q4.

Figure 6 reports the average workload execution time as we
change the percentage of updates from 100% (with no scans) to
95% (with 5% of scans), reducing in steps of 1%. Updates are small
and short running transactions while scans are long-running and
resource-intensive analytical queries. For a given thread, we ran-
domly select a scan or update to be executed with probability de-
pending on the specified percentage. An update is executed for a
randomly-chosen shipping date and the top 10 lineitems are modi-
fied. Note that even at 5% of the workload, the scans dominate the
updates in terms of resources consumed, thus in practice making
this workload scan-heavy.

When there are no scans, the performance of B+ tree is superior
in comparison to the CSI (similar to Section 3.3). However, even
for the small percentage of scans of 1%, the CPU-efficiency of CSI
in speeding up the scans helps improve the average workload exe-
cution cost, even though there is a small increase in the execution
time of Q4. Option (B) has the best performance, since secondary
CSI strikes a right balance between increased overhead of small
updates vs. improved efficiency for large scans when compared to
a B+ tree-only design. This experiment provides evidence that a
hybrid physical design with B+ tree and CSI can provide significant
performance boost for mixed workloads.

3.5 Key takeaways
We summarize the key findings of ourmicro-benchmarking study in
Table 1 where we identify which physical design option (among B+
tree primary CSI, and secondary CSI) is suitable for a specific type of
query pattern. We differentiate between primary and secondary CSI
(unlike B+ tree) due to their difference in update characteristics. In
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Figure 7: An architectural overview of DTA.

a nutshell, B+ tree indexes are suitable for short range scans where
the index allows efficient point and short range lookups. B+ trees
are also the cheapest to update. On the other hand, primary CSIs
are most suitable for large scans and bulk updates typical in data
warehousing and analysis workload. Secondary CSIs can provide
significant speed-up for operational analytics on the same database
where the OLTP application generating the data also runs. The basic
workload axes can be combined in a variety of ways where a mix of
the basic physical design axes are needed for optimal performance.

4 RECOMMENDING HYBRID DESIGNS
The empirical results of Section 3 highlight the relative strengths of
B+ trees and columnstores and indicates the potential of combining
them for certain workloads. However, choosing an appropriate
physical design for a workload can be a difficult problem, even for
expert DBAs. Even before columnstore indexes were introduced,
several commercial DBMSs developed industry-strength physical
design tuning advisors that can automatically recommend a good
mix of physical design structures (e.g. B+ tree indexes, materialized
views) for a given workload of SQL queries and updates [4, 14, 44].

Microsoft SQL Server ships Database Engine Tuning Advisor
(DTA) [4, 9] to help analyze the complex space of physical design
choices. DTA can recommend B+ tree indexes (primary and/or sec-
ondary), materialized views, and partitioning in one holistic search
and costing framework. We extended DTA to analyze the combined
space of B+ tree and columnstore indexes. By analyzing the work-
load, DTA is now capable of recommending B+ tree indexes only,
columnstore indexes only, or a combination. This version of DTA
was released in January 2017 as part of Community Technology
Preview (CTP) releases of Microsoft SQL Server 2017 [37]. In this
section, we: (a) highlight some of the challenges that arise when
incorporating columnstore indexes into physical database design,
and (b) outline our solution by describing key changes in DTA. We
begin by first providing a brief overview of the architecture of DTA.

4.1 DTA Architecture
Given a user-specified workload W (which is a set of SQL state-
ments with associated weights), DTA performs a cost-based search



Physical design
Workload Short scans Large scans Short updates Large updates

B+ tree-only most suitable least suitable most suitable most suitable
Primary CSI-only medium most suitable least suitable least suitable

Secondary CSI with B+ tree least suitable medium medium least suitable
Table 1: Summarizing the key results of micro-benchmark study in terms of the basic axes for workload and physical design.
We assume all secondary indexes are covering.

to identify a set of physical design changes that will minimize the
total optimizer-estimated cost of W subject to constraints such as
the total storage budget. Figure 7 provides an overview of DTA’s
architecture and some key components. Here we focus on compo-
nents that are necessary to understand our extensions in DTA to
support hybrid physical designs that include columnstore indexes;
readers can refer to Agrawal et al. [4] and Chaudhuri et al. [9] for
more details. Even though DTA can recommend materialized views
and partitioning, for ease of exposition, we only focus on indexes.

The first stage in DTA is a local per-query analysis referred to
as candidate selection where DTA analyzes each query Q ∈ W

to determine the optimal set of indexes. Once the optimal set of
indexes is identified for each Q, DTA performs a global workload-
level analysis stage. The first step in global analysis is index merging
which explores the potential tomerge indexes on the same table [11].
Subsequently, DTA performs a global search over all indexes (union
of candidate and merged indexes) and queries in W to find the set
of indexes which will minimize the total cost of W subject to the
specified constraints.

DTA uses a cost-based search – its objective is to find the config-
uration with the lowest optimizer-estimated cost for the workload
that meets the specified constraints. To achieve costing for indexes
which are not yet built, DTA uses a “what-if” API to simulate hypo-
thetical indexes, which are metadata entries on the server sufficient
for the optimizer to generate an estimated plan which will be used
if the indexes were built [10]. For a given a query Q and a configu-
ration C , this API returns the estimated query plan (and its cost)
the optimizer will use if that configuration were to be materialized.

4.2 Extensions to “What-If” API
To compile an execution plan with hypothetical indexes, the opti-
mizer needs index metadata (e.g., columns in the index), number of
rows, and index size to determine the cost of accessing the relevant
pages in the index. For B+ tree indexes, all columns part of the
index are stored co-located on the leaf pages. Thus, if the optimizer
considers a B+ tree index, the number of pages in the index which
are relevant to answer the query is independent of the number of
columns needed by the query. However, since columnstore indexes
are stored column-at-a-time, the execution engine needs to only
access the columns relevant to the query. Therefore, the optimizer
needs the per-column sizes for columnstore indexes to estimate the
cost of accessing a columnstore index for a given query.

We added two extensions to the query optimizer of SQL Server
to consider columnstore indexes in the “what-if” mode. First, we
augmented the engine to support creating the relevant metadata
for hypothetical columnstores. This extension allows the optimizer
to recognize these hypothetical indexes as columnstore indexes to

enable the same set of search and transformation rules as material-
ized columnstores. Second, we augmented the optimizer’s “what-if”
API to add the ability to specify per-column sizes for columnstore
indexes. This extension is useful for considering both existing and
hypothetical columnstores in the “what-if” mode.

4.3 Search Space with Columnstore indexes
We added the ability in DTA to optionally recommend columnstore
indexes in conjunction with all other physical design recommenda-
tions that DTA already supports. We support recommending both
primary and secondary columnstore indexes on a table.
Candidate Selection.The first stage is to identify candidate column-
store indexes during DTA’s candidate selection which analyzes
individual queries. We consider columnstore indexes only on ta-
bles referenced in the query. SQL Server has limitations on several
column data types which cannot be included in a columnstore in-
dex. We use the database schema information to determine which
columns can be included in a columnstore index. Since we support
both primary and secondary columnstore index recommendations,
this data type limitations influences what kind of columnstore in-
dex the DTA can recommend. For instance, if a table has a column
with a data type which is not supported by columnstore indexes,
we cannot build a primary columnstore index on that table since a
primary index must include all columns. We consider a candidate
secondary index by excluding the unsupported column types.

As of writing, SQL Server supports only one columnstore index
per table. This constraint influences the choice of CSI candidates.
There are two alternatives for which columns to include in the CSI
candidate: (i) only include the columns that were referenced in
the workload’s SELECT statements; and (ii) include all the table’s
columns whose types can be included in a CSI. While our algorithm
can support option (i), we chose option (ii) in our implementation.
This is partly because if a column is not accessed by the query, the
execution engine does not need to access those columns. Hence,
unlike having wider B+ tree indexes, having additional columns
in a CSI does not impact query execution cost. Furthermore, with
option (i), we will have to build the widest columnstore index that
includes all columns in a table which have been referenced in the
workload, which in many cases turned out to be all columns in the
table. Moreover, by including all columns in the columnstore index
candidate, it is still useful for ad-hoc queries which may reference
other columns in the table. Note, however, that this design choice
could increase the maintenance cost for these CSIs if the table
is frequently updated. The workload-level search considers this
maintenance cost. The CSI candidates are generated in addition to
any B+ tree index candidates generated by DTA’s existing algorithm
used for B+ tree indexes.



Once the set of candidate columnstore and B+ tree indexes are
generated, DTA creates the necessary hypothetical indexes for the
candidates (if not already created for another query), and then lever-
ages the “what-if” API to determine which subset of indexes are
referenced by the optimizer and the query’s cost in the referenced
configuration. No further changes are needed in the rest of DTA’s
candidate selection algorithm.
Workload-level Search.Once the candidate indexes are identified,
the next stage is to search through the alternative configurations
to determine which indexes are beneficial to the workload. Since
columnstore and B+ tree cannot be merged, and we are considering
one columnstore with all allowed columns, when merging two
indexes, if at least one of the indexes in a columnstore, then the
candidates are not merged. After merging, the global search finds
the configuration that reduces the total workload cost. The only
changes in this stage are: (a) any configuration with a columnstore
index must restrict to one index per table; and (b) when costing
configurations with a columnstore, we need to estimate per-column
sizes, and use the extended “what-if” API for costing.

4.4 Columnstore Size Estimation
In order to cost a query using the “what-if” API for a configuration
consisting of a columnstore index, we need to provide the size of
each column in that index. To support a user-specified constraint of
maximum storage bound for the recommendation, we need to esti-
mate the total size of an index. Therefore, one of the requirements
is to estimate the per-column sizes of a hypothetical columnstore
index, i.e. without building the index. Stated more precisely, given a
tableT withC columns and N rows, currently stored in a row-store
format (either a B+ tree or a Heap file), we need to estimate the
per-column size of the columnstore index on the table.

There are two main challenges in columnstore size estimation.
First, for scalability of DTA for large tables, we cannot afford to scan
and execute the encoding algorithms on the entire data. Therefore,
we need techniques to estimate the size of the index using samples
of the data obtained using block-level samples. Using block-level
sampling has one significant limitation. If the data in the blocks
are sorted by one or more columns (which is the case for B+ tree
indexes), then selecting all rows in a sampled page introduces bias
in the samples due to correlations. To correct for this bias, we use
the block-level sampling technique described in Chaudhuri et al. [8].
Second, when SQL Server builds a columnstore index, it applies a
combination of encoding techniques to compress data as described
in Section 2. The choice of the encoding techniques, and therefore
the resulting compression ratio is dependent on the data types and
distribution [24]. Hence, we need techniques to estimate the size of
the compressed representation of the column. Below we describe
two size estimation techniques using samples.

Figure 8 illustrates the run-length encoding algorithm used to
compress columnstores in SQL Server using a simple example with
two integer columns. The example also illustrates some of the
challenges we face in our size estimation. First, the size of encoded
data is dependent on the number of runs, which is again dependent
on data distributions of individual columns. Second, to achieve
long runs, SQL Server also sorts the data, starting with the least
distinct column (column B in Figure 8(b)). Third, the number of
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Figure 8: Example of Run-length encoding used to compress
data in columnstores in SQL Server.

runs of other columns now depend on the joint distribution of the
columns (⟨B,A⟩ in Figure and 8(c)). Last, we need to estimate all
these aspects with just a sample and with several approximations
to keep the overheads of size estimation within reasonable bounds.
Black-box approach One approach is to first build a columnstore
index on the sample and then for each column, scale up the size of
the column in the index by the inverse of the sampling ratio. This
approach treats the compression logic as a black-box and assumes
that compressed columns size scales up linearly with sample size.
The advantage of the black-box approach is its simplicity and that
it requires no changes even when the compression algorithm in the
engine changes. On the other hand, its accuracy can suffer since the
above linearity assumption often does not hold. Consider for ex-
ample columns with very few unique values, such as n_nationkey
in TPC-H benchmark [42], which has only 25 distinct values. Any
foreign-key column that references n_nationkey can have at most
25 distinct values in that column. Therefore, every row group of
the columnstore index can have at most 25 distinct values, whereas
this estimator would significantly overestimate the size. Further,
creating a columnstore index on the sample incurs relatively high
overhead with potentially multiple sorts (necessary to run the com-
pression algorithm) and the cost of persisting the index. The next
approach attempts to overcome these limitations.
Modeling Runs using Distinct Value Estimation As described
earlier, columnstore indexes in SQL Server use run-length encoding
to compress data [23]. A run is a maximal sequence of identical
values. The effectiveness of run-length encoding depends on the
number of runs in the column and the length of each run. Consider
the special case of a table with a single column. When data is sorted,
it results in the fewest number of runs, which equals the number of
distinct values in that column. Considering the example in Figure 8,
if we sort the table on ⟨B,A⟩, where B is the major sort column and
A is the minor sort column, then the number of runs in columnA is
at most equal to the number of distinct combinations of ⟨B,A⟩. The
figure shows an example where the number of runs in column A is
3 even though the number of distinct combinations of ⟨B,A⟩ are 4.

SQL Server uses a greedy strategy that picks the next column
to sort by based on the column with the fewest runs; we mimic
this approach in our technique. One approximation we make for
efficiency is that we use the distinct number of combinations of
columns (which is an upper bound on the number of runs as de-
scribed above) as the basis of our greedy step. For estimating the
number of distinct values for a given set of columns, we adapt the
GEE estimator [8]. The GEE estimator only scales up the number
of small groups (i.e., groups that occur only once in the sample) in
the sample by the inverse of the sampling ratio. Other groups (i.e.,
values that occur more than once in the sample) are only counted



once. The advantages of this approach compared to the black-box
approach are: (a) It is more efficient since it does not incur the cost
of sort(s) of the sampled data or writing index data. (b) Despite the
inherent hardness of estimating number of distinct values using a
sample, in practice this approach is often more accurate.

4.5 Future extensions
Variants of columnstore indexes:Many other commercial DBMSs
also support columnstores which differ in design and implementa-
tion from the SQL Server’s columnstore. While, our discussion in
this section focused on the changes made to DTA that are specific
to SQL Server’s support for columnstores, DTA’s framework is ex-
tensible to many variants in columnstore technologies. For instance,
Vertica supports projections [22, 43] which allow column ordering,
thus providing an explicit sort order for columns in the column-
store. Since DTA already supports the ability to leverage any sort
requirements of a query and uses it to determine the sort order for
B+ tree indexes, extending support in DTA to consider sort order
in columnstore indexes is straightforward – candidate selection
needs to be aware of sort requirements in a query to determine an
appropriate sort order. If multiple columnstores are allowed on the
same table, then similar to B+ tree, candidate selection and merging
needs to be extended to support multiple columnstore candidates.
Columnstore size estimation: Efficiently and accurately estimat-
ing the size of a columnstore will play a crucial role in improving
the quality of recommendations for hybrid physical designs. The
sub-problem of efficiently estimating the number of runs in a col-
umn efficiently (e.g., with a limited number of sorts of the sample)
remains open. Further, modeling aspects such as each row group is
compressed independently, could also improve accuracy.
Impact on query optimizer and execution: The use of B+ tree
and columnstores for the same query also presents interesting
challenges for query optimization and execution. For instance, the
optimizer’s search space is much larger, thus requiring heuristics to
prune the search space to keep optimization times within reason-
able bounds. Moreover, data stored in columnstores are amenable to
vectorized (or batch mode in SQL Server) processing, while B+ tree
indexes typically use row-at-a-time (or row mode in SQL Server) pro-
cessing. Thus, considering B+ tree indexes and columnstores when
optimizing a given query implies the optimizer needs to estimate
the costs in these different execution modes. Last, columnstores
have very different locking characteristics compared to B+ tree
indexes, which impact query execution as well, aspects which are
often out-of-model for the query optimizer. These introduce novel
challenges in modeling the execution of hybrid physical designs.

5 END-TO-END EVALUATION
In Section 3, we used several micro-benchmarks to demonstrate
the design space of hybrid physical designs. In this section, we use
industry-standard benchmarks and several real-world customer
workloads to evaluate whether hybrid physical designs help im-
prove query performance. Furthermore, for such complex work-
loads, we also evaluate the effectiveness of our extensions to DTA
in finding these hybrid physical designs.

The key takeaways from the experiments in this section are:
(i) Hybrid physical designs help leverage the best of both B+ tree

and columnstore indexes. In many complex workloads, hybrid phys-
ical designs can result in one to two orders of magnitude improve-
ment in execution costs compared to columnstore or B+ tree-only
designs. Note that there are also workloads where columnstore-only
(e.g., TPC-H [42]) or B+ tree-only (e.g., TPC-C [41]) are sufficient.
(ii) Extensions to DTA that analyze and recommend hybrid physical
designs can help find the appropriate set of B+ tree and columnstore
indexes based on characteristics of the workload. The benefit of
DTA’s extensions is that this decision can be automated, cost-based,
and workload-dependent. (iii) There are additional challenges in
query optimization to find the optimal plan (in terms of execu-
tion cost) as well as in concurrency and locking which needs to be
considered to leverage the best of hybrid physical designs, aspects
which are potential avenues for future work.

5.1 Experimental Setup and Workloads
We use the same hardware and software setup as described in Sec-
tion 3. We use DTA to analyze the queries to identify an appropriate
set of indexes.We consider three alternative physical designs: (a)B+
tree-only, where DTA is used to find an appropriate set of B+ tree
indexes; (b) columnstore-only, where a secondary (non-clustered)
columnstore is built on all tables in the database; and (c) hybrid,
where DTA is used to identify the appropriate set of B+ tree and
columnstore indexes for the queries.

Our experiments use workloads from two categories: (a) read-
only workload comprising a set of read-only queries common in
data analysis and decision support workloads; and (b) mixed work-
loads with both OLTP and decision support workloads executing
on the same database, similar to operational analytics or HTAP.

For read-only, we use industry-standard TPC-DS benchmark [40]
and five real customer workloads. The customer workloads rep-
resent several decision support workloads from five different cus-
tomers of SQL Server. Table 2 reports some aggregate statistics
about the schema of these read-only workloads, such as the data-
base size, no. of tables, maximum table size, and average number of
columns per table. The table also provides some statistics about the
complexity of the queries in terms of the number of joins per query
and the number of physical operators that appear in an execution
plan chosen by the query optimizer for a given query. As evident
from the table, these customer workloads represent complex queries
over diverse schemas and database sizes.

An emerging workload pattern is where the transactional data-
base is also used for analysis and insights, often resulting in mixed
OLTP and decision support queries executing on the same database.
We use the CH benchmark [12] as a representative of this pattern.
The CH benchmark is an extension of the TPC-C benchmark and
schema with three additional tables and 22 additional queries (mod-
eled along the TPC-H queries). The queries are designed to answer
different business questions on the TPC-C transactional data.

5.2 Execution Cost Improvements
5.2.1 Read-only Workload. We use DTA to identify the appro-

priate indexes for each query in a workload, implement the indexes,
and execute the query ten times. We report our results based on the
median. The queries execute warm, and the server has sufficient
memory to hold the entire working set in memory.



Workload DB size # tables Max table size Avg. # cols # queries Avg. # joins Avg. # ops per plan

TPC-DS 87.7 GB 24 34.9 GB 17.2 97 7.9 28.2
Cust1 172 GB 23 63.8 GB 14.1 36 7.2 29.1
Cust2 44.6 GB 614 44.6 GB 23.5 40 8.1 28.3
Cust3 138.4 GB 3394 79.8 GB 26.3 40 8.75 24.1
Cust4 93 GB 22 54.8 GB 20.32 24 6.9 24.4
Cust5 9.83 GB 474 1.52 GB 5.5 47 21.6 53.3

Table 2: Aggregate statistics about the schema and query complexity for the read-only workloads.
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Figure 9: Distribution of speedup factor (for CPU time) achieved by a hybrid physical design compared to columnstore-only
(CSI) and B+ tree-only designs.
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Figure 10: Summary of indexes chosen in the query plans.
CSI and B+ tree correspond to the percentage of leaf nodes
which are accessing columnstore and B+ tree respectively.
The figure reports the average over all queries in the work-
load. Hybrid is the number of queries where both column-
store and B+ tree indexes were used in the execution plan
the optimizer chose.

We use the amount of CPU time consumed by the queries as
a measure of execution cost, since CPU time is dependent on the
logical amount of work done by the query. We use SQL Server’s
Dynamic Management Views to obtain a query’s CPU time.

Figure 9 plots the distribution of Speedup (in CPU time) obtained
with a hybrid physical design as compared to the columnstore-only
(CSI) and B+ tree-only physical designs. We compute the speedup
of hybrid compared to CSI as: CPUT imeCSI

CPUT imehybr id
, and similarly for

B+ tree. Therefore, a speedup > 1 implies hybrid is cheaper in
execution, while < 1 implies hybrid is more expensive.

As is evident from Figure 9, hybrid leverages the best of column-
store and B+ tree across several workloads. For each workload,
there are several queries for which a hybrid physical design results
in more than an order of magnitude improvement in execution cost.
In some cases, the improvement is 2 − 3 orders of magnitude.

For the TPC-DS workload, there are 11 queries where a hybrid
design results in more than an order of magnitude reduction in
execution cost compared to columnstore-only. Moreover, there are
20 queries with 1.2 × −10× improvement. The improvements of



hybrid compared to B+ tree is even more pronounced, primarily due
to superior performance of CSI over B+ tree-only configurations.

The benefits of hybrid designs are also evident across several
real-world customer workloads as well. For instance, for Cust1 and
Cust3, hybrid results in more than an order of magnitude reduction
in execution costs for a significant fraction of the workload when
compared to CSI. On the other hand, for Cust2, hybrid’s execution
costs are similar to CSI, while having significant gains over B+ tree.

To better understand how the B+ tree and CSI are used in the
same execution plan, Figure 10 provides a summary of statistics
from the query plans chosen by the query optimizer in the presence
of hybrid physical designs. The vertical bars report the percentage
of leaf nodes in the plan which access columnstore (CSI) and B+ tree
indexes respectively, averaged over all queries in the workload. The
percentages are plotted on the primary vertical axis (lefty-axis). The
line reports the number of queries for which the optimizer chose an
execution plan where both columnstore and B+ tree indexes were
used. This number is plotted on the secondary vertical axis (right
y-axis). As is evident from the figure, Cust1 and Cust3 leverage B+
tree indexes in most cases, though there are several plans where
both types of indexes are used. On the other hand, Cust2’s workload
benefits more from columnstore, with a few hybrid plans.

Figure 10 provides strong evidence that for a variety of complex
and real workloads, a hybrid physical design is beneficial. The
benefits can vary depending on the workload characteristics and
data distributions. A tuning tool, such as DTA, that can analyze
and model the hybrid physical designs can help leverage the best
of both columnstore and B+ tree indexes.

Note that DTA uses the query optimizer’s estimated query plan
costs to determine which combination of B+ tree and columnstore
indexes is optimal for a given query. However, it is well-known
that the query optimizer’s estimates are not always accurate in
terms of execution costs [26]. Such errors in the optimizer’s esti-
mate affect the recommendation quality of DTA, where in many
cases it could result in sub-optimal recommendations. These are
evident in Figure 9 for speedups less than 1 (and more noticeably,
less than 0.5). In all cases, the hybrid physical design is still opti-
mal in terms of optimizer’s estimated cost. However, CSI and/or
B+ tree plans are superior based on execution costs. As noted in
Section 4.5, the hybrid physical designs require the optimizer to
jointly estimate the costs of operators for vectorized (batch mode)
and row-at-a-time (row mode) executions which adds an added layer
of complexity, resulting in many more instances of cost estimate
errors. SQL Server features such as Automatic Plan Correction [17]
and adaptive operators [38] are useful to overcome such errors.

5.2.2 Mixed Workloads. We use the CH benchmark (scaling fac-
tor of 1000 warehouses) as a representative of mixed workloads
common in operational databases also executing analytical work-
loads. The CH workload has two separate components: (a) threads
executing the TPC-C transactions similar to the specification of the
TPC-C benchmark; and (b) threads executing the H-like analysis
queries. The C and H components share the same data. Since many
queries execute concurrently, the queries contend for resources
as well as locks. To minimize resource interference, we isolate the
CPU cores for the two components, by affinitizing the C and H
components to different sets of CPU cores using Resource Pool
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Figure 11: Distribution of speedup factor (median execution
time) achieved by hybrid physical design compared to B+
tree-only for CH benchmark using Snapshot Isolation (SI)
and Serializable (SR) isolation levels.

affinities in SQL Server [36]. In this experiment, we dedicate 30
cores for the H workload and the remaining 10 to the C workload.
We use 20 client threads that generate the C and H workload in
a tight loop without any think time, with 1 thread dedicated to H
workload. We run the workload for six hours and use the median
latency of each query/transaction type. Since columnstore and B+
tree indexes use different granularity and type of locking, the ef-
fect of lock contention in hybrid physical designs is also an aspect
we report in our results. Therefore, we report the end-to-end wall
clock time to execute the queries (instead of logical work done
in CPU time) to better capture the concurrency effects. We also
experiment with two different isolation levels, Snapshot Isolation
(SI) and Serializable (SR) to observe this impact of locking.

Figure 11 plots the distribution of speedup achieved by a hybrid
physical design compared to a B+ tree-only design. Note that a
columnstore-only design makes the C transactions extremely slow,
thus slowing down all other queries due to lock contention. Hence,
we consider two designs: B+ tree-only and hybrid. As expected,
compared to a B+ tree-only design, a hybrid design significantly
speeds up the H queries, while also resulting in moderate slow-
down for some C transactions, primarily, the write transactions,
NewOrder and Payment. Therefore, similar to our observation in
Section 3, even for mixed workloads, a hybrid physical design al-
lows us to leverage the best of B+ tree and columnstore. It is also
interesting that using the Serializable isolation mode results in over-
all better latency improvements for the read-only queries, since
Snapshot isolation creates multiple versions which makes reads
slightly more expensive compared to Serializable which stores only
a single version.

5.3 Example Hybrid Plans
We now drill into a few individual cases where hybrid physical
design had at least an order of magnitude lower execution cost com-
pared to columnstore-only. One such example is TPC-DS Query ID
54. This query references several large fact tables (e.g., web_sales,
store_sales, etc.) as well as many dimension tables (e.g., item,
date_dim, etc.). The query has several predicates on the dimen-
sions, which are selective enough that B+ tree accesses are signif-
icantly cheaper than scanning the columnstore for the large fact



tables. DTA recommends B+ tree indexes on several fact tables as
well as a few dimensions where the selectivity is high, along with a
few columnstore indexes on tables such as customer_address and
store. In the presence of the B+ tree indexes, the optimizer uses in-
dex seek (using predicates on the dimensions) and nested loop joins
to look up qualifying rows in the fact tables. On the other hand, with
only columnstores, the optimizer scans the columnstore and uses
hash joins. The CPU time spent on leaf nodes for the hybrid plan
was about 25× lower than the leaf nodes in the columnstore-only
plan. A similar pattern is also observed for Query ID 72, where in
addition to B+ tree indexes on the fact tables, DTA also recommends
B+ tree indexes on tables such as household_demographics and
customer_address which are used in nested loops. There are sev-
eral instances where a columnstore is built on a table in addition to
a B+ tree and both indexes are referenced in the query plan.

We observed similar patterns in the real-world customer work-
loads. For instance, in the case of Cust4, there are several instances
of DTA recommending a B+ tree index on the large fact table(s) and
columnstore on the dimension tables. The optimizer uses an index
seek on the fact table(s) followed by a scan of the columnstore on
the dimensions, and joining the tables using hash join.

6 RELATEDWORK
Over the past decade, many commercial DBMSs have added support
for a columnstore, either as primary or secondary representation
of data, as well as in-memory and on-disk [21–23, 25, 31–34, 39].
Some systems target columnstores primarily for data warehousing
applications [33, 34, 39] while others have enabled them for general
purpose DBMS applications [21, 25, 31] or for operational analytics
(i.e., OLTP and decision support on the same database) [23, 32]. Our
focus in this paper is the role of columnstore and B+ tree indexes
on the same database supporting a variety of workloads, where the
space of hybrid physical designs is important.

The need to select the appropriate set of access paths and physi-
cal designs has been an important problem even before the advent
of columnstores. Several commercial systems have long supported
physical design tuning tools that accompany their database engine.
For instance, Database Engine Tuning Advisor for Microsoft SQL
Server [4], DB2 Design Advisor for IBM DB2 [44], and SQL Access
Advisor for Oracle [14, 35]. Similarly, for columnstores, Vertica
supports Database Designer [22] that determines the sets of pro-
jections to build. Our extensions to DTA to support analyzing and
recommending B+ tree and columnstore indexes in an integrated
fashion is the first of its kind in a tuning tool. Previous approaches
have also studied the impact of compression on physical design tun-
ing [16, 20], though none of them study size estimation problems
that arise due to a variety of encoding techniques used in CSIs.

Kester et al. [19] analyzed the role of access path selection in
main-memory optimized data systems. While sharing the same
goal to understand the performance trade-offs between CSI and B+
tree indexes, Kester et al. focused on a specific in-memory archi-
tecture that supports scan sharing and memory optimized B+ tree,
considered one specific form of physical design (corresponding
to our secondary B+ tree on top of CSI), and their primary focus
was to study the problem in terms of concurrency. Moreover, the
evaluation was using a prototype system. On the other hand, our

analysis focuses on the analysis for a commercial-strength DBMS.
Furthermore, our experimental analysis examines synthetic, mixed
and several real-world customer workloads as well as a wide spec-
trum of physical designs. While Kester et al. proposed a model
to estimate optimal concurrency among queries, our observations
motivate the extensions to a commercial physical design tuning
tool to analyze and recommend hybrid physical designs.

Abadi et al. [3] present an interesting experimental study quanti-
fying the major differences between columnstore and row-oriented
indexes such as B+ tree. The focus of that study was to understand
the fundamental differences, and how one can be extended with
properties of another. Arulraj et al. [5] explore a design where
depending on the workload, the physical layout of the data auto-
matically changes between row and column formats for different
parts of the same table. SQL Server supports both B+ tree and
columnstores on the same table and execution engine. Our focus in
this study is to analyze how columnstore and B+ trees complement
each other in hybrid physical designs.

Several systems, such as Hyper [18] and BatchDB [27], study the
design and implementation of a DBMS to support a mix of OLTP
and decision support workloads, similar to the mixed workload
setup studied in this paper. These approaches rely on storage for-
mats, sharing the data between the OLTP and the decision support
components as well as isolating the workloads. We consider re-
source isolation between the OLTP and decision support workloads
for our experiments with the CH workload in Section 5. However,
our focus is on optimal choice of hybrid physical designs in a DBMS
engine which supports both columnstore and B+ tree indexes.

7 CONCLUSIONS
Many commercial RDBMSs support columnstores and B+ tree in-
dexes on the same database and table. We studied this design space
of hybrid physical designs, where both columnstore and B+ tree in-
dexes can be built on the same database and tables in the context of
a commercial RDBMS. Our experimental analysis, using carefully-
crafted micro-benchmarks, demonstrated that an appropriate com-
bination of columnstore and B+ tree indexes can result in an order
of magnitude better execution costs for several workload patterns.
We presented an extension to Database Engine Tuning Advisor, a
commercial-strength tuning tool for Microsoft SQL Server to ana-
lyze and automatically recommend a set of B+ tree and columnstore
indexes appropriate for a specified workload. We conducted exten-
sive experiments using a variety of industry-standard benchmarks
as well as real-world customer workloads, which demonstrated
that hybrid physical designs are indeed effective across many work-
loads. DTA can leverage the best of B+ tree and columnstores by
using the workload to determine the appropriate columnstore-only,
B+ tree-only, or hybrid recommendation. In the future, we plan to
refine the columnstore size estimation algorithm and study other
aspects that affect the execution costs for hybrid physical designs.
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A DETAILS ON EVALUATION OF HYBRID
PHYSICAL DESIGNS

In this section, we present extended and more detailed results of
the experiments described in section 3.

A.1 Fully sorted columnstores
In Section 3.2.1, we empirically quantified how sortedness in column-
stores can be leveraged for aggressive data skipping that helps ex-
ecution time. Figure 2(a) reported the crossover point in terms of
end-to-end query execution time. In Figure 12, we plot the CPU
time for the queries to analyze the crossover point in terms of the
work done by the query. As noted in Figure 2(b), when accessing
more than about 4% of data, the efficient parallel scan of CSI out-
performs the parallel scan of B+ trees. However, such parallel plans
using multiple threads consume more CPU resources compared to
the serial plan used for the B+ tree for small selectivity values. This
aspect is evident in Figure 12 where the crossover point for a sorted
CSI and B+ tree is at a much larger selectivity compared to that in
terms of execution time reported in Figure 2(a). The biggest advan-
tage of the B+ trees is when the selective fetching of pages from

disk saves I/O and CPU time as less data has to be processed with
an efficient single-threaded execution plan. A sorted columnstore
ameliorates some of these overheads by allowing more data skip-
ping. However, since the amount of data processed with a sorted
CSI is still much larger than that of the B+ tree, the optimizer still
chooses a multi-threaded plan which has higher CPU requirements.

A.2 Concurrent queries
As is evident from the experiment in Appendix A.1, since B+ trees
skip more data for queries with low selectivity values, they can run
single-threaded and consume less CPU. Such CPU-efficiency allows
for more queries to execute concurrently, thus resulting in lower
execution time for concurrent queries. To quantify this effect, we
repeat the experiment from Section 3.2.1 by varying the number of
concurrent queries executing. We use the same query Q1 executing
on data cached in memory (i.e., hot runs) and vary the number
of threads concurrently issuing the same query. In Figure 13, we
present how the selectivity (%) crossover point (for end-to-end
query execution time) changes depending on the number of con-
current queries. We vary the number of concurrent queries from 1
to 256 in multiples of 2. Each data point in Figure 13 corresponds
to plotting the graph as in Figure 1(a) with a given number of con-
current queries and reporting its crossover point. This experiment
is modeled similar to Kester et al. [19] (see Sections 2.4 and 4) to
quantify the impact on SQL Server which has a traditional B+ tree
designed for disk-based systems and does not support scan sharing.
We only report the crossover point with end-to-end execution time
since the crossover point for CPU time is not affected much by
concurrent queries. The crossover point is similar to that reported
in Figure 1(b).

The B+ tree index uses a single thread for low selectivity queries
and even after the switch to multi-threaded execution at the selec-
tivity value of about 0.2%, it processes less data and thus its CPU
time becomes on par with CSI only after the selectivity value of
about 1%. For small number of concurrent queries (≤ 8), there is
enough available CPU on the server such that there is little CPU
contention for the resource-intensive parallel scans on columnstore.
Therefore, in such cases, the B+ tree is beneficial only for very small
selectivity values as the serial scans do not fully leverage the free
resources. However, as the number of concurrent queries increase,
the scans with columnstore encounters contention and blocking for
CPU, which increases the end-to-end execution time, thus shifting
the crossover point higher. However, beyond a certain degree of
concurrency, even the serial plans on B+ tree starts contending for
CPU. In such cases, since the CSI is more CPU-efficient per unit
data processed, the crossover point is lower. Note that SQL Server
does not support shared scans which would make scans in this
experimental setup more efficient, as observed in Kester et al. [19].
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